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Abstract

The inductive wireless power transfer system (IWPT) for electric vehicle
battery charging works based on the principle of mutual induction (MI).
The amount of power transfer from source to vehicle battery be contingent
on the mutual inductance (MI) within the inductively coupled pads. This
mutual inductance depends on the type of the inductive power pads, the
distance among them, their positioning etc. This paper develops and study
the inductive coupling characteristics of identical spiral circular and square
inductive power pads. The coupling characteristics at various misalignments
with different vertical distance between the coils is presented. In this work,
the inductive power pads without using ferrite bars, and with ferrite bars are
considered. The coupling characteristics of the spiral circular and square are
computed using FEM simulations and validated with experimental results.
This paper also investigated the power loss and efficiency analysis of the
spiral inductive pads of the resonant IWPT system.
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1 Introduction

The popularity of electric vehicles (EVs) have increased since last decade
due to their environmental friendliness, efficiency and reduced noise [1, 2].
Battery pack are crucial components in these vehicles and the battery packs
can be charged using on-board or off board chargers that can be powered
by wired/ and wireless connections. Wired connection chargers known as
conductive chargers require heavy gauge cables which may be inconvenient
and has potential risk hazards [3, 4]. In wireless battery charger based on
inductive coupling, the energy can transfer without any physical connection
over medium range distances. This type of chargers are convenient, safe
and finds it use in automotive, robotics, medical implantable devices and
aerospace [2–4].

In the IWPT system, the power transfer takes place between the source to
load through high frequency magnetic field. The magnetic field is generated
with the help of magnetic power pads which are called as transmitter (TxP)
and receiver Pad (RxP). The magnitude of power transfer capability will
depend on mutual inductance between magnetic power pads [5–8]. The MI
will be affected due to shape and alignment of the inductive power pads of
the IWPT systems. Hence, the estimation of MI is important factor in the
design of IWPT system. In this perception, few authors have established a
mathematical equation [8–10] and Grover’s equation [11–14] to compute the
MI between the inductive power pads with all type of alignments. In [15],
the author has anticipated an integral equation for estimation of MI. In [16]
roman et al. proposed a mathematical method to compute magnetic flux
produced by the inductive power pads in the IWPT system. In [17, 18], vector
potential method is developed to compute MI between inductive pad with
alignments. Furthermore, in [19–21], used 3-D field method with arbitrary
spatial distribution is used to compute MI flanked by inductive power pads.

The mutual inductance estimation between the square type inductive
pads, assumes that square inductive pads as circular ones whose dimensions
is equal to the sides of the equivalent square inductive pads. The MI for square
structure is derived by multiplying MI of circular coil with (4/π)2 [17]. When
EV is at zero misalignment position i.e., receiver and transmitter inductive
power pads are at same axis position, the circular structure provides good
MI results, but in case of misalignment as the planar (horizontal movement
of any pad) and angular (tilted angle movement of receiver pad) it will give
reduced MI. The square inductive pads provide good MI results than circular
inductive pads [22–24]. All these literatures require complex computations
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Figure 1 Graphical representation of resonant inductive WPT system.

and time-consuming process. Hence, this paper investigates the mutual induc-
tance analysis for spiral circular and square inductive pads using FEM
simulations and computed results are compared with experimental results.
The schematic diagram of the IWPT of the system is shown in Figure 1.

This paper is organized as follows: the essential characteristics and
mathematical modeling of the resonant IWPT system are described in Sec-
tion 2. Section 3 gives FEM modelling of the IWPT inductive pads and
Results obtained of mutual inductance are elaborated. Section 4 provides
the analytical equations for the computation of the losses in IWPT system
and experimental implementation losses, power transfer efficiency analysis is
presented. Finally, the conclusion is given in Section 5.

2 Modeling of the Resonant IPT Inductive Pads

The circuit model of the IWPT system is like to the conservative trans-
former. Using the corresponding circuit model, as shown in Figure 2, the
mathematical modelling equations of IWPT can be obtained. Assume that
the transmitter is energised with alternating voltage and current under the
steady-state condition. The transmitter inductive power pad parameters are
R1 (resistance), L1 (inductance), and V1 (inverter output voltage), I1 (current)
and of the transmitter inductive power pad parameters are R2 (resistance), L2

(inductance), and I2 (current). The induced voltages in the transmitter and
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(a)                                                      (b). 

Figure 2 The IWPT system’s equivalent circuit model (a). Circuit with coupled coils (b). T
corresponding circuit.

receiver power pads are given by

V1 = jωL1I1 +R1I1 − jωMI2 (1)

jωMI1 = jωL2I2 +R2I2 +RLI2 (2)

The receiver coil current (I2) obtained as

I2 =
jωMI1
Z2

(3)

Where Z2 = jωL2+R2+RL, which is the total impedance of the receiver
coil and load.

V1 = jωL1I1 +R1I1 + I1

(
ω2M2

Z2

)
(4)

Load power = RL|I22 | = RL

(
jωMI1
Z2

)2

(5)

Apparent input power =

{
|jωL1 +R1|+

(
ω2M2

Z2

)}
|I21 | (6)

η =

(
ω2M2RL

ω2M2(RL +R2) +R1(RL +R2)2 + (ωL2)2

)
(7)

From the above efficiency Equation (7) it is clear that, it will higher if the
mutual inductance is high and hence, the MI play a key role.

2.1 Inductive Coil Modelling for IWPT System

The design and modelling of the inductive power pads is important because
the inductive pad structures are difficult to modify once built and the typical
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              (a).                             (b).                                               (c). 

Figure 3 Depiction of a circular spiral inductive power pads, (a). Circular spiral inductive
power pad, (b) Spiral square inductive power pad, (c). A cross-sectional view of inductive
power pad.

representation of the spiral coils are shown in Figure 3. This section contains
systematic equations for estimating electrical parameters inductive coils such
as self-inductance and resistance. The coil design process begins with iden-
tifying the internal diameter of the coil (Din). The number of turns and inner
radius of the inductive pads are randomly chosen in this work.

2.2 Self-Inductance and Resistance Computation

Inductance is a proportion of the magnetic field’s circulation nearby a
current carrying conductor. The inductors come in a diversity of shapes
and sizes. Spiral coils were used in this work for the IWPT system. The
self-inductance [14–16] is calculated using the following equations.

Lc(µH) =
N2R2

(8R+ 11W )
(8)

Lsq =
2µN2P

π

(
ln

(
2.067

Q

)
+ 0.17Q+ 0.125Q2

)
(9)

Where,

R = P = 0.5(rout + rin) = Mean radius of the spiral circular inductive
power pad,
Q = (rout−rin)

(rout+rin)
= Mean radius of the spiral square inductive power pad,

W = (rout − rin) = Depth of the spiral inductive power pad.

The inner resistance of the inductive power pad is the cause of losses
in the IWPT system’s inductive power pads. When a conductor is provided
through a high-frequency excitation, it causes the eddy current effect, skin
and, proximity effects which introduces DC and AC resistance. The DC and
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Figure 4 Litz wire AC resistance, skin effect, and proximity effect [14].

AC resistance of the inductive power pad can be calculated by the following
equations [18, 19].

Rdc =
4ρcltot
πnd2s

(10)

Rac =
384(8πf10−7)R3

dc

((8πf10−7)2 +R2
dc)

2
(11)

The circular spiral coil’s total length is given by 1 = πN(rout + rin).
Where rin and ro are the inner and outer radius of the spiral circular inductive
power pad.

rout(max) = rin +N ∗ (D + S) (12)

rout(min) = rin +N ∗D (13)

3 Investigation of Mutual Inductance Of The Inductive
Pads

3.1 Mutual Inductance of the Inductive Pads Using FEM

ANSYS Maxwell 14.0.0 3-D FEM tool has been used for computing
the MI between the inductive power pads and all the imitations are per-
formed in 2-D modelling. The inductive power pad setups established in
the FEM simulation is exposed in Figure 5. The magnetic flux inten-
sity lines at different distances are given in the following figures. The
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            (a)                                   (b)                                 (c)                            (d) 

Figure 5 FEM simulation inductive pad setups, (a). Spiral circular inductive power pads
without core, (b). Spiral circular inductive power pads with core and chassis, (c). Spiral square
inductive power pads without core, (b). Spiral square inductive power pads with core and
chassis.

    
(a)                                                   (b). 

  
(c). 

Figure 6 Magnetic flux density delivery among the inductive power pads at 100 mm distance
with perfect alignment, (a) With Ferrite core, (b) With Ferrite core and chassis.

Figure 6. depicts the flux density circulation among the spiral circu-
lar inductively inductive power pads at 100 mm vertical distance for
different misalignments conditions. The Figure 6(a) provides magnetic
flux density delivery between the spiral circular inductive pads with-
out any core, similarly Figure 6(b), and 6(c) shows with core, with
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          (a).                    (b).                                            (c). 

Figure 7 Experimental laboratory model, (a). Validated setup for WIPT system, (b). Spiral
circular inductive pad setup, (c). Spiral square inductive pad setup.

core & steel chassis, respectively. It observed that the receiver induc-
tive power pad moves away from the transmitter inductive power pad,
the flux linkages will decrease as a consequence there will be reduc-
tion in MI.

3.2 Experimental Investigation of Mutual Inductance

The experimental arrangement given in Figure 7, is established for validat-
ing the MI. It consists of circular spiral inductive power pads, an Arduino
microcontroller, and a MOSFET H-bridge inverter. The circular spiral coils
are made up of 0.1 mm/1500 strands Litz wire and manually created mis-
alignments of the spiral circular inductive power pads. The inverter converts
DC into High-frequency (HF) AC which is fed to the inductive power pads.
The open-circuit voltage (OCV) of the receiver inductive power pad at
several positions are measured. The mutual inductance is calculated from the
OCV [26], and it is given in Equation (15).

MI =
V2oc
ωMI1

(14)

3.3 Mutual Inductance Analysis

The MI values are graphically denoted in Figure 8 for all possible positions
without core environment. Hereby taking the vertical distance (VD) as a
parameter, the MI values are analyzed for all misalignments of the inductive
power pads. The VD is speckled from 0 to 200 mm. From Figure 8 the
Mutual inductance is high in spiral square pads compare to spiral circular
pads in all misalignment conditions. Tables 1 and 2 provides the MI values of
spiral circular and spiral square inductive pads with core at various angular
misalignments (AM) depict for the inductive pads. The results FR indicates
the finite element modelling values, and ER presents the experimental values.
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 (a).                                                                (b). 

            

          (c).                                                                        (d). 
Figure 8 Mutual inductance without core (a). 0 mm horizontal misalignment, (b). 50 mm
horizontal misalignment, (c). 15◦ angular misalignment, (d). 45◦ angular misalignment.

Table 1 MI Values at 0 mm horizontal misalignment with ferrite core for spiral square pads
0 mm Horizontal Misalignment

Vertical AM (0◦) AM (15◦) AM (30◦) AM (45◦)
Distance (mm) FER ER FER ER FER ER FER ER
25 56.26 53.23 52.27 50.05 51.21 48.45 47.15 45.85
50 53.41 51.05 51.13 48.12 48.29 45.43 45.21 42.65
75 50.89 47.71 48.01 45.47 45.53 42.82 41.54 38.12
100 40.89 37.61 35.32 32.47 33.68 31.32 28.78 24.98
125 28.65 26.21 25.14 23.65 22.56 21.41 19.29 16.56
150 23.53 20.24 19.45 16.55 17.12 14.78 11.89 8.12
175 20.47 17.45 15.13 13.65 12.59 10.54 8.86 6.67
200 17.21 15.78 14.10 11.28 10.57 9.23 7.41 5.30

4 Losses in Series/Series Resonant IWPT System

4.1 Power Converter Losses

The power loss in the resonant IPT system consist of loss due to high
frequency (HF) inverter coil loss, DC-DC converter and diode bridge rectifier
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Table 2 MI Values at 0 mm horizontal misalignment with ferrite core for spiral circular pads
0 mm Horizontal Misalignment

Vertical AM (0◦) AM (15◦) AM (30◦) AM (45◦)
Distance (mm) FER ER FER ER FER ER FER ER
25 53.32 52.12 50.45 48.63 47.23 44.51 43.12 38.74
50 52.54 49.55 48.65 45.34 44.12 41.61 40.43 35.40
75 49.41 46.49 46.11 43.51 42.31 39.14 37.84 33.24
100 39.65 36.65 35.12 32.54 30.44 27.43 26.78 23.75
125 27.56 24.85 23.14 20.41 18.65 15.44 14.55 12.44
150 22.54 19.57 17.56 14.57 13.74 10.54 9.44 7.64
175 20.14 17.84 16.77 12.22 12.45 8.27 7.37 5.22
200 17.73 15.22 14.31 11.47 10.54 7.41 6.46 4.11

loss. The HF inverter switches produce conduction and switching losses dur-
ing its operation. The analytical calculation of the inverter MOSFET switch
conduction and switching losses can be computed using Equations (15) and
(16) respectively. The body diode of the MOSFET also products reverse
recovery losses (Prr) and conduction losses (PCD), their respective equations
are given in Equations (17) and (18).

PCmos = I2mosrdson (15)

Psw =
1

2
Imosoff (tri + tfu)Vswfsw (16)

PCD = VfIDRMS (17)

Prr =
1

4
QrrVdcfsw (18)

Where, Imos is RMS value of the MOSFET forward current, Imosoff
is the MOSFET current while turn off, rdson is MOSFET drain to source
ON state resistance. In the operation of high-frequency inverter for cycle
two MOSFET conduct at a time. Hence, the total MOSFET losses can be
calculated as:

Ptotal = 2(PCmos + Psw + PCD + Prr) (19)

The receiver side of the resonant IWPT system consists of a diode bridge
and DC-DC buck converter; hence these two converters produce losses. The
diode bridge rectifier produces reverse recovery and conduction loss. The
reverse recovery losses will be zero because the diodes will be turned ON
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and OFF at zero current. The conduction losses of the rectifier are given by
Equation (20)

Prect = VfrIrect (20)

where Irect is the current flowing through diodes and Vfr is the forward
voltage drop across the diode.

The losses in the DC-DC buck converter are the sum of loss in the
inductor and semiconductor switch loss.

Pbuck = PC + PS + PL + PcoreL

= I2bmosrdson +
1

2
Ibmosoff (tri + tfu)Vswfsw +QrrVdcfsw

+
1

2
IBmosoff (tru + tfi) +

1

4
QrrVdcfsw + I2Lbuckrdson (21)

4.2 Inductive Pad (Coil) Losses

Three different losses occur in inductive pads such as skin effect losses,
Proximity losses and core losses. The system’s operating frequency is in
the kHz range. The skin effect becomes noticeable at these frequencies, and
hence the losses can be computed calculated using following equations,

Pskin = n Rdck(fo)

(
Î

n

)2

(22)

Pp = Rdckp(fo)Ĥ2
e (23)

Pcore = k fαo B
β (24)

where He is the peak value of the magnetic field and k, α, β are the Steinmetz
parameters of the core material.

4.3 Loss Analysis in Experimental Resonant IWPT System

The total loss in the series resonant IWPT system is calculated by measuring
power at each stage of the system. Figure 9 provides total losses of the
system at different losses, and from the figure, it is clear that as misalignment
distance increases total power losses in the system increases hence, which
results in the reduction of the overall efficiency of the system. Figures 9(a)
and 9(b) shows the series IWPT system losses at spiral circular and square
structure, respectively.
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                (a).                                                                                            (b). 

Figure 9 Bar diagram loss analysis of the resonant IWPT system with different misalign-
ment, (a) circular structure, (b) square structure.

           
     (a)                                                                (b). 

Figure 10 Series resonant IWPT battery charging current at different misalignment, (a)
circular structure, (b) square structure.

          
                 (a)                                                         (b). 

Figure 11 Series resonant IWPT battery charging power at different misalignment, (a)
circular structure, (b) square structure.

4.4 Analysis of Battery Charging Voltage, Current and Overall
System Efficiency

The output battery charging voltage is maintained at a constant 60 volts. The
current and power analysis of the series resonant IWPT system is shown
in Figures 10 and 11, respectively. It is clear that at perfect alignment, the
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(a)                                                           (b). 

Figure 12 Overall efficiency (DC-DC) vs distance between the coupled coils with different
misalignments at, (a) circular structure, (b) square structure.

Figure 13 Representation of the overall efficiency (DC-DC) of series resonant IWPT system
at 100 mm vertical distance 0 mm horizontal alignment with square structure.

system is supplying the charging current with square coupled inductive power
pad to the battery is 8.6 A. The output power at different misalignments
of the system is presented in Figure 10. The overall system efficiency is
shown in Figure 12. However, the prototype system was built, as proof of
concept, using comparatively at low output, input voltages. Subsequently, the
efficiency that was achieved in the sample system is quite low. The measured
overall DC-DC efficiency of the proposed system at different misalignments
and different vertical displacement condition is shown in Figures 12(a) and
12(b) respectively for circular and square structures. Figure 13 shows the
individual components and over the efficiency of the series resonant IWPT
system at 100 mm vertical distance and perfectly aligned square inductive
coupled coils of the system.
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Table 3 Parameters of the system
Parameter Specification
Number of turns Circular Coil 20
Coil Diameter 26 cm
Inner Radius of the coil 4 cm
Conductor Diameter 0.55 cm
Self-inductance of circular coil 56.46 µH
Internal Resistance of circular coil 0.4 Ω

Number of turns Square Coil 20
Inner Length 4 cm
Conductor Radius 0.55 cm
Self-inductance of square coil 80.05 µH
Internal Resistance of square coil 0.321 Ω

5 Conclusions

The implementation of series resonant IWPT system with the circular and
square structure for EV battery charging is analyzed. The coupling char-
acteristics of spiral circular and square inductive pads of the system are
investigated. The battery charging current and battery charging power at
different misalignments are described, and the power loss analysis of the
resonant IWPT system is also provided. From the analysis, it is vibrant that
the movements between the coil increases the charging current decreases
which results in a reduction of charging power, hence the charging time of
the battery increases.
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