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Abstract

Due to the ever-increasing penetration of renewable resources, Frequency
control of microgrids has recently been received special consideration from
researchers. The continual supply of load consumption is the major issue of
standalone microgrids due to the high penetration of renewable resources.
Furthermore, microgrids suffer from low inertia against load changes due to
their small size and unpredictable load interruption. In addition to the above-
mentioned issues, the uncertain and intermittent behaviors of renewable
resources cause problems to keep the balance between load and generation
sides. Hence, it is very important to consider novel control methods for keep-
ing balance and consequently control of frequency deviation. In this research,
a novel learning-based fractional-order controller is proposed to control the
frequency of microgrids including micro-turbines, photovoltaic panels, and
wind turbines in order to increase system stability and reduce frequency
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fluctuation time. The efficiency of this controller has been compared with
conventional methods in the simulation and result section.

Keywords: Microgrid, Frequency Control, Renewable resource.

1 Introduction

Owning to the low inertia aspect of microgrids, the energy supply of such
grids has posed some challenges. In other words, the changing ratio of
demand to energy generation is very high, especially in stand-alone micro-
grids. Furthermore, the most contribution of microgrids’ energy generation is
provided by renewable energy resources, which have intermittent and uncer-
tain behavior. Therefore, there are two main issues for controlling microgrids:
(1) the high changing rate of load consumption, due to the size of microgrids
(2) uncertain and intermittent energy sources [1–3]. The frequency control
of microgrids is more challenging than frequency control of power grids
because of low inertia against load. A large frequency change can cause
equipment damage, transmission lines overload, protection plan interference,
and ultimately power system instability [4]. The imbalance between load
and generation causes a frequency deviation in power systems [5]. If an
appropriate control method is not adopted, it can destabilize the power system
or create a permanent state error in the frequency. In other words, the grid
frequency is set more or less than the nominal value after changing the load.
From this point of view, the balance between active generating power and
electrical load consumption is crucial especially for microgrids containing
renewable sources [6, 7].

In the past, various methods have been proposed to control the frequency
of different power grids, including large systems, distribution systems, and
microgrids. One of the most common classical controllers is the PI controller.
These types of controllers have proportional and integral gains, which are
appropriately determined by using the Bode diagram, Nyquist diagram, and
Root Locus diagram. The error integral is usually used as the control signal
in the PI controller. These types of controllers are very simple and can easily
be implemented in practice, but they do not have a proper dynamic response
and are out of the optimal state whenever the operating point of the system
changes [8]. Another control method that has been utilized in such systems
is the adaptive controller. In [9] the author has considered changes in system
parameters and used the reduced-order adaptive controller to control Multi-
zone frequency. Thus, they achieved an effective simplification in the design
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of this type of controller. In [10], a fuzzy controller method has been used
to determine the gain of a conventional PI controller and to determine the
weighting matrix of an optimal controller. In that paper, the Sugino fuzzy
inference is used to estimate the controller parameters and it is finally shown
that the system response in the presence of the adaptive controller is improved
compared to the classical one. Nevertheless, adaptive controllers usually
require an accurate model and a complex parameter estimator. Therefore,
these actual limitations of this type of controller can reduce the efficiency
of them.

Robust control methods have also received consideration from
researchers to regulate the frequency deviation of power grids. In robust
controllers, the target goal is not only having a system with a suitable dynamic
response but also having a system with proper performance against parame-
ters uncertainty. In [11], Riccati equations based on robust control have been
used to control the frequency. Thus, it has improved the stability character-
istics of the system. In [12], in addition to the uncertainty in the parameters,
the paper has also addressed uncertainty in the model and has indicated that
attention to unmodeled dynamics is of great importance. Although robust
control methods contain a good physical understanding of power systems,
the desired results may change with the presence of nonlinear elements such
as governor limiters and turbines. Moreover, the robust control method results
in high-order controllers that are not suitable for practical operation in power
systems. Therefore, in recent decades, most of the presented articles have
combined this method with other methods.

One of the control methods that has been favored by researchers in
this field is intelligent methods including fuzzy-based controllers and neural
networks. Artificial neural networks (ANNs) are very appropriate to control
nonlinear systems owing to their ability to learn nonlinear patterns, especially
when the range of change of operating points is nonlinear. Numerous articles
have been presented in this regard. In [13], a multilayer neural network
with a post-diffusion training algorithm has been used to control the sys-
tem. This type of controller has achieved better control in single-area and
multi-area models in comparison with the PI controllers. In [14], the author
has described the dynamic neural network which has dynamic neurons,
and has compared the dynamic and classical neural networks. Finally, the
improvement of the results in the dynamic neural network compared to its
conventional state has been indicated. In [15], a simple PI fuzzy controller
with an implementable structure has been applied to eliminate frequency
error and to improve the system stability characteristic, such as overshoot,
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undershoot, and settling time. Article [16] demonstrates the efficiency of
fuzzy for frequency control in the presence of nonlinear and limiting factors
such as boiler dynamics.

In this research, a new learning-based fractional order controller has been
proposed to enhance the grid stability and to improve the system recovery
time after the load change. Furthermore, for indicating the effectiveness of
the proposed controller, the performance of this controller has been compared
with traditional control methods. The results show that this type of control
strategy has great advantages such as increasing response speed, enhancing
stability, and reducing steady-state error.

In the following of the paper, the second and third section is dedicated
to modeling the system and equipment and describing the proposed method,
respectively. The simulation and results are presented in the fourth section
and the conclusion is given in the last section.

2 System Modeling

The following figure depicts the general schematic of the proposed model
which includes resources and micro-turbines on the generation side and
household load on the consumption side.

The model of each of the following components is introduced in detail in
the following sections.

2.1 Load Model and Generation

The load in the power system includes various electrical devices. Unlike resis-
tive loads, motor loads are sensitive to frequency changes. The load-speed

Load

Wind Turbine

Solar Energy

ACAC

Inverter

Micro turbine

Controller

Figure 1 General schematic of the proposed model.
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characteristic of a compound load is approximated as follows [17].

∆Ω(s) =
1

2Hs
[∆Pm(s)−∆Pe(s)] (1)

∆Pe = ∆PL +D∆Ω (2)

∆PL is the non-frequency sensitive load change and D∆Ω is the sen-
sitive frequency load change. The load-generation model block diagram is
presented in the figure below.

1
2HS D

( )LP s

( )mP s ( )s

+ -

Figure 2 Non-frequency sensitive load and generation model.

2.2 Primary Actuator Model

The primary actuator can be a gas or steam turbine. This model relates
changes in output mechanical power to changes in the steam valve position.
The simplest model of the primary actuator is modeled as follows.

GT (s) =
∆Pm(s)

∆Pv(s)
=

1

1 + τT s
(3)

The block vision of the turbine is as follows. τT is turbine’s time constant.

( )VP s ( )mP s1
1 T S

Figure 3 Primary actuator model.

2.3 Speed Governor Model

Frequency reductions are compensated by the governor. The governor adjusts
the turbine speed by adjusting the turbine inlet valve. The relation of the
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Laplace field is as follows [18].

∆Pg(s) = ∆Pref (s)− 1

R
∆f(s) (4)

Considering a linear function and a time constant, we will have the
following relation.

∆Pv =
1

1 + STg
∆Pg (5)

The speed governor block diagram according to the above equations is as
follows.

2.4 Renewable Resources Model

The wind turbine and PV models are described in the following figures with
specified time constants, Tinvrter , TID , and TWT mean inverter, interconnec-
tion device, and wind turbine time constant, respectively [4].

( )gP s

( )s

+ -
1
R

( )refP s ( )VP s1
1 gT S

Figure 4 Speed governor block diagram.

1
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Figure 5 PV model.

1
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controller

1
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in WTP P WP

Figure 6 Wind turbine model.
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Figure 7 General schematic of FOPID controller.

3 Control Method

3.1 FOPID Controller

In this research, a control method based on fractional-order mathematics
and a fractional-order controller have been utilized. The equation of a
fractional-order controller is as follows [19].

u(t) = Kp.e(t) +Ki.

∫ λ

t
e(t) +Kd.D

µ
t e(t) (6)

This controller in Laplace space is presented as follows.

C(s) = Kp +
Ki

sλ
+Kd.s

µ, λ, µ ∈ (0, 2) (7)

It is obvious that the ranks of derivatives and integrators in this type
of controller are of a fractional type and it is a number between 0 and 2.
Therefore, this controller contains 5 variables whose values must be specified.
One of its main advantages is the enhancement of stability by using fractional
order capability. The general schematic of this controller is shown in the
figure below.

3.2 Recurrent Adaptive Neural Fuzzy Inference Systems
(RANFIS)

The RANFIS provides the best parameters for the fractional-order controller
by considering the parametric uncertainties of the microgrid. The inference
of the proposed RANFIS is defined based on Sugeno’s definition that is given
below:

If x is A1, and y is B1, then f1 = p1 x + q1 y + r1
If x is A2, and y is B2, then f2 = p2 x+ q2y + r2
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Figure 8 Multi-layer RANFIS network.

The structure of the afore-mentioned RANFIS consists of a number of
layers in which the output is produced from the coordination between inputs
signals and some practical weights. The structure of a sample RANFIS
network is depicted in Figure 8 [20].

Layer 1. In this layer fuzzy sets are generated from input signals. Further-
more, this layer is called the fuzzification layer.

Oi,1 = µAi(X) for i = 1, 2 (8)

Oi,1 = µBi(Y ) for i = 3, 4 (9)

O is the output of layers, µ is the membership function, X and Y are
input signals.

Layer 2. The multiplication of incoming signals is created in the second
layer:

O2,i = wi = µAi(X)× µBi(Y ) i = 1, 2 (10)

Layer 3. The responsibility of firing strengths normalization lies with layer3.

O3,i = wi =
wi

w1 + w2
(11)

Layer 4. Defuzzification layer.

O4,i = wifi = wi(piX + qiY + ri) i = 1, 2 (12)

Layer 5. The output is created in the last layer.

O5 =
∑
i

wiFi =

∑
iwiFi∑
iwi

(13)
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The backpropagation (BP) method is utilized to learn RANFIS. At the
first step, weights are selected randomly. Then weights are constantly updated
by considering the following objective function, in which Oj and dj are real
and desired outputs, respectively.

J(w) =
1

N

N∑
i=1

1

2

L∑
j=1

(Oj − dj)2
 (14)

For minimizing the objective function, the deviation of weights should be
opposite to the deviation of the computed error:

∆wji = −n ∂E

∂wji
(15)

Where n is a constant value that is determined by the user. The error of
each layer is presented by E. Finally, the updating weights equation is given
below, this equation is provided by utilizing the chin rule:

wji = −n ∂E

∂wji
= −2n(Oj − dj)Oj(1−Oj)xi (16)

4 Simulation and Results

As mentioned previously, an adaptive structure based on RANFIS has been
used for tuning of FOPID controller. In this research 6 patterns, which are
presented in Table 1, have been provided to learn of RANFIS. The general
structure of the proposed control approaches is depicted in Figure 1.

The efficiency of the proposed controller has been evaluated through
3 case studies.

Table 1 Learning patterns of RANFIS
Patterns H D ∆PW KP KI KD λ µ

1 H1
N D2

N 0.1 p.u 0.29 0.508 0.182 0.53 0.48
2 HN + 5% DN − 5% 0.8 p.u 0.32 0.48 0.167 0.535 0.47
3 HN + 10% DN − 5% 0.8 p.u 0.34 0.456 0.161 0.542 0.45
4 HN + 10% DN − 10% 0.6 p.u 0.41 0.4365 0.152 0.547 0.44
5 HN + 10% DN − 12% 0.5 p.u 0.43 0.421 0.144 0.552 0.42
6 HN + 12% DN − 12% 0.5 p.u 0.45 0.4 0.142 0.558 0.4
1Nominal Value of N.
2Nominal Value of D.
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Figure 9 Structure of the proposed control strategy.

Table 2 Nominal values of the system
Parameter Value Description
D 0.016 Coefficient of load
2H 0.17 Inertia value
R 2.5 Droop constant
Tg 0.08 The time constant of Governor
TDEG 0.4 Time constant generator
Mwt 5.8 Wind turbine generator inertia
Twt 0.2 Wind turbine generator time constant
Kp 1.8 Proportional gain of wind turbine generator
Ki 0.13 Integral gain of wind turbine generator
TID 0.005 Interconnection time constant

4.1 Case1 – Nominal Value

In this case, all parameters have their nominal value, and there are not any
uncertainties. The nominal values of the system are given in Table 2.

In the first case, the FOPID with control parameters which have been
introduced in the first row of Table 1 is compared with an optimal PID
controller. The frequency regulation responses of controllers during 0.3 p.u
load changes are indicated in Figure 10, in which it is evident that the FOPID
controller has better performance than an optimal PID controller. The FOPID
controller has a smaller rise time, settling time, and minimum frequency
deviation.
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Figure 10 Frequency deviation for nominal value.

For indicating the effectiveness of the FOPID controller, the following
criteria have been presented:

• Settling time: the time is needed for the response to reach and stay at a
range of predefined percentage (approximately 2%) of the steady-state
value.

• Rise time: the time is needed for the response to increase from 10% to
90% of the final value.

• Maximum Deviation: the maximum value of the deviation of each
response

• IAE: this criterion means integral absolute error and is calculated by:

IAE =

∫ ∞
0
|∆f |dt (17)

Figure 11 shows that the FOPID controller has a smaller settling time
and rise time than the optimal PID controller. In other words, the frequency
deviation is damped sooner by the FOPID controller.

A glance at Figure 12 reveals that the maximum deviation of the FOPID
controller is smaller than the PID controller. Furthermore, the integral abso-
lute error of FOPID’s response is lower than the PID controller. At the
conclusion of this case, it is important to mention that the desired FOPID
has more effective than an optimal PID.
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Figure 11 Settling time and rise time comparison (case1).

Figure 12 Maximum deviation and IAE (case1).

4.2 Case2 – Considering Uncertainties

In this case, parametric uncertainties have consequence values: HN + 10%,
DN − 9%, ∆PW = 0.5 p.u. For these uncertainties, the FOPID controller
parameters have been tuned by RANFIS (KP = 0.403, KI = 0.438, KD =
0.1526, λ = 0.549, µ = 0.44). Figure 13 depicts that the proposed control
method provides the best reaction to the frequency deviation. The deviation
has been damped by learning the FOPID controller after approximately 3
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Figure 13 Frequency deviation by considering system’s uncertainties.
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Figure 14 Settling time and rise time comparison (case2).

seconds. Moreover, by considering the maximum deviation of frequency,
this controller has an acceptable response to an immediate 0.3 p.u. load
change. Generally, the following comprehensive comparison reveals that the
suggested control strategy has improved the performance of conventional
control approaches.

Comprehensive comparisons have been given in Figures 14 and 15. It
is concluded from both of them that learning-based FOPID has the best
performance among all controllers. It is important to emphasize that the
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Figure 15 Maximum deviation and IAE (case2).
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Figure 16 Power supply reaction of controllers.

learning-based controllers performances present the effectiveness of this
control strategy.

The power generation stations including microturbine, PV, and wind
generator have responsibility to compensate for the lack of power supply
during demand growth. In this study, a 0.3 p.u increase in demand should
be compensated by power generation stations. Figure 16 depicts that the
proposed control strategy has a more rapid reaction to provide the power
supply.
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Figure 17 Frequency deviation by considering measurement noise.

4.3 Case3 – Considering Measurement Noise

In this study, the frequency value should be measured by frequency measure-
ment, and then are transmitted to the control center. A band-limited white
noise has been applied in the output of frequency measurement. Figure 17
indicates that the FOPID controller provides a smaller frequency deviation
against white noise and has better performance for damping.

5 Conclusion

Frequency stability is an important issue in power grids, especially in nano
and microgrids with low inertia. In this research, a learning-based FOPID
controller has been proposed for the frequency control of a hybrid microgrid
and has been compared with other traditional controllers through 3 case
studies. Finally, the effectiveness of this control strategy has been shown by
simulation, moreover, frequency responses and criteria results reveal that the
learning-based FOPID controller has the best performance among all of the
other controllers.
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