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Abstract

The optimal location and size for Distributed Generation (DG) to get max-
imum advantages and improve the performance of electrical distribution
systems (EDS) is a difficult challenge to solve. With EDS performance
indices, this research offers a constrained generalized multi-objective perfor-
mance index (MOPI) objective function. Improved Teaching Learning Based
Optimization (ITLBO) is used to solve the proposed objective function by
removing the convergence issue of basic Teaching Learning Based Optimiza-
tion (TLBO). By optimizing the MOPI, the Wind Turbine Generation Unit
(WTGU) is examined for single and multiple DG placement and sizing in
EDS performance improvement. The ideal approach reduces the burden of
EDS consumer loss allocation by minimizing power losses, improving the
consumer voltage profile and voltage stability, increasing the line loadabil-
ity margin (LLM), and increasing the line loadability margin (LLM). The

Distributed Generation & Alternative Energy Journal, Vol. 37_5, 1637–1664.
doi: 10.13052/dgaej2156-3306.37514
© 2022 River Publishers



1638 T. Ramana and G. Nageswara Reddy

performance test was carried out on a 33-node EDS and used MATLAB
software to demonstrate the efficacy of optimal solution.

Keywords: Improved teaching learning based optimization, optimal place-
ment and sizing of DG, voltage stability improvement, voltage profile,
voltage deviation.

1 Introduction

For a long time, centralized power generation has dominated. These systems
use traditional generation resources to generate electrical power, which is
then transmitted via transmission lines before being connected to end users
via the distribution system. More transmission and distribution costs, dereg-
ulation trends, environmental concerns, and technology advancements all
change the current generation scenario in order to avoid reliance on fossil
fuels. For a variety of such issues, DG is a beneficial technique. Small-
scale generation, distributed generation, or decentralized generation, which
is directly connected to the EDS [1], is referred to as DG. A critical factor
is the proper positioning and sizing of DGs connected in EDS. Incorrect
DG location and sizing can have a negative impact on the system, resulting
in increased power loss and a lower voltage profile at the consumer node.
As a result, the appropriate allocation of DG units in EDS has been a
major concern for researchers and engineers working in these domains in
recent years [2]. For power system researchers, the problem of allocating
DG optimally in the EDS becomes a difficult one. Various academics have
successfully solved the DG allocation problem in distribution systems and
studied their performance over the last two decades.

In the EDS, Shukla et al. [8] used a GA approach to solve the OADGs
problem. The goal is to keep the EDS’s power loss to a minimum. Khalesi
et al. [9] solved the DG allocation problem in the EDS with the goal of reduc-
ing loss, improving reliability, and improving voltage profile. The above-
mentioned problem can be solved using a dynamic programming technique as
an optimization tool. El-Zonkoly [10] used the RDS to handle multiple DG
allocation difficulties using distinct load models. A PSO technique is used
to solve a multi-objective function as an optimization tool. With the goal of
improving loss reduction, Abu-Mouti and El-Hawary [11] proposed an ABC
method for optimizing the DG allocation problem in the EDS. For optimizing
the OADGs problem in the RDS, Moradi and Abedini [12] presented a hybrid
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GA/PSO approach. The goal of this technology is to reduce power losses
while improving the voltage profile and stability.

In the RDS, Nekooei et al. [13] proposed a harmony search algorithm
to solve the OADG problem. The goal of the approach described here
is to increase loss reduction and improve the voltage profile. Bakar and
Mokhlis [14] proposed a method for resolving the RDS’s DG allocation
difficulty. The goal is to reduce power loss and increase voltage stability. The
given problem is solved using the PSO optimization method. With the goal
of reducing EDS power loss, Kansal et al. [15] introduced a PSO algorithm
for handling the OADGs problem in the EDS. Al-Abri et al. [16] proposed
a strategy for overcoming the OADGs problem in the RDS with the goal of
improving voltage stability. The above-mentioned target can be solved using
a MINLP as an optimization technique.

Sultana and Roy [17] proposed a strategy for DG placement in the
RDS based on the Quasi-Oppositional Teaching Learning Based Optimiza-
tion Algorithm (QOTLBOA). For overcoming the OADGs problem in the
RDS, Kowsalya et al. [18] suggested a combination approach of LSF and
BFOA. This approach aims to increase loss reduction, voltage profile, and
net operational cost reduction. In the RDS, Yammani et al. [19] proposed
the Bat method for solving the optimal allocation of various types of DERs
problems. The goal is to improve the voltage profile and loss minimization.
Kefayat et al. [20] proposed an integrated strategy for tackling the DERs
allocation problem in the RDS using the ACO and ABC algorithms. The goal
of this strategy is to reduce power loss, resource emissions, energy costs, and
improve system voltage stability.

With the goal of enhancing loss reduction and voltage profile, Mohandas
et al. [21] introduced a chaotic ABC algorithm for handling the OADG
problem in the EDS. In the RDS, Ali et al. [22] proposed an ant lion
optimization strategy to solve the renewable DG allocation problem. The
approach’s goals are to increase loss prevention and savings maximization.
Quadri et al. [23] proposed a CTLBO (Comprehensive TLBO) technique for
handling the RDS DG allocation problem. The goal was to reduce power loss,
enhance the voltage profile, and save energy.

As the literature review of the placement and sizing of the DG in the
EDS clearly states in the preceding literature, it can be assumed that authors
discovered and recommended outputs in determining the DG allocation in the
EDS. Nonetheless, these approaches need less effort for WTGU deployment
in EDS systems, as well as monitoring system performance in terms of overall
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system loss minimization, voltage profile enhancement, voltage stability, line
loadability, and loss allocation burden to consumers.

Renewable generation sources output power is mostly determined by
environmental factors. As a result, thorough planning is required prior to allo-
cating these sources in an EDS. The MOPI objective function optimization
using the ITLBO approach is presented in this research and is used to solve
the EDS DG allocation problem separately for single and multiple WTGUs.
The goals of this strategy are to reduce power loss, maintain a better voltage
profile, improve voltage stability, increase line loadability margins, and lower
the customer loss allocation burden. Before these WTGUs-based DGs are
installed, certain EDS performance criteria are monitored. Since the annual
average wind speed is used to model wind speed. The optimum locations are
determined independently after computing the WTGU power output, and the
sizes of WTGUs placed at the identified locations are computed using the
ITLBO algorithm by maximizing the MOPI objective function. Finally, the
methodology established is tested on a 33-node EDS.

2 Formation of Multi-objective Problem with Different EDS
Performance Indices

For improving the EDS operational performance, a multi-objective function
is formulated with six performance objectives simultaneously as a single
objective function. The indices identified to efficiently handle the EDS
performance objective function are listed below.

2.1 Index for Active Power losses (IAPL) and Index for Reactive
Power Losses (IRPL) Based on Available Load

When EDS power losses decreased, the EDS operated at best performance
level. In this regard, the active and reactive power loss indices based active
and reactive power losses from load flow solution [24] on total active and
reactive demands are expressed as follows respectively.

IAPL =

 br∑
pq=1

Ploss(pq)

/
nd∑
q=1

PL(q)

 (1)

IRPL =

 br∑
pq=1

Qloss(pq)

/
nd∑
q=1

QL(q)

 (2)
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where

br is total number of branches of EDS
nd is total number of nodes of EDS

br∑
pq=1

Ploss(pq) is total APL in kW

br∑
pq=1

Qloss(pq) is total RPL in KVAr

nd∑
q=1

PL(q) is total active load in kW

nd∑
q=1

QL(q) is total reactive load in kVAr

For enhancing EDS performance, total EDS losses will be reduced to
near-zero IAPL and IRPL values.

2.2 Index for Node Voltage Deviation (IVDI)

In EDS, the node voltage should be kept within the required limits. Voltage
variations that exceed the set limitations have an influence on the entire EDS
and can cause block outs. The voltage deviation index (VDI) [25] can be used
to calculate voltage variances with regard to defined voltage limitations.

VDI =

√√√√ nd∑
q=1

|V (q)− V limit|
2

Nv
(3)

where

Vlimit is upper limit voltage if the upper limit violation or lower limit
voltage if a lower limit violation, 0.925 ≤ V (q) ≤ 1.025 p.u.
V (q) is the voltage at the qth node
Nv Voltage violation nodes

Index for Voltage Deviation Index (IV DI) = V DI (4)
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The Equation (4) refers to the enhancement of the voltage profile that
improves EDS voltage regulation. The system node voltage deviation index
will be reduced to zero as a result of EDS performance optimization.

2.3 Consumer Loss Allocation Index Based on Total APL
(ICPL)

End node consumers with large loss allocation burdens must be consid-
ered, and any performance improvement approach must always provide the
best solution to decrease their loss allocation. Based on the overall system
APL [26], the index was created to lower the maximum loss allocation
consumer.

ICPL = max
q=1 to nd

CP loss(q)

/
br∑

pq=1

Ploss(pq)

 (5)

where

CP loss(q) is the loss allocation of qth consumer.

The burden of excessive loss allocation to consumers is assumed to be
reduced in any optimization problem, and Equation (5) will be near to zero,
with loss allocation to the majority of consumers being minimized.

2.4 Index for VSI (IVSI)

Voltage stability index can calculate the level of voltage stability of EDS and
therefore appropriate action may be taken if the index indicates a poor level
of stability. Thus, stability must be maintained for proper functioning and to
avoid the block out the condition of the system [27] and is given below.

V SI(q) = V (p)4 − 4(P (pq)X(pq)−Q(pq)R(pq))2

−4V (p)2(P (pq)R(pq) +Q(pq)X(pq))

q = 2, 3, 4, . . . nd (6)

where

P (pq) is the active power flow through the branch pq
Q(pq) is the reactive power flow through the branch pq
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For secure and stable operation VSI (q) > 0 for all the nodes. The node
where VSI (q) is found to be minimum is the most sensitive to the voltage
collapse.

In the proposed technique, VSI is considered as the critical factor
which change the VSI value indicating the EDS voltage stability during the
optimization of EDS. The index of VSI is defined as

IVSI = min
q=1 to nd

(V SI(q)) (7)

The EDS stability intensity can be measured using Equation (7) and
thereby required action needed if EDS index shows the instability condition.
VSI value is greater than zero if the EDS operates at stable and secure
conditions, otherwise, instability occurs.

2.5 Index for LLM (ILLM)

The EDS branches power flow varies as EDS performance improves. The
maximum loading allowed with branch LLM [28] is the branch’s allowable
limit for preventing system instability. The ILLM index in EDS provides
information on the minimum loading of LLM from all branches of LLMs.

ILLM = min
pq=1 to br

(
LLM(pq)

LML(pq)

)
(8)

To operate the EDS system with high LLM values and use the existing
lines to handle future load growths, the ILLM value must be increased.

3 General Multi-Objective Optimization Problem

For Individual objective functions are used to compute the EDS’s multi-
objective performance index (MOPI). Multiple metrics are offered in the
MOPI to optimize EDS and improve its performance. The highest IVSI
and ILLM values are used to improve voltage stability and line loadability,
ensuring that all line flows are within their legal limits for tolerating EDS’s
increased load growth. Lower APL and RPL, enhance the voltage profile, and
reduce the loss allocation to the EDS consumer by using the lowest values of
IAPL, IRPL, IVDI, and ICPL. Individual targets are standardized between
zero and one for good EDS performance. Individual objectives are given
weighting variables to create a single-objective optimization problem.
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The optimization used MOPI is given by

MOPI = w1 · IAPL+ w2 · IRPL+ w3 · IV DI + w4 · ICPL

+ w5 ·
(

1

IV SI

)
+ w6 ·

(
1

ILLM

)
(9)

where
6∑

s=1

ws = 1 ∩ ws ∈ [0, 1]

In Equation (9), the weighting factors are decided by planners and
designers of EDS and the very important role played for the multi-objective
problem. In the proposed technique, IAPL is the objective function first part
inward with an important weighting factor of 0.25. The objective function
second part is the IRPL receives 0.15 as weight factor. Because of the system
consumer voltage profile, the IVDI is given a weighting factor of 0.15.
The ICPL receives 0.2 as the fourth objective function to examine the loss
allocation load to the consumer. The inverse of IVSI is given a value of 0.10,
indicating whether the system is operating away from the voltage collapse
point. The information concerning line loadability is given by the inverse of
ILLM, which receives 0.15. The ITBLO algorithm must be simulated in order
for the teaching-learning process to traverse the feasible region and reach its
limit in the search space. The goal of the problem formulation is to minimize
the MOPI function while meeting voltage and power constraints.

4 TLBO Algorithm

Teaching-learning is an essential preparation where each student prepares to
become proficient in something from other students to upgrade themself.
Teaching-Learning-Based Optimization (TLBO) [29] introduces the con-
ventional classroom teaching-learning process. The algorithm mimics two
essential modes of process: (i) knowledge from the teacher (called as the
teacher phase) and (ii) knowledge exchange between learners (called as the
learner phase). TLBO method is basically a population-based optimization,
where a group of learners (i.e., students) are taken from the population and
the distinctive subjects considered to the learners closely resembling the
various design parameters of the optimization objective function (problem).
The results of the learner closely resemble the solution of the optimization
objective function (problem). The best solution of TLBO in each iteration is
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considered as a teacher. TLBO method is used common control parameters
such as population, number of iterations and there is no need of any optimiza-
tion execution specific parameters as required in meta-heuristic optimization
techniques which needs better tuning for global optimization solution (for
Genetic Algorithm (GA) [30] needs selection, crossover and mutation proba-
bilities, and PSO [31] needs inertia weight, social and cognitive parameters).
Various stages of TLBO described below.

4.1 Teacher Phase

This is the first part of TLBO where learners acquire knowledge from a
teacher. Teacher always tries to enhance the classroom mean result depends
on the teacher capability of the subject taught. At iteration k, s is number
classroom subjects (i.e. design variables v = 1, 2, . . . , s) with subject (each)
score as Xv, l is learners (i.e. size of population p = 1, 2, . . . , l), mean of
class Mv,k in v subject during the iteration k and the best result of the all
learners for all subjects in the overall population isXv,pbset,k. Efficient learner
is observed as a teacher who shared the knowledge to learners at maximum
extent. The difference between teacher of all subjects to the available mean
of individual subject is computing by

Diff _Meanv,k = rk × [Xv ,pbest ,k − TF,k ×Mv,k] (10)

where

TF,k is teaching factor i.e., 1 or 2.
Teaching factor is computing via

TF,k = round[1− rk] (11)

where

rk is generated random number in range [0 1].
Each subject score is increasing with addition of Diff _Meanv,p,k, math-

ematically,
X ′v,p,k= Xv,p,k + Diff _Meanv,k (12)

The existing subject score replace if new subject score is better than the
existing subject score.

4.2 Learner Phase

Second part of the TLBO method is learner phase where learners get the
knowledge form other learners, mathematically select two learners x and y
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randomly after the end of the teacher phase such that f(X ′x,k) 6= f(X ′y,k)

X ′′v,x,k = X ′v,x,k + rk × (X ′v,x,k −X ′v,y,k), If f(X ′x,k) < f(X ′y,k)

(13)

X ′′v,x,k = X ′v,x,k + rk × (X ′v,y,k −X ′v,x,k), If f(X ′y,k) < f(X ′x,k)

(14)

The Equations (13) and (14) are considered for minimization optimization
problem as we are interested in minimization of objective function.

5 Improved TLBO Algorithm

The ITLBO algorithm [32] is the enhanced revision by introducing the
number of teachers, adapting different teacher factors for an individual group,
learning leaners through tutorials and discussions and self-learning during
learner phase to the basic TLBO algorithm.

5.1 Number of Teacher

All students are divided and assigned to different groups. Individual groups
assign the teacher who performed top in their subjects. Each group teacher
teaches the learners and brings the learners to the teacher level of that
group, if learners of the particular group reach the teacher level in the
particular group, the learners of that group are assigned to another better
teacher. This improvement is the same as the population sorting mecha-
nism used in other optimization algorithms such as swarm intelligence and
evolution.

5.2 Adaptive Teaching Factor

In the basic TLBO algorithm, teaching factor (TF) is 1 or 2 which means the
learner can learn completely from the teacher or nothing he will learn from
a teacher and these two possibilities during the entire optimization process.
This will trap the local optimum solution and also show slow convergence. In
real-time teaching-learning processing, the learner can learn from a teacher
in any proportionate way. So, for the learner, it does not end state and
various in between of these two possibilities. A larger value of TF speeds
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up the optimization search and reduces exploration capacity. Teaching factor
is improved with the following,

TF,g,k =
f(Xx,g,k)

f(Xg,k)
if f(Xg,k) 6= 0 (15)

TF,k = 0 if f(Xg,k) = 0 (16)

where

f(Xx,g,k) is the result of the x student related to group g by taking into
account all subjects in iteration k.
f(Xg,k) is the result of the same group of teachers in the same
iteration k.

Hence, teaching factor changes automatically depend on the result of
learner and teacher during the search.

5.3 Learning Through the Tutorial

Teacher phase is modified by including the tutorial hours, during the tutorial
hours or by discussing learner can enhance knowledge from fellow class-
mates or teacher which is considered in ITLBO algorithm. Mathematical
model of this modification can be shown as follows:

X ′′v,x,g,k = Xv,x,g,k + Diff _Meanv,g,k + rk × (Xv,x,g,k −Xv,y,g,k)

If f(Xv,x,g,k) < f(Xv,y,g,k), x 6= y

(17)

X ′′v,x,g,k = Xv,x,g,k + Diff _Meanv,g,k + rk × (Xv,y,g,k −Xv,x,g,k)

If f(Xv,y,g,k) < f(Xv,x,g,k), x 6= y

(18)

where
Diff _Meanv,g,k = rk × [Xv,g,k − TF,g,k ×Mv,g,k] (19)

In above Equations (17) and (18), the first element on the right indicates
learning in the classroom and the second element indicates learning through
tutorials.
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5.4 Self-motivated Learning

Learner phase is modified by including the self-learning. During the self-
learning learner can gain the knowledge in the absence of teacher which is
considered in ITLBO algorithm. Mathematical model of this modification
can be shown as follows:

X ′′v,x,g,k = X ′v,x,g,k + rk × (X ′v,x,g,k −X ′v,y,g,k)

+ rk × (Xv,g,k − EF,k ×X ′v,x,g,k)

If f(X ′v,x,g,k) < f(X ′v,y,g,k), x 6= y (20)

X ′′v,x,g,k = X ′v,x,g,k + rk × (X ′v,y,g,k −X ′v,x,g,k)

+ rk × (Xv,g,k − EF,k ×X ′v,x,g,k)

If f(X ′v,y,g,k) < f(X ′v,x,g,k), x 6= y (21)

where

Xv,g,k is the grade of the teacher in iteration t associated with group g
in v subjects
EF is the exploration factor and its value is decided randomly as:

EF,k = round[1 + rk] (22)

In above Equations (20) and (21), the first element to the right repre-
sents learning through interaction with other students, and the second term
represents self-motivated learning.

During teacher phase in ITLBO process, the learner can gain the knowl-
edge from the teacher as well as from the tutorial sessions which helps the
exploration of explored search space. During the learner phase, the learner
can gain knowledge from the fellow class-mates and self-learning which
helps the exploitation of search space. ITLBO algorithm executes in each
iteration by computing the teaching and learning phases until termination of
optimization is met. So, both exploration and exploitation carryout in each
iteration and find a better optimal solution in the search space. Furthermore,
the teaching factor is modified for ITLBO which will speed up the searching
for the optimal solution in search space and provide better convergence.
Moreover, ITLBO need not require any algorithm-specific parameters. So,
computation time is reduced by speeding up the optimization and results
are obtained by balancing the exploration and exploitation in a well-defined
manner.
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6 Performance Model of WTGU

Wind Turbine Generation Unit (WTGU) power generation is dependent on its
model and resources, such as wind speed. The WTGU modelling is explained
in order to better understand the wind-based DG allocation approach and
improve EDS performance. WTGUs are divided into two categories based on
their rotational speed: variable speed and fixed speed. A direct grid connected
induction generator is used in the fixed speed WTGU. A back-to-back voltage
source converter connects a variable-speed WTGU to the grid. Variable speed
WTGUs are those whose real power generation varies with wind speed [33].
The output electrical power generation of a standard WTGU is given by
Equation (23)

PWT =


0 vw < vcin or vw > vcout

Prated
vw − vcin
vN − vcin

vcin ≤ vw ≤ vN
Prated vN ≤ vw ≤ vcout

(23)

where

vN , vcout, vcin are normal speed, cut-out speed and cut-in speed of wind
turbine, respectively (m/s)
vw is the average wind speed (m/s)
Prated is the rated output power of the turbine and can be represented as

Prated = 0.5ρAv3wCp (24)

where

A is the swept area of the rotor
ρ is the density of air
Cp is the power coefficient

7 Size of the WTGU

To calculate the WTGU size, it is considered based on the assumption that
test systems are placed near Anantapuram (state: Andhra Pradesh, Country:
India) and data related to these locations, i.e. wind speed, is taken from [34].

The latitude and longitude of the Anantapuram location are 14.55 N
and 77.75 E respectively. WTGU specifications are taken from [35] for the
proposed method. Figure 1 shows the complete one-year monthly average
wind speed along with the minimum and maximum wind speed. The annual
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Figure 1 Maximum, minimum and average wind speed at Anantapuram, Andhra Pradesh.

average wind speed is 5.16 m/s (18.59 km/h) based on an average of the
one-year average monthly wind speed. The maximum power output from the
WTGU is obtained from Equation (23). The output power of one WTGU is
96.67 kW. The WTGU value is fixed for test systems testing in this paper,
and the number WTGU placed in single or multiple locations will be varied
depending on the test system’s optimal solution.

8 EDS with WTGUs Placement

The WTGUs are connected to EDS, and its static model has been used to
analyze load flow in the distribution system [24]. Consider an equivalent
circuit model of the standard radial distribution system branch between nodes
p and q, as illustrated in Figure 2, which includes WTGUs at the q node.

In Figure 2, the voltage magnitudes and phase angles of node p and q
with WTGUs are |V (p)|∠δ(p) and |V 1(q)|∠δ1(q), respectively, and power
flowing along the line pq is P 1(pq) + jQ1(pq) and P 1

1 (pq) + jQ1
1(pq) at

receiving end and sending end nodes changes with WTGUs.

9 Constraints for MOPI Optimization for WTGUs
Placement

The following equality and inequality constraints are considered for WTGUs
planning and optimization in EDS to minimize the generalized MOPI
objective function in order to keep the operating condition within the limit.
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Figure 2 EDS equivalent model of a branch pq with WTGUs.

9.1 Equality Constraints

9.1.1 Active power conservation limits including WTGUs
The algebraic sum of all active power including active power branch losses
and produced active power from the WTGUs over the complete EDS should
be equal to zero

Ps/s =
nd∑
q=1

PL(q) +
br∑

pq=1

Ploss(pq)−
nwt∑
w=1

NWT (w) ∗ PWT (25)

where
nwt∑
w=1

NWT (w) ∗ PWT is total kW injected capacity of WTGUs in EDS

nwt is the number of WTGUs.

9.1.2 Reactive power conservation limits including WTGUs [36]
The algebraic sum of all reactive power including reactive power branch
losses and produced reactive power or absorbed reactive power from the
WTGUs over the complete EDS should be equal to zero

Qs/s =

nd∑
q=1

QL(q) +

br∑
pq=1

Qloss(pq)

±
nwt∑
w=1

NWT (w) ∗ PWT ∗
√

1− cos2θ
cos θ

(26)
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where
nwt∑
w=1

NWT (w) ∗ PWT ∗
√

1− cos2θ
cos θ

is total KVAr injected capacity of WTGUs

cosθ is the power factor of WTGUs.

9.2 Inequality Constraints

9.2.1 Injected active power for WTGUs
The injected active power by all WTGUs at various candidate nodes should
be within their minimum and maximum limits.

Pmin
WT ≤

nwt∑
p=1

NWT (p) ∗ PWT ≤ Pmax
WT (27)

where

Pmin
WT is minimum WTGUs value of real power i.e. single WTGU value

Pmax
WT is total active load available in EDS i.e.

nd∑
q=1

PL(q)

9.2.2 Injected reactive power of WTGUs
The injected reactive power by all WTGUs at various candidate nodes should
be within their minimum and maximum limits.

Qmin
WT ≤

nwt∑
w=1

NWT (w) ∗ PWT ∗
√

1− cos2θ
cos θ

≤ Qmax
WT (28)

where

Qmin
WT is minimum WTGUs value of reactive power i.e. single WTGU value

Qmax
WT is total reactive load available in EDS i.e.

nd∑
q=1

QL(q)

9.2.3 Line thermal limit [36]
For thermal and stability measure, the constraint of maximum power flow in
the branch is needed to measure. The carrying power capacity of the branch
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is represented by MVA limit (S(pq)) throw any branch pq must within the
maximum thermal capacity (Smax(pq)) of the branch

S(pq) ≤ Smax(pq) (29)

10 Flow Chart for WTGUs Placement and Sizing Using
ITLBO Algorithm

ITLBO is utilized to minimize the MOPI objective function, namely
Equation (9), in order to solve the single and multiple optimal positions and
related position sizes of the WTGUs allocation problem in EDS. The pro-
posed method flow chart is shown in Figure 3. ITLBO algorithm parameters
(such as generation number, population size (number of students), number of
subjects and teachers), constraints, and EDS specifications (including node
and line data) can all be considered ITLBO input at first. The WTGUs
position can be any integer between 2 to the system’s maximum number of
nodes (because 1 is a substation).

The minimum size of the corresponding locations is one WTGU for
WTGUs placement, and the maximum size is less than or equal to the total
active power load of EDS, respectively. The objective function variables
are the WTGUs position and WTGUs reactive power size. Initializing the
locations and sizes of the WTGUs in terms of the ITLBO subjects is shown
in Figure 3. The MOPI objective function evaluation is done for a given
population size using EDS load flow and calculates EDS performance indices
by checking equality and inequality constraints. Hence, the ITLBO can be
ranked to determine the global best solution (i.e., chief teacher), and ITLBO
proceeds further to identify the number of teachers, learners under each
group. Evaluate the teaching phase and learner phase for the next iteration
as shown in Figure 3. The convergence criteria is set to the number of
generations or when the present global solution does not change for a defined
number of iterations.

11 Results and Analysis

The standard 33 node EDS [37] consists of 32 branches and 33 nodes with a
total load demand of 3715 kW and 2300 kVAr. The system operates at a base
voltage of 12.66 KV and a base power of 100 MVA. The active and reactive
power losses without any DGs (without WTGUs) in the EDS are 210.98 kW
and 143.12 kVAr respectively, with a minimum voltage of 0.90378 p.u. in 33
node test system.
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Figure 3 Flow chart for WTGUs Placement and Sizing using ITLBO.
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The MOPI optimization using ITLBO is performed on the 33 node EDS
for WTGUs placement with power factor (pf) unity, 0.95 lead and 0.95
lag at single and multiple locations, respectively via flow chart shown in
Figure 3. The number of population size is taken as 50 and the number
of subjects is twice the number of locations to solve the proposed ITLBO
method. The locations and sizes (kW) of WTGUs, APL in kW, RPL in kVAr,
|V| min in p.u., VSImin in p.u., PLAMmax in kW and LLMmin in MW
for the proposed MOPI optimization using ITLBO for WTGUs placement
with pf unity, 0.95 lead and 0.95 lag at single and multiple locations and also
presented the existing methods for comparison in Table 1. From the Table 1,
the problem method has reduced the total real and reactive power losses,
enhanced the minimum voltage, minimum VSI & line loadability and reduced
the consumer loss allocation for 33 node EDS with WTGUs placement at
single and multiple locations. The number of WTGUs (1 WTGU = 96.67
kW) placed (with pf unity, 0.95 lead, 0.95 lag) at one, two, and three locations
are 16 WTGUs, 19 WTGUs, and 30 WTGUs, respectively and it has been
observed that WTGUs placement with pf 0.95 lead has given better EDS
performance results compared with WTGUs placement with pf unity and 0.95
lag at one, two, and three locations respectively.

From Table 1, it can be noticed that the active and reactive power loss has
been reduced to 90.73 kW, 50.40 kW & 30.90 kW, and 66.19 kVAr, 34.40
kVAr & 22.52 kVAr respectively for WTGUs placement (with pf of 0.95
lead) at single, two, and three locations from 210.98 kW and 143.12 kVAr
respectively by using the proposed MOPI optimization using the ITLBO
based method. The power loss reduction is slightly higher compared with
existing methods for WTGUs placement at single, two, and three locations,
respectively as compared with the base case in 33 node EDS. Better improve-
ment has observed to increase the minimum node voltage from 0.90378 p.u
to 0.93239 p.u., 0.97498 p.u. & 0.97967 p.u., increase the minimum VSI
from 0.66901 p.u to 0.75770 p.u., 0.90459 p.u. & 0.92212 p.u., decrease the
VDI from 0.32299 to with the voltage limits, increase the minimum LLM
from 15.64 MW to 16.65 MW, 18.65 MW and 18.83 MW, and decrease the
maximum customer loss allocation from 22.61 to 10.06 kW, 9.45 kW and
6.63 kW with WTGUs placement with pf 0.95 lead at one, two and three
locations respectively from Table 1.

From the above discussion, it can be concluded that the MOPI optimiza-
tion using ITLBO based methodology shows better performance to improve
EDS overall performance compared with existing methods, and existing
methods concentrate only on reducing the losses in the EDS. The proposed
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Figure 4 Voltage profile improvement for WTGUs placement at different locations in the 33
node EDS.

method has reduced the losses in compromise with existing methods, but
EDS performance improvement wise, the proposed method has shown better
performance with respect to enhancing the minimum voltage, improve the
voltage stability, reducing the VDI, improving the LLM, and reducing the
loss burden of consumers. With the new generalized MOPI function, EDS
performance has been handled in a better way with the results presented in
Table 1 with WTGUs placement at one, two, and three locations.

Figures 4 and 5 show the enhancement in node voltage profile and
active power loss reduction, under WTGUs placement at one, two and three
locations in 33 node EDS. Figure 6 shows the convergence of the MOPI opti-
mization using ITLBO and most of the cases with the WTGUs placements
with pf 0.95 lead at different locations, the solution is to get the optimal value
before 28 iterations for 33-node EDS. The good optimal solution gets based
on the objective function with a global solution. The number of iterations
for convergence has increased as increasing the complexity of the problem.
Figure 7 has shown the MOPI function indices values for different WTGUs
placement in 33 node EDS. From Figure 7 it has observed that IAPL, IRPL,
IVDL & ICPL are decreased whereas IVSI & ILLM are increased and MOPI
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Figure 5 Active power losses for WTGUs placement at different locations in the 33
node EDS.

Figure 6 ITLBO convergence with MOPI objective function for WTGUs placement at
different locations in the 33 node EDS.
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Figure 7 Analysis of MOPI Function Indices for WTGUs placement at different locations
in the 33 node EDS.

has decreased for getting the best performance of EDS from the base case to
WTGUs placement with pf 0.95 lead at different locations in 33 node EDS.

12 Conclusions

In this paper, the utilization of the ITLBO procedure for solving WTGUs
(with different pfs) placement at single and multiple locations as well as num-
ber of WTGUs problem for minimizing the EDS MOPI objective function has
been proposed independently. ITLBO has been used to search for the optimal
location and size of WTGUs at a different number of locations among a large
number of combinations by optimizing the minimization MOPI objective
function. The proposed MOPI optimization using ITLBO based method is
applied to 33 node EDS with WTGUs(with different pfs) placed at one,
two, and three locations. The results were compared and discussed with
other existing methods and also discussed the effectiveness of the proposed
method. The attained results have been shown that the proposed approach
reduces the power loss slightly more than the existing methods and also
shown the greater performance in improving the node voltage profile by
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reducing the VDI, enhanced minimum VSI, enhanced the minimum LLM and
reduced the consumer loss allocation in the EDS with independent placement
of WTGUs (with different pfs). WTGUs placement with pf 0.95 (lead) has
been shown to have high EDS performance and overall EDS performance has
been improved with individual placement of WTGUs (with different pfs).
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