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Abstract

At present, wind power has become the most promising energy supply.
However, the intermittent and fluctuating wind power also poses a huge
challenge to accurately adjust the electrical load. In order to find a method
capable of forecasting wind power generation in a short period of time,
we propose a short-term wind power generation forecasting method based
on an optimized deep belief network approach. Based on GEFCom2012
competition dataset, by continuously tuning the parameters of the deep belief
network for 15 sets of experiments, we obtained three optimal laboratory
combinations: Experiment 4, Experiment 10, and Experiment 12. The results
show that the R-squared values of Experiment 4, Experiment 10 and Exper-
iment 12 are the highest, which are 0.955, 0.93 and 0.98, respectively.
The average R-squared value of these three tuned experiments is 0.2342
higher than the average of the other 12 experiments. At the same time, it
is concluded that when the learning frequency is low, the linear function can
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learn the most obvious features more directly; When the learning frequency
is high, the nonlinear function can learn the internal latent features more
directly.

Keywords: Short-term, wind power, generation forecasting, deep belief
network.

1 Introduction

Wind power is a kind of renewable energy, which has broad development
prospects such as high maturity and large scale. Globally, the reserves
and distribution of wind energy are enormous. With the rapid development
of wind power technology, the global wind power industry has developed
rapidly. According to GWEC statistics, the global installed capacity in 2019
was 651GW, more than 26 times that of 2001, and the average annual
installed capacity growth rate was as high as 20.12%. From the perspective of
newly installed capacity, the newly installed capacity of global wind power
in 2019 is 60.4GW, which is more than 8 times that of 2001, with an average
annual compound growth rate of 13.18%. From these data, wind power has
become one of the fastest growing renewable energy sources. It also plays
an important role in the global power production structure and has broad
development prospects. According to GWEC’s forecast, the world will add
355GW of wind power installed capacity in the next five years, and the new
installed capacity will exceed 65GW each year from 2020 to 2024.

As a country with large wind power reserves, China has become the
world’s largest wind power market, both in terms of cumulative installed
capacity and new installed capacity. According to statistics from the China
Wind Energy Association, as of the end of 2019, the cumulative installed
capacity of wind power across the country was 2.1 billion kilowatts. From
the perspective of newly installed capacity, in 2019, China’s new wind power
grid-connected installed capacity was 25.74 million kilowatts. With the pro-
posed dual carbon goal, China’s wind power installed capacity will further
develop rapidly. Up to now, wind power has become an important component
of power supply. However, because wind power is in the peak season in spring
and autumn, coupled with the intermittent and fluctuating characteristics of
wind power, the output of wind power is unpredictable. Therefore, finding a
reliable wind power output forecasting method has always been a research
hotspot of many scholars.
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2 Related Research

In fact, scholars at home and abroad have done a lot of research on wind
power generation. It can be roughly divided into two categories: one is
to study a simple load forecasting method: In literature [1], by selecting
the actual data of the German electricity spot market, researchers collected
multi-factor data such as power generation, load, forecast error, price, etc.,
and proposed a time series feature representation method. In literature [2],
by studying the mathematical laws of photovoltaic power generation, wind
power generation measurement and load forecast errors, scholars have pro-
posed a deterministic solution based on the economic operation of micro-
grids. The research results show that by improving the forecasting accuracy
of photovoltaic output, wind power output and load, the optimized operation
cost of microgrid can be reduced. In literature [3], by analyzing the charac-
teristics of operating data and wind curtailment data, researchers proposed
a method of identification and elimination based on viscous intervals. The
results showed that the method is very effective in removing the data con-
taining abandoned wind. Literature [4] proposed an optimization example
by studying the optimal allocation strategy of spare capacity for large-
scale wind power participating in primary frequency regulation. The analysis
results showed that the grid frequency regulation demand can be guaranteed
in the large-scale wind power grid-connected scenario. Reference [5] was
based on day-ahead short-term forecast modeling of wind photovoltaic power
generation and load power. The researchers proposed an active distribution
network reconfiguration method, and the empirical results showed that the
reconfiguration model is effective in a standardized distribution test system.

And the other is a load forecasting method that comprehensively con-
siders a variety of factors: Literature [6] proposed that energy scheduling
should be promoted according to the strategy of “wind power generation –
battery power – diesel engine power generation”. The experimental results
showed that the operating cost of the optimal power allocation method is
lower than that of the empirical power allocation method. In literature [7],
researchers proposed an evolutionary algorithm based on hybrid simulation
by constructing a theory based on uncertainty programming. The analysis
of the results of the example showed the rationality and effectiveness of the
established model. In the literature [8], the researchers proposed a distributed
sampling Monte Carlo algorithm by analyzing the large sample capacity and
low efficiency of the power generation system. The simulation results showed
that the sampling times are effectively reduced while meeting the accuracy
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requirements. In literature [9], by introducing wind power and photovoltaic
power, researchers constructed a joint probability density function of wind
and wind loads, and established a load loss risk model and an economic
dispatch model. In the literature [10], through in-depth analysis of the load
and wind power stochastic models, researchers constructed a multi-objective
optimal dispatch model for the power system. Simulation results verify the
effectiveness of the algorithm. In [11], by studying the power generation cost
and environmental cost of the microgrid in the island operation mode, the
researchers proposed a genetic algorithm based on wind power and sensitive
load prediction. In [12], the researchers proposed a two-layer optimization
algorithm based on the idea of graph theory by analyzing the load forecast,
wind power generation and photovoltaic power generation forecast output
value. The algorithm assigned computing tasks to each node participating
in scheduling in the microgrid. In [13], by analyzing the intermittency and
fluctuation of wind turbine output, an optimal scheduling model for electric
vehicle charging stations with wind power generation is established. Liter-
ature [14–16] proposed a distributed coordinated predictive control method
based on the power balance and economic dispatch of microgrids.

However, among these studies [17–19], there are few related studies on
short-term forecasting based on wind power generation. In this paper, we
propose a short-term wind power forecasting method based on an optimized
deep belief network. The main innovations are as follows: We figure out how
to best optimize the deep belief network by tuning various parameters. More
importantly, we also conclude that when the learning frequency is low, the
linear function can more directly learn the most obvious features; When the
learning frequency is high, the nonlinear function can learn the internal latent
features more directly. The innovation of this paper is that we introduce the
probability generation model DBN, which allows the entire neural network
to generate training data according to the maximum probability.

3 Deep Belief Network Algorithm

A deep belief network is composed of a deep Boltzmann machine and a clas-
sification part. Among them, the deep Restricted Boltzmann machine(RBM)
is composed of three RBMs stacked in series. In addition, there is a BP
network with a hidden layer, as shown in Figure 1.

RBMs use unsupervised learning and are mainly used for feature extrac-
tion. BP network adopts supervised learning and is mainly used for classi-
fication or regression. Figure 2 shows the training process of a restricted
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Figure 1 Deep belief network structure.

Figure 2 Restricted Boltzmann machine training process.

Boltzmann machine. The RBM consists of a visible layer V and a hidden
layer H, and its network structure is as follows.

The visible layer contains m nodes V = (v1, v2, . . . vm−1, vm),
vi ∈ [0, 1], and the hidden layer v contains n nodes H = (h1, h2, . . . hn)
hi ∈ [0, 1]. S sigmoid activation function is used between the visible layer
and the hidden layer. W = (wij) represents the weight matrix between
the visible layer and the hidden layer. a = (a1, a2, . . . am) represents the
deviation from the visible layer V to the hidden layer H. b = (b1, b1, . . . , bn)
represents the deviation from the hidden layer H to the visible layer V.

DBN is a probabilistic generative model. Compared with traditional
discriminative models of neural networks, generative models build a joint
distribution between observations and labels. By training the weights between
its neurons, the entire neural network can generate training data according to
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the maximum probability. Therefore, choosing this network is enough to learn
more features.

4 Case Study

We chosen the GEFCom2012 competition dataset as the training set. By
continuously adjusting the hidden layer of the DBN algorithm, the learning
rate of the RBM, the learning rate of the fully connected layer, the number
of iterations of the RBM, the number of iterations of the fully connected
layer, the dropout ratio, and the activation function, the optimal short-term
wind power prediction method is found. The purpose is to achieve optimal
performance in different situations by adjusting different parameters of the
deep belief network. The evaluation indicators used in this paper are mean
square error (MSE) and R-squared, as shown in formula (1).

MSE =

∑r
i=1(ni − 1)s2i

N− r
(1)

Where, N represents the number of data, r represents the number of
groups, and the positive sample variance of the i-th group is si2.

As can be seen from Figure 3, when these parameters in Experiment 1,
Experiment 2, and Experiment 3 are set the same, including the hidden layer,
the size of the RBM, the number of iterations of the RBM, the learning rate of

Figure 3 Predicted performance of Experiment 1, Experiment 2 and Experiment 3.
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Table 1 Parameter settings for Experiment 1, Experiment 2 and Experiment 3
Parameter Settings Experiment 1 Experiment 2 Experiment 3
hidden layer [250] [250] [250]
learning_rate_rbm 0.0005 0.0005 0.0005
batch_size_rbm 150 150 150
n_epochs_rbm 30 30 30
random_seed_rbm 500 500 500
learning_rate_nn 0.005 0.005 0.005
batch_size_nn 150 150 150
n_epochs_nn 30 12 28
dropout / / 0.5
activation_function_nn tanh tanh tanh
train_mse 0.0088 0.0094 0.0037
test_mse 0.0165 0.0072 0.0052
r_squared 0.34 0.75 0.54
MSE ratio −0.875 0.2340426 −0.405405405

the fully connected layer, and the learning rate of the RBM, and the number
of iterations of the fully connected layer is set to 30, 12 and 28, respectively,
the result of experiment 2 is the best. The training MSE, testing MSE and R-
squared values in experiment 2 are 0.0094, 0.0072 and 0.2340, respectively.
The R-squared value in experiment 2 is 0.641 and 0.1714 lower than the
absolute value of experiment 1 and experiment 3, respectively. These three
sets of experiments show that it is effective to adjust the number of iterations
of the DBN fully connected layer without adjusting the dropout ratio, and
the effect is more significant. The neural network parameter settings of these
three groups of experiments are shown in Table 1.

As can be seen from Figure 4, in Experiment 9, Experiment 10 and
Experiment 13, the same parameters are set including the hidden layer, the
learning rate of RBM, the size of RBM, the learning rate of RBM, the
learning rate of the fully connected layer, and the fully connected layer. size,
dropout ratio. The number of RBM iterations, the number of iterations of the
fully connected layer, and the parameter settings of the activation function
are different in Experiment 9, Experiment 10 and Experiment 13. When the
activation function selection of experiment 9 and experiment 10 is the same,
the number of iterations of the fully connected layer is gradually adjusted
from large to small. It can be seen that the MSE ratio of experiment 10 is the
lowest, which is 0.5483 lower than the absolute value of experiment 9. This
shows that directly adjusting the number of iterations of the fully connected
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Figure 4 Predicted performance of Experiment 9, Experiment 10 and Experiment 13.

layer is also a way to improve the performance of the deep belief network
algorithm when other parameters remain unchanged.

For Experiment 13, we adjusted the number of RBM iterations, the
number of iterations of the fully connected layer, and the activation function.
Although the experimental result is better than that of experiment 9, it is
worse than that of experiment 10. This indicates that the choice of activation
function should be non-linear as much as possible, and the linear learning
performance is still relatively poor. The neural network parameter settings of
these three groups of experiments are shown in Table 2.

As can be seen from Figure 5, the same parameters set in Experiment
6, Experiment 8 and Experiment 12 include: hidden layer, learning rate of
RBM, size of RBM, learning rate of RBM, learning rate of fully connected
layer, and size of fully connected layer , dropout ratio. The number of RBM
iterations, the number of iterations of the fully connected layer, and the
parameter settings of the activation function are different in Experiment 6,
Experiment 8 and Experiment 12. When the number of RBM iterations in
Experiment 6 and Experiment 8 is the same, and different activation functions
are selected, the experimental results will be very different. It can be seen that
when the relu function is selected, the prediction effect is better than that of
the sigmoid function. The R-squared value of Experiment 8 is 0303 higher
than that of Experiment 6. This shows that when all parameter settings are
the same, it is wiser for the activation function to prefer the relu function.
In experiment 12, when the number of RBM iterations is reduced from 30
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Table 2 Parameter settings for Experiment 9, Experiment 10 and Experiment 13
Parameter Settings Experiment 9 Experiment 10 Experiment 13
hidden layer [100] [100] [100]
learning_rate_rbm 0.0005 0.0005 0.0005
batch_size_rbm 150 150 150
n_epochs_rbm 30 30 3
random_seed_rbm 500 500 500
learning_rate_nn 0.005 0.005 0.005
batch_size_nn 150 150 150
n_epochs_nn 30 20 29
dropout 0.5 0.5 0.5
activation_function_nn relu relu linear
train_mse 0.0016 0.0011 0.000483
test_mse 0.00057724 0.0012 0.00040515
r_squared 0.973 0.93 0.967
MSE ratio 0.639225 −0.090909091 0.161180124

Figure 5 Predicted performance of Experiment 6, Experiment 8 and Experiment 12.

to 3, and linear is selected as the activation function, it is obvious that the R-
squared value of this experiment increases linearly, which is 0.017 higher than
that of experiment 8. From the above three experiments, it can be concluded
that if the learning depth of the sample is not enough, the linear function is
selected as much as possible, and the performance can be optimal. The neural
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Table 3 Parameter settings for Experiment 6, Experiment 8 and Experiment 12
Parameter Settings Experiment 6 Experiment 8 Experiment 12
hidden layer [256] [256] [256]
learning_rate_rbm 0.0005 0.0005 0.0005
batch_size_rbm 150 150 150
n_epochs_rbm 30 30 3
random_seed_rbm 500 500 500
learning_rate_nn 0.005 0.005 0.005
batch_size_nn 150 150 150
n_epochs_nn 30 30 28
dropout 0.5 0.5 0.5
activation_function_nn sigmoid relu linear
train_mse 0.0078 0.0011 0.00066372
test_mse 0.0078 0.00087922 0.00060666
r_squared 0.66 0.963 0.98
MSE ratio 0 0.200709091 0.085969987

Figure 6 Predicted performance of Experiment 7, Experiment 11 and Experiment 14.

network parameter settings of these three groups of experiments are shown in
Table 3.

It can be seen from Figure 6 that the hidden layers of Experiment 7,
Experiment 11, Experiment 14 and Experiment 15 are all selected to be
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Table 4 Parameter settings for Experiment 7, Experiment 11 and Experiment 14
Parameter Settings Experiment 7 Experiment 11 Experiment 14
hidden layer [100,100] [100,100] [256,256]
learning_rate_rbm 0.0005 0.0005 0.0005
batch_size_rbm 150 150 150
n_epochs_rbm 3 3 3
random_seed_rbm 500 500 500
learning_rate_nn 0.005 0.005 0.005
batch_size_nn 150 150 150
n_epochs_nn 30 30 30
dropout 0.5 0.5 0.5
activation_function_nn sigmoid relu linear
train_mse 0.0249 0.0032 0.0019
test_mse 0.0244 0.0021 0.0012
r_squared -0.0085 0.85 0.949
MSE ratio 0.020080321 0.34375 0.368421053

double layers. These four groups of experiments set the same parameters
including: RBM learning rate, RBM size, RBM iterations, RBM learning
rate, learning rate of fully connected layer, size of fully connected layer,
number of iterations of fully connected layer, dropout ratio. Experiment 7,
Experiment 11 and Experiment 15 have the same number of nodes in the
hidden layer, and other parameters are set the same, except for the selection of
the activation function. It can be seen from these three sets of experiments that
when the number of iterations is relatively small, a linear function is selected
as the activation function, and the MSE value of experiment 15 is the smallest.
This result is the same as mentioned earlier. Comparing Experiment 14 and
Experiment 15, when the number of nodes in the hidden layer is increased, the
effect of Experiment 14 is not very prominent. The conclusions drawn from
the above four experiments are consistent with the previous experiments. The
neural network parameter settings of these three groups of experiments are
shown in Table 4.

5 Conclusion

In conclusion, in order to find a method capable of forecasting wind power
generation in a short period of time, we propose a short-term wind power
generation forecasting method based on an optimized deep belief network
approach. Based on GEFCom2012 competition dataset, the parameters of the
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deep belief network are continuously tuned through 15 sets of experiments.
The results show that when the number of rbm iterations is small, the linear
activation function is selected as much as possible; when the number of rbm
iterations is large, the nonlinear activation function is selected as much as
possible. The main reasons include two aspects: on the one hand, when the
learning frequency is low, the linear function can learn the most obvious fea-
tures more directly; On the other hand, when the learning frequency is high,
the nonlinear function can learn the internal latent features more directly.
The R-squared values of Experiment 4, Experiment 10 and Experiment 12
are the highest at 0.955, 0.93 and 0.98, respectively. The average R-squared
value of these three tuned experiments is 0.2342 higher than the average of
the other 12 experiments. In the future, we will continue to train and learn
this model with data from different industries to make it more adaptable to
more fields. Finally, the generalization ability of this model is improved.
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