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Abstract

An accurate and efficient forecasting of solar energy is necessary for manag-
ing the electricity generation and distribution in today’s electricity supply
system. However, due to its random character in its time series, accurate
forecasting of solar irradiation is a difficult task; but it is important for
grid management, scheduling and its balancing. To fully utilize the solar
energy in order to balance the generation and consumption, this paper pro-
posed an ensemble approach using CEEMDAN-BiLSTM combination to
forecast short term solar irradiation. In this, Complete Ensemble Empirical
Mode Decomposition with adaptive noise (CEEMDAN) extract the inherent
characteristics of time series data by decomposing it into low and high
frequency Intrinsic Mode Functions (IMF’s) and Bidirectional Long Short
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Term Memory (BiLSTM) used as a forecasting tool to forecast the solar
Global Horizontal Irradiance (GHI). Furthermore, using extensive experi-
mental analysis, the research minimizes the number of IMF’s by integrating
the CEEMDAN decomposed component (IMF1–IMF14) in order to increase
the prediction accuracy. Then, for each IMF subseries, the trained standalone
BiLSTM network are assigned to carry out the forecasting. In last stage,
the forecasted results of each BiLSTM network are aggregate to compile
final results. Two year data (2012–13) of Delhi, India from National Solar
Radiation Database (NSRDB) has been used for training while one year
data (2014) used for testing purpose for the same location. The proposed
model performance is measured in terms of root mean square error (RMSE),
mean absolute percentage error (MAPE), Correlation coefficient (R2) and
forecast skill (FS). For the comparative analysis of proposed model, sev-
eral others models: persistence model, unidirectional deep learning models:
long short term memory (LSTM), gated recurrent unit (GRU), BiLSTM
and two CEEMDAN based BiLSTM models are developed. The proposed
model achieved lowest annual average RMSE (18.86 W/m2, 22.24 W/m2,
26.25 W/m2) and MAPE (2.19%, 4.81%, 6.77%) among the other developed
models for 1-hr, 2-hr and 3-hr ahead solar GHI forecasting respectively. The
maximum correlation coefficient (R2) obtained by the proposed model is 96.4
for 1-hr ahead respectively; on the other hand, forecast skill (%) of 89%
with reference to benchmark model. Various test such as: Diebold Mariano
Hypothesis test (DMH) and directional change in forecasting (DC) are used
to analyze the sensitivity with reference to the difference in forecasted and
observed value.

Keywords: Deep learning network, complete ensemble EMD with adap-
tive noise, gate recurrent unit, long short term memory, bidirectional long
short term memory, Diebold Mariano Hypothesis test, directional change in
forecasting, hyper parameters.

1 Introduction

Because of the greenhouse effect, pollution and the depletion of natural
resources, it is now more vital than ever to use renewable energy resources
(RES) that do not pollute the environment and free to use for electricity
generation. Among renewable energy resources, solar energy is one of the
most popular energy resources for generating electricity with zero carbon
emission and its market has grown significantly in recent decades due to its
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long-term viability and support [1, 2]. Almost every year, the earth’s surface
receives around 1.5 × 1018 KWh/area of solar energy which is nearly ten
times the current global usage. Among all Asian countries, China got the
highest annual average daily global solar radiation (20.2 MJ/(m2.d)) while
India just (18 MJ/(m2.d)). The renewable energy sector in India, as an exam-
ple of emerging countries, has grown at an exponential rate during the last
two decades. India has even established a special ministry for RES; Ministry
of New and Renewable Energy (MNRE), with a goal of generating 175 GW
of energy from RES by the end of 2022; with 100 GW from solar alone [2].
According to the International Energy Agency (IEA), the overall capacity of
photovoltaic installations will reach 1700 GW by 2030. However, according
to the world energy states report, this power capacity increased from 8 GW in
2007 to 402 GW in 2017 [3]. Furthermore, according to several studies, the
power grid will be completely functioning on the renewable energy source
(RES) by the end of 2050 [4]. As we know electricity produced by the
photovoltaic power plant is directly proportional to the Global Horizontal
Irradiance (GHI) falling on earth surface [3, 4]. However, due to the changes
of weather condition, the intensity of GHI is unstable in which directly impact
the photovoltaic power plant output [5, 6]. This will affect the reliability of
photovoltaic power plant. Hence, in order to make it more reliable there is
requirement of highly accurate solar GHI forecasting model.

1.1 Literature Review

Over the past two decades, a great deal of efforts has gone into forecasting
solar irradiance with positive outcomes. Different time horizon forecasting
models have already been developed in past. Forecasting models can be
divided into three types based on time horizon: short term, midterm, and
long term forecasting. Short-term forecasting is defined as a look ahead of
one week or less, and it is widely used to assist power systems. Midterm
forecasting refers to one-week to one-month forecasting that is used for
mid-term electricity dispatch. Finally, long-term forecasting analyses power
generation, transmission, and distribution forecasts for one month to one year.

As per existing literature, numbers of forecasted models were developed
with an aim to increase the forecasting accuracy. As per reference [7–10],
the solar irradiance forecasting technologies are divided into five categories:
(1) Persistence approach (2) Physical method (3) Machine learning approach
(4) statistical method (5) Hybrid approach. The persistence approach is also
known as naı̈ve predictor in which calculate value of solar irradiance at time
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t is considered as the forecasted value at time t + h where, h represents
the forecast interval. This model is generally used to make a comparison
with the prediction results of purposed model. The author of [11] suggested
that the forecasting results of proposed model need to be compared with
Persistence model. On the other hand, the physical model used meteorolog-
ical and geographical parameter to forecast the GHI instead of time series
data and set up a mathematical relation between a meteorological data and
forecasted GHI. Due to complexity, less precisions and high cost these
models are not popular. European center for medium range weather forecast
(ECMWF) and weather research and forecasting (WRF) are the two main
methods in physical approach to forecast the atmospheric and operational
research [12–14]. To forecast vertical irradiance and design sky radiance
using irregular atmospheric condition [15, 16] developed a new unified
framework of radiance design (UFRD) which chosen the impact of clouds
field and aerosol parameters. The UFRD is based on theory and improves
the accuracy of radiance and irradiance calculations. The statistical methods
such as: Gaussian Progress Regression (GPR) [17] autoregressive integrated
moving average(ARIMA) [18] Seasonal autoregressive integrated moving
average (SARIMA) [19] Multilinear regression (MLR) [20] improve fore-
casting accuracy and set up a mathematical relation between meteorological
data and global horizontal irradiance; but, a robustness is weak when a lack
of correlation is arisen between input data and irradiance [21]. The author
of [18] used the ARIMA model to anticipate sun radiation on a daily basis.
In continuation of this, SARIMA model was developed by the author [19]
to forecast solar radiation using Phillips-Perron test to identify the suitable
model learning parameters. But, due to incomplete data, sparse and lack
of correlation these models not provide a satisfactory result for the highly
variable non-stationary time series data.

The learning based models such as; artificial neural network
(ANN) [21, 22], elman neural network [23] and support vector machine [24],
multi layer perceptron [25], Extreme learning Machine [26] have a capability
to learn itself and reduce the gap between forecasted data and measured data;
but, due to uncertain behavior of global horizontal irradiance, sometimes
single learning model stuck in local minima and not perform efficiently.
Several academics: Gupta et al., Singla et al., Voyant et al. have already pub-
lished survey studied on machine learning approaches. So, one strategy is to
create a hybrid model to improve the accuracy of solar irradiation estimation.
The combination of a data decomposition technique and a forecasting model
is one of the mostly used hybrid models.
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On the other hand, optimization methods are used to optimize the learn-
ing parameter and to enhance the accuracy of a forecasted model. Various
authors use different-2 optimization algorithm: particle swarm optimization,
genetic algorithm, fuzzy logic, whale algorithm, sine cosine algorithm etc.
In recent times, the author [58] used Bat and whale algorithm to optimize the
hyperparameter of SVM model. In continuation of this, Genetic algorithm
used by the author [59, 60] to select the learning parameters of LSTM and
BiLSTM deep learning model in a particular search band.

Apart from this, In literature various data decomposition techniques used
as a preprocessing step to decompose the irradiance data, clean up and
define the input data according to the specifications. The self organizing map
(SOM), wavelet transforms (WT), empirical mode decomposition (EMD),
ensemble empirical mode decomposition (EEMD), normalization, Kalman
filter, principal component analysis (PCA) are often used in solar irradi-
ance forecasting. These tools not only extract the hidden characteristics of
time series data but also remove the trends, noise and randomness. The
authors [27] decomposed the clear sky index data using EMD and EEMD and
then utilized auto regressive (AR) and ANN models to estimate irradiance.
The experimental results shows that when hybrid model compared to a single
AR and ANN model, the hybrid model improved prediction performance
even more; on the other hand, the author of [28] implement a unique clus-
tering hybrid learning approach which use EEMD for preprocessing. Support
vector regression for ensemble learning approach and k-mean used for clus-
tering analysis. The result of developed hybrid model is much better than
standalone model. Likewise, the EEMD and SOM-back propagation (BP)
network were combined by the author of [29] to forecast the solar irradiance.
EEMD decompose the input data and decomposed subseries used as input
of SOM-BP network. The output of each SOM-BP networks is aggregate to
form the output while the author of [30] used a wavelet decomposition (WD)
technique as a preprocessing technique and support vector machine used as a
machine learning model. Likewise, the author of [31] used a combination of
WD and ANN. The time series decomposed by the WD were modeled by the
neural network model.

In addition, deep learning emerged as a powerful technique to forecast the
solar GHI and its performance is much better than conventional models in all
aspects. In literature a number of researchers used deep learning technique
with preprocessing strategy to enhance the accuracy of forecasting model.
The author of [32] use long short term memory (LSTM) network to forecast
the global horizontal irradiance in which weather data was used as an input
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parameter of the LSTM network. The performance of the LSTM network
is much better than the conventional model like a BPNN, linear regression
model in terms of RMSE. A hybrid model of LSTM and gradient boosting
algorithm was implemented by the author of [33] to prevent the situation of
over fitting and proposed model is compared with naı̈ve predictor and support
vector regression model. The performance of ensemble approach shows that
proposed model is effective and excellent in terms of RMSE. The authors
of [34] develop an ensemble approach to forecast the solar irradiance using a
combination of CNN and LSTM. The historical properties of the input data
were acquired by using an LSTM network and the geographical data were
obtained using CNN. The forecasting of short term solar irradiance was per-
formed by the author [35] using CNN network which use sky images as input
and proposed model performance is measured in terms of RMSE, MBE and
forecast skill score. Further, a short term photovoltaic power forecasting was
performed by author [36] using a hybrid approach of residual network and
convolution neural network. To divide the input dataset into trends, cyclical,
and random components, the variational mode decomposition (VMD) was
utilized as a preprocessing method. The author of [37] developed an ensemble
approach of WT with LSTM model to solar irradiance forecasting for 1-hr to
1-day ahead. The result shows that WT improve forecasting accuracy likewise
the author [38] proposed GRU technique for GHI forecasting for day ahead.
The model utilized meteorological and historical data as input of the proposed
model and its performance is measured in terms of RMSE and forecast skill.

1.2 Research Gap and Motivation

(a). The data processing method is one of the most important requirements
for increasing the accuracy of solar irradiance forecasting models. The empir-
ically chosen wavelet basis function determines the deconstructed results of
wavelet decomposition (WD). The better the decomposition results, the better
the basis function is for data. The lack of universality of WD in multi-regional
forecast may be due to the empirical necessities for preset basis function.
Furthermore, because wavelet convolution assumes frequency stationary over
the wavelet time span, WD is seen as inferior alternatives for estimating the
instantaneous frequency. These concerns are theoretically solved by EMD
and EEMD which are data adaptive multi scale decomposition. However,
in practice mode mixing issue affect EMD performance and the Gaussian
white noise introduced to EEMD requires a significant amount of effort to
remove. The aforementioned issues would have an impact on the accuracy
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and practicality of EMD and EEMD. (b) In literature number of research
related to GRU, LSTM, CNN are available for the forecasting of wind and
photovoltaic power forecasting [39–41]. But a very few experiments related
to Bi-LSTM are available for the forecasting of GHI. However, several
researchers use Bi-LSTM for the forecasting of wind speed, price, load
forecasting, stock exchange forecasting as well as in covid-19. The author
of [42] use standalone BiLSTM to forecast the irradiance using meteoro-
logical data as input and the result indicates the superiority of BiLSTM
model over LSTM, GRU and LR models in terms of RMSE. An ensemble
approach of CNN-BiLSTM proposed by [43] to forecast the irradiance.
The proposed model performance is better than CNN-LSTM and CNN-
GRU model. The characteristics of the input data time series were extracted
using CNN; whereas, the correlations of the time series were accessed using
BiLSTM.

Based on the problems faced by previous methodologies, this study is
motivated by the following assumption: (a) CEEMDAN used as a prepro-
cessing strategy to effectively extract the randomness, trends in the historical
data features. (b) The deep learning BiLSTM model process information
twice (forward and backward direction) to capturing the nonlinear char-
acteristics of time series data. (c) Grid search algorithm used to optimize
the parameters: concealed units, epochs, drop factor, learning rate etc. of
deep learning model which help to improve the forecasting accuracy. There-
fore, to further enhance the forecasting accuracy, a hybrid model, namely,
CEEMDAN-BiLSTM(SCF) is proposed.

1.3 Contribution and Paper Organization

Based on the literature findings, it has been observed that, the solar irradi-
ance forecasting accuracy can be increased by using (a) appropriate signal
processing algorithm (SPA) (b) deep learning network having a capability to
handle large amount of data along with them optimization technique is used
to precisely select the hyperparameters.

Number of authors used various combinations of SPA and learning net-
work to increase the forecasting accuracy [39–46]. These studies attest to
the improvement in the prediction performance by accurately selection of
preprocessing technique, learning network and optimization technique. But,
the drawback of previous published models is using all decomposed compo-
nent as input of learning network which increase complexity and simulation
time. This study performs various experimental scenario to overcome the
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disadvantage and proposed model used only selected component to forecast
the solar GHI. The proposed model (CEEMDAN-BiLSTM (SCF)) perfor-
mance is compared with the Persistence model, and other well known deep
learning techniques such as LSTM, GRU, BiLSTM, Standard CEEMDAN
based BiLSTM (CEEMDAN-BiLSTM(Standard)) and modified CEEMDAN
based BiLSTM (CEEMDAN-BiLSTM(modified)).

The following are the study’s significant contributions and innovations in
brief:

(1) Firstly, a brief literature of deep learning techniques is discussed in all
aspects.

(2) Reproduction of persistence model, well known deep learning models:
standalone LSTM, GRU and Bi-LSTM model.

(3) In order to cover the gap of CEEMDAN-BiLSTM process, the numerous
tactics of the CEEMDAN based BiLSTM models are studied. For this
the conventional CEEMDAN is combined with BiLSTM (CEEMDAN-
BiLSTM(Standard)) to forecast irradiance while in the alternative case
the CEEMDAN scope is broadened by merging distinct CEEMDAN
decomposed components and feeding them into BiLSTM network
(CEEMDAN-BiLSTM(modified)) to predict GHI.

(4) The proposed model is developed to increase the forecasting accuracy
using CEEMDAN-BiLSTM (SCF). In the proposed work, the best com-
bination of CEEMDAN component is taken and allocate an individual
BiLSTM network to each combination and results of individuals are
aggregate to produce the final forecasted value.

(5) The performance of the proposed experiment is compared with well
known deep learning techniques and benchmark model in terms of
RMSE, MAPE and R2. The response of proposed model is better in all
perspectives with lesser annual RMSE of (18.86 W/M2, 22.24 W/m2,
26.25 W/m2), MAPE of (2.19%, 4.81%, 6.77%) and R2 of (96.4, 95.4,
93.74) respectively for 1-hr, 2-hr and 3-hr ahead solar GHI forecasting
respectively. The forecast skill of proposed model is also observed which
89% with respect to persistence model.

The remaining paper is structure as follows: Section 2 explains the
theoretical background of CEEMDAN, LSTM and BiLSTM deep learn-
ing network. Section 3 present the proposed model framework; whereas,
Section 4 describes numerous experimental scenarios; Section 5 discusses
result analysis; Section 6 discusses forecasting model ability using hypothesis
test. Finally, study is concluded in Section 7.
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2 Theoretical Methodology of CEEMDAN and Data Driven
Model

This part presents a brief discussion of decomposition technique i.e., CEEM-
DAN and deep learning network related to proposed work i.e., LSTM and
Bi-LSTM network.

2.1 CEEMDAN

(Complete Ensemble EMD with adaptive noise)
The EMD is proposed by Huang in 1998. The basic idea is EMD decompose
the non-linear and non-stationary data into IMFs and residue. However,
research has revealed that EMD has a mode mixing constraint [44] Mode
mixing means similar elements exist in IMFs. To address the mode mixing
issue in EMD, the improved procedure EEMD is introduced. Even though the
EEMD addresses the mode mixing issue, the Gaussian white noise that was
added may not be eliminated during reconstruction, leading to an error [45].
The authors of [46] suggest CEEMDAN technique which is more advance
form of EEMD to solve the aforementioned difficulty. CEEMDAN divide the
original data sequence into fifteen IMFs and one residue which is shown in
Figure 4. The steps followed in CEEMDAN are given as:

(1) The original data sequence kn(t) is added with Gaussian noise wn(t)
and noise standard error (ε) which can be expressed as

kn(t) = k(t) + εow
n(t) Where n = 1, 2, 3 . . .m (1)

(2) The EMD decompose the data and the first IMF is evaluate by averaging
all the decomposition component

IMF 1(t) =
1

x

x∑
i=1

IMF i
1(t) (2)

The residual is calculated as

r1(t) = k(t)− IMF 1(t) (3)

(3) Further, the signal r1(t) + ε1EMD1w
n(t) are decomposed using EMD

to obtain second IMF and residue can be stated as follows:

IMF 2(t) =
1

x

x∑
n=1

EMD1(r1(t) + ε1EMD1(w
n(t))) (4)

r2(t) = r1(t)− IMF 2(t) (5)
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(4) A per following stages, the xth residual and (x + 1)th decomposed
components can be calculated as

rx(t) = rx−1(t)− IMF x(t) (6)

IMF x+1(t) =
1

x

x∑
n=1

EMD1(rx(t) + εxEMDx(w
n(t)) (7)

IMF x+1(t) represent the (x+ 1)th IMF obtained by CEEMDAN
Repeat Equations (6) & (7) till the residual meets the requirement for
stopping

Q∑
q=0

|rx−1(t)− rx(t)|2

r2x−1(t)
≤ SDx (8)

Where Q represent the length of sequence K(t) & rx(t) denote the
sequence after xth decomposition and the value of SD is set to 0.2.

(5) Finally, the original signal K(t) can be computed as:

y(t) =

T∑
i=1

IMF i(t) +R(t) (9)

Where R(t) represent the final residual value

2.2 Long Short Term Memory Neural Network (LSTM)

J.J. Hopfield developed a Recurrent Neural Network (RNN) in 1982. In this
network, the RNN output is related to the input via feedback acting like a
dynamic memory [47]. For short term forecasting this network worked best,
but for long term forecasting it becomes unstable. This inconsistency caused
by gradient bursting i.e., substantial changes in training weights in a short
period of time [48]. This problem was solved by LSTM to permit using of
memory cells in a hidden layer. These memory cells are utilized to store infor-
mation in an appropriate manner. Each memory cell having a forget gate (ft),
input gate (it) and output Gate (Ot) to accept or reject any information [49].
The architecture of LSTM network is shown in Figure 1. The LSTM network
has three inputs SI(t), previous memory previous memory cell output ht−1

and bias ef . As a result, the activation value can be written as [50]

ft = sigmoid(zf · [ht−1,SI i(t)] + ef ) (10)
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ft 

it 

tanh 

Ot 

Output 

I/p 
gate 

Candidate 
value 

ht 

Ct Ct-1 

ht-1 

O/p 
gate 

Forget gate 

Input 

Figure 1 Basic configuration of LSTM network.

The LSTM network use the equation below to determine whether data
information should be discarded or maintained [48]

it = sigmoid(zi · [ht−1,SI i(t)]) + ei) (11)

ct = tanh(zc · [ht−1,SI i(t)] + ec) (12)

ct = ft ∗ ct−1 + it ∗ ct (13)

Now, the memory cell output represented as [48]

ot = sigmoid(zo · [ht−1,SI i(t)] + eo) (14)

ht = ot ∗ softsign(ct) (15)

Here ef , ei, ec and eo represents the bias voltage of LSTM and Zf , Zt,
ZC , Zo is the weight factor of LSTM network & value of sigmoid lie from
0 to 1.

2.3 Bi-Directional Long Short Term Memory Neural Network
(Bi-LSTM)

Bi-LSTM is one type of neural network consist of two LSTM model
which having a capability to transfer information in past to future (forward
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Lb Lb Lb 

Lf Lf Lf 

GHIOt- GHIOt GHIOt

GHIt GHIt-1 GHIt+1 

Backward  
Layer 

Forward  
Layer 

W1 W1 
W 

W2 

W3 

W4 

W5 W5 
W5 W5 

W4 W4 

W2 W2 

W 

W1 

. . . 

. . . 

Figure 2 Basic architecture of Bi-LSTM network.

direction) and future to past (backward direction) [51]. Due to processing
of input in both directions, twice training of data is possible and prediction
accuracy is better than single LSTM model [52]. The basic architecture of
Bi-LSTM is shown in Figure 2.

The Bi-LSTM network is updated with the help of parameter i.e., forward
hidden layer (Hf ), backward hidden layer (Hb) and output sequence SI o(t).
The parameter of the Bi-LSTM is represented mathematically [49]

Hf = sigmoid(w1SI i(t) + w2Hf−1 + aHf
) (16)

Hb = sigmoid(w3SI i(t) + w5Hb−1 + aHb
) (17)

SI o = w4Hf + w6L+ aSIO (18)

Hf , Hb & SI o(t) represent the forward parameter, backward parameter and
output sequence while w denotes the weight factor.

3 Structure of the Proposed CEEMDAN-Bi-LSTM-Grid
Search Algorithm

The goal of this project is to increase the accuracy of Solar GHI forecasting
by employing a CEEMDAN-based BiLSTM network with various CEEM-
DAN pre-processing scenarios. Figure 3 show the schematic diagram of the
developed model and its steps is discussed below:
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Original time series data 

Data quality assurance 

Dataset stationary 

CEEMDAN Preprocessing 
technique 

Residual, IMF15, Sum (IMF1-
IMF14) 

CEEMDAN-BiLSTM (modified) 

Prediction outcomes 

Calculating error 

t-1….t-10 time lags 

LSTM/GRU/BiLSTM CEEMDAN-BiLSTM (Standard) 
Time lags 
of residual 

Time lags 
of IMF15 

Time lags of Sum 
(IMF1-IMF14) 

BiLSTM BiLSTM BiLSTM 

CEEMDAN-BiLSTM(SCF) 

Select model with less error 

Scenario- 1 
Scenario- 2 

Scenario- 3 
Scenario- 4 

Figure 3 Schematic diagram of the developed model.

3.1 Data Quality Assurance and Data Stationarity

The input data has great impact on the model performance. Primarily, the
collected data is available in its raw form which is random and non-linear in
nature and has a great influence on the effectiveness of the forecasted model.
Due to the weak pyranometer reaction, there is a chance of finding incomplete
and negative data recording. So, these types of data recordings must be
deletedbefore feeding to forecasting model [52]. Furthermore, the lack of
solar radiation throughout the night, the night hour’s data is omitted from
the dataset and due to the cosine error of sensor the data just before and after
sunset is also a perpetrator element in the model performance. Therefore,
to enhance the effectiveness of forecasted model the data converted into
stationary form before applying to application. To enhance the quality of
input data, this paper calculates CSI index of data in which convert the data
in stationary form. The CSI is calculated as follows [53]

GHICSI =
GHI i(t)

CS i(t)
(19)

Where CS i(t) = I0 exp
− τ

sinb(h(t)) sin(h(t))
Here, b indicates the fitting parameter, h(t) represents the solar height and

I0 denote the Extra-terrestrial radiation. From literature, it is found that clear
sky GHI is similar to CS i(t). So, we replace both values with each other and



1086 A. Gupta et al.

 

  

  

  

  

  

  

    

       

Figure 4 CEEMDAN Decomposition results.

it can be written as:

k =
GHI i(t)

GHICS
(20)

Where, GHICS is clear sky GHI values.
After refining and cleaning of time series data and render the data in

stationary form using clear sky index calculation. Now, the CEEMDAN
is applied on the prepared time series data in which decompose the data
into fifteen IMFs and one residue. Figure 4 represents the CEEMDAN
decomposition results

3.2 Hyper Parameters Selection Using Grid Search Algorithm

In literature, no any type of rule and regulation is present to select the
hyperparameters. However, the study uses grid search algorithm to find the
best hyperparameter value. The selection of hyperparameter is possible by
changing the parameter’s value with in a particular range. Table 1 showing
selection of parameters with in a particular range and Figure 5 represent the
specific flow graph used for selecting optimum parameters. The followings
are the rules for choosing hyperparameters are mentioned below:

(i) Assign default value to the initial hyperparameters
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Table 1 Selection of hyper parameters

Hyperparameters Search Bounds Selected Value

Learning algorithm Adam, sgdm, RMSprop Adam

Concealed units 60–125 100

Epoch 100–800 500

Drop factor default 0.2

Learning rate 0.0001–0.1 0.0007

Gradient threshold default 1

Drop period 50–175 125

 

Assign default value of 
hyperparameter 

Total number of iteration (N) 

Create searching range 
(a=1) 

Select value from searching range 

Start training of model 

Save results and configuration 

a=a+1 

a<=

Save configuration 

End 

No 

Yes 

Figure 5 Hyperparameter selection flowchart.

(ii) Select best learning rate
(iii) Select the appropriate learning algorithm
(iv) Choose appropriate number of concealed layers
(v) Select relevant activation function

(vi) Choose the optimum batch size & epoch value
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3.3 Forecasting Process

In this stage, CSI value is decomposed using CEEMDAN in which fifteen
IMF’s & residue are obtained. As a result, the fifteen IMF’s & residue
with sufficient time legs are used as input features of the forecasted model.
This research conducted a largescale experiment to determine the best GHI
value using a various combination of decomposed components as shown in
Table 3. The testing data is divided on seasonal basis: winter, spring, summer,
monsoon and autumn as given in Delhi Tourism website [54]. The developed
model performs short term forecasting for each season. The prediction value
is in the form of CSI sequence. Using below equation, the CSI sequence is
converted into real Global Solar Irradiation

GHI (t) = CS (t)× CSI (21)

CSI = clear sky index; CS (t) = clear sky GHI.

3.4 Performance Evaluation

In this study, five statistical metrics are used to evaluate the performance of
proposed model which are MAPE (mean absolute percentage error), RMSE
(root mean square error), R2 (correlation coefficient), FS (forecast skills) and
percentage improvement test.

Mean Absolute Percentage Error (MAPE): – It is mostly used forecasting
error to determine the performance of forecasted model in which measure the
uniform forecasting error in percentage [1]

MAPE =
1

n

n∑
i=1

∣∣∣∣∣I(t)− Î(t)

I(t)

∣∣∣∣∣× 100 (22)

I(t) = measured solar irradiance, Î(t) = forecasted solar irradiance and
n represent the total number of measured values.

Root Mean Square Error (RMSE): – It is a metric which is more sensitive
to measure deviation between forecasted and observed value [2]

RMSE =

√√√√ 1

n

n∑
i=1

(I(t)− Î(t))2 (23)
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Correlation Coefficient (R2): – This metric measure correlation between
observed and forecasted value and its value is range from 0 to 1 [1, 2]

R2 = 1−
∑n

i=1 |I(t)− Î(t)|2∑n
i=1 I(t)

× 100 (24)

Forecast Skills: – The improvement in the proposed model with respect
to reference model which is irrespective of prediction horizon, method and
location

FS = 1−
indicatorproposed model

indicatorcomparison model
(25)

The following expression are used to measure the percentage improve-
ment between developed models

PMAPE =
|MAPE 1 −MAPE 2|

MAPE 1
(26)

PRMSE =
|RMSE 1 − RMSE 2|

RMSE 1
(27)

Where MAPE1/RMSE1 is the error of reference model and MAPE2/
RMSE2 is the error of considered model.

4 Simulation Results

This study uses a combination of CEEMDAN & BiLSTM to improve
forecasting accuracy. The developed model performance has been com-
pared with standalone models: persistence model, GRU, LSTM, BiLSTM
and other CEEMDAN based models. The all experiments are evaluate
using MATLAB 2019a and numerous models scenarios are analyzed. The
following simulations are run in order to propose an accurate model:

(i) Persistence model, standalone GRU, LSTM & BiLSTM network.
(ii) Standard CEEMDAN preprocessing strategy with BiLSTM model

(CEEMDAN-BiLSTM (Standard)).
(iii) Modified CEEMDAN preprocessing strategy with BiLSTMmodel

(CEEMDAN-BiLSTM(modified).
(iv) Developed a CEEMDAN decomposition forecasting strategy which

combine selected decomposition component (CEEMDAN-BiLSTM
(SCF)). Where SCF represent the selected component forecast.
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(v) Developed model Performance is evaluated using MAPE, RMSE, R2

and forecast skills and compared with persistence model, standalone
GRU, LSTM, Bi-LSTM model, CEEMDAN-BiLSTM (Standard),
CEEMDAN-BiLSTM(modified) models.

4.1 Data Description

The Indian location dataset is used for the forecasting because of the sub-
stantial improvement in the infrastructure of renewable sector and the ever
growing scope in India. In the study, the dataset of New Delhi is used to
evaluate the proposed model due to its mixed climate characteristics of the
targeted location. According to the koopen climate classification system, the
New Delhi has climate characteristics of ‘cwa’ and ‘bsh’. Its mixed char-
acteristics of climate provide the model to perform on the different weather
conditions. Three year hourly data (2012–14) of New Delhi (Capital of India)
location collected from National Solar Radiation Database (NSRDB) for
training, validation and testing purpose [55]. Many academics have used
NSRDB data in their research due to various advantages (1) free and easily
access (2) extensive temporal and spatial coverage (3) no missing value
in the data. NSRDB provides satellite based data which acquired using a
satellite to irradiance model created by State University of Newyork. The
collected data from NSRDB containing hourly GHI values and several other
meteorological variables. Two year data used for training and one year data
used for testing the developed model on seasonal basis: winter (December to
January), spring (February to March), summer (April to June), monsoon (July
to mid September) and autumn (September end to November). Table 2 gives
a geographical coordinates, climatic condition and clear sky hours details of
the selected location.

4.2 Experimental Setup

The performance of all generated models including proposed framework are
assessed for error (MAPE, RMSE), correlation coefficient (R2) and forecast
skills. Various type of test has been undertaken in order to implement the
upgraded and accurate forecasting model.

Table 2 Geographical details of Delhi location
Rainfall Clear-sky Altitude

Location (mm) Hours Climate (m) Longitude Latitude Region
Delhi 714 2809 Cwa, Bsh 225 77.1025◦E 28.7041◦N North
Cwa = Humid Subtropical; Bsh = Hot semi-arid.
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Case (1) forecasting using persistence model, unidirectional LSTM,
GRU, BiLSTM model
The goal of this scenario is to create an experimental study on bench-
mark model, unidirectional deep learning models (LSTM, GRU, BiLSTM).
This experiment utilized ten time legs as an input features of deep learn-
ing model; whereas, GHI is forecasted as the output value. Short term
solar irradiation forecasting is performed on seasonal basis where selec-
tion of deep learning hyper parametersis one of the significant tasks to
obtained improved forecasting accuracy. The developed model performance
is judge using MAPE, RMSE and R2 respectively. The MAPE value obtained
by persistence, unidirectional LSTM, GRU and BiLSTM model for short
term solar GHI forecasting varies between 15.64–35.45%, 8.34–15.39%,
7.15–13.54% and 5.43–10.68% respectively for 1-hr ahead, 16.64–37.69%,
9.54–17.82%, 8.21–14.92% and 6.34–12.76% respectively for 2-hr ahead,
26.82–42.29%, 14.65–21.76%, 12.05–18.89% and 8.24–14.43% respectively
for 3-hr ahead and RMSE value ranges from 48.87–87.75 W/m2, 38.23–
66.32 W/m2, 35.89–63.36 W/m2 and 33.78–60.96 W/m2 respectively for
1-hr ahead, 52.79–89.13 W/m2, 40.21–69.13 W/m2, 38.12–66.02 W/m2 and
36.23–63.41 W/m2 respectively for 2-hr ahead, 58.76–94.13 W/m2, 44.76–
73.98 W/m2, 41.35–69.21 W/m2 and 38.91–65.81 W/m2 respectively for 3-hr
ahead. Moreover, the R2 varies from 0.76–0.85%, 0.87–0.92%, 0.90–0.94%
and 0.91–0.95% for persistence, unidirectional LSTM, GRU and BiLSTM
model respectively for 1-hr ahead, 0.74–0.83%, 0.85–0.91%, 0.88–0.93%
and 0.90–0.94% respectively for 2-hr ahead, 0.68–0.80%, 0.83–0.89%, 0.86–
0.91% and 0.88–0.93%respectively for 3-hr ahead. Figure 6 depicts a com-
parison of this case in terms of annual average MAPE and RMSE respectively
and the performance of BiLSTM is superior to benchmark model, GRU and
LSTM model respectively.

Case (2) Standard CEEMDAN based BiLSTM forecasting (CEEMDAN-
BiLSTM(Standard))
This scenario use CEEMDAN preprocessing technique to decompose the
global horizontal irradiance data in which generate Fifteen IMF’s and one
residue. This experiment utilized all IMF’s and ten timeleg as input of the
BiLSTM model and forecast the global horizontal irradiance. Tables 4–6
shows the result of Standard CEEMDAN based BiLSTM model in terms of
MAPE, RMSE and R2. The Standard CEEMDAN based Bi-LSTM model
achieve lower RMSE, MAPE and enhanced R2 in comparison to unidirec-
tional LSTM, GRU and Bi-LSTM model. This model reported RMSE value
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varies from 26.21–50.28 W/m2 for 1-hr ahead, 28.56–54.29 W/m2 for 2-hr
ahead and 31.18–56.53 W/m2 for 3-hr ahead respectively; whereas, MAPE
value ranges from 3.05–8.34% for 1-hr ahead, 4.39–10.65% for 2-hr ahead
and 6.52–12.56% for 3-hr ahead respectively and R2 value ranges from
0.92–0.96 for 1-hr ahead, 0.91–0.95 for 2-hr ahead and 0.89–0.94 for 3-hr
ahead respectively. Furthermore, the annual average RMSE value determined
for the same is 40.71 W/m2 for 1-hr ahead, 42.24 W/m2 for 2-hr ahead and
44.34 W/m2 for 3-hr ahead respectively; whereas, the annual average MAPE
value is 6% for 1-hr ahead, 7.61% for 2-hr ahead and 9.66% for 3-hr ahead
respectively. The annual average R2 obtained for the same is0.94, 0.93 and
0.91 for 1-hr,2-hr and 3-hr ahead respectively.

Case (3) Modified CEEMDAN based Bi-LSTM forecasting (CEEMDAN-
BiLSTM(modified))
This scenario present modified CEEMDAN based BiLSTM forecasting
model in which use different-2 combinations of IMF’s components with time
leg input while in Standard CEEMDAN based BiLSTM model utilized all
decomposed component as input to the BiLSTM model. The influence of
different combination of deconstructed component as an input feature on
the performance of the model has been thoroughly investigated and from
investigation it is observed that combination of sum(IMF1–IMF14) resultant
single subseries, IMF15 and residual gives a best result for all seasons
with respect to Performance criterion. Table 3 illustrates the result of the
observation made for various composition of deconstructed component as
input features for monsoonseason for 1-hr ahead only. The same composition
of decomposed component is applied for spring, summer, autumn and winter
seasons. Finally, residual, IMF15 and sum (IMF1–IMF14) are used as input
features to the forecasted model. This model reported RMSE value varies
from 21.36–43.76 W/m2, 23.54–47.08 W/m2 and 25.54–49.71 W/m2 for
1-hr, 2-hr and 3-hr ahead respectively. MAPE ranges from 2.51–7.3% for
1-hr ahead, 3.51–9.86% for 2-hr ahead and 5.12–11.32% for 3-hr ahead
respectively. The R2 varies from 0.93–0.97, 0.92–0.96 and 0.90–0.94 for
1-hr, 2-hr and 3-hr ahead respectively. Moreover, the annual average RMSE
value determined for the same is 34.34 W/m2, 36.23 W/m2 and 38.07 W/m2

for 1-hr, 2-hr and 3-hr ahead respectively; whereas, the MAPE value for
1-hr, 2-hr and 3-hr ahead forecasting is 4.98%, 6.59%, 8.43% respectively.
The annual average value of R2 is 0.95, 0.94 and 0.92 for 1-hr, 2-hr and 3-hr
ahead respectively. The performance of this model is better in all perspectives
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Table 3 Investigation of CEEMDAN decomposed component combination
Decomposed Decomposed
Component MAPE RMSE Component MAPE RMSE
Combinations (%) (W/m2) Combinations (%) (W/m2)
IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
IMF10, IMF11,
IMF12, IMF13,
IMF14, IMF15,
Residual

12.94 48.92 IMF3, IMF4, IMF5,
IMF6, IMF7, IMF8,
IMF9, IMF10, IMF11,
IMF12, IMF13,
IMF14, IMF15, Sum
(IMF1–IMF2),
Residual

11.92 47.84

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
IMF10, IMF11,
IMF12, IMF13,
IMF14, Residual

12.14 48.54 IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
IMF10, IMF11,
IMF12, IMF13,
IMF14, IMF15, Sum
(IMF1–IMF3),
Residual

11.11 47.07

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
IMF10, IMF11,
IMF12, IMF13,
Residual

11.98 47.41 IMF5, IMF6, IMF7,
IMF8, IMF9, IMF10,
IMF11, IMF12,
IMF13, IMF14,
IMF15, Sum
(IMF1–IMF14),
Residual

10.89 46.14

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
IMF10, IMF11,
IMF12, Residual

13.42 48.02 IMF6, IMF7, IMF8,
IMF9, IMF10, IMF11,
IMF12, IMF13,
IMF14, IMF15, Sum
(IMF1–IMF5),
Residual

12.05 47.92

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
IMF10, IMF11,
Residual

11.37 47.17 IMF7, IMF8, IMF9,
IMF10, IMF11,
IMF12, IMF13,
IMF14, IMF15, Sum
(IMF1–IMF6),
Residual

10.73 46.02

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
IMF10, Residual

10.48 46.98 IMF8, IMF9, IMF10,
IMF11, IMF12,
IMF13, IMF14,
IMF15, Sum
(IMF1–IMF7),
Residual

9.84 45.94

(Continued)
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Table 3 Continued

Decomposed Decomposed
Component MAPE RMSE Component MAPE RMSE
Combinations (%) (W/m2) Combinations (%) (W/m2)

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
Residual

10.51 46.45 IMF9, IMF10, IMF11,
IMF12, IMF13,
IMF14, IMF15, Sum
(IMF1–IMF8),
Residual

9.15 45.37

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, Residual

9.50 45.90 IMF10, IMF11,
IMF12, IMF13,
IMF14, IMF15, Sum
(IMF1–IMF9),
Residual

8.34 44.82

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, Residual

10.32 46.82 IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
IMF7, IMF8, IMF9,
IMF10, IMF11,
IMF12, IMF13, Sum
(IMF1–IMF10),
Residual

9.72 45.72

IMF1, IMF2, IMF3,
IMF4, IMF5, IMF6,
Residual

10.84 46.34 IMF12, IMF13,
IMF14, IMF15, Sum
(IMF1–IMF11),
Residual

9.52 45.52

IMF1, IMF2, IMF3,
IMF4, IMF5, Residual

9.39 45.01 IMF13, IMF14,
IMF15, Sum
(IMF1–IMF12),
Residual

8.22 44.22

IMF1, IMF2, IMF3,
IMF4, Residual

9.42 45.23 IMF14, IMF15, Sum
(IMF1–IMF13),
Residual

8.10 44.01

IMF1, IMF2, IMF3,
Residual

8.59 44.10 IMF15, Sum
(IMF1–IMF14),
Residual

7.30 43.76

IMF1, IMF2, Residual 9.20 44.29 Sum (IMF1–IMF15),
Residual

8.15 43.94

IMF1, Residual 8.19 43.98
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as comparison to persistence model, standalone deep learning models and
CEEMDAN-BiLSTM(Standard).

Case (4) Forecasting using Proposed CEEMDAN-BiLSTM Model
(CEEMDAN-BiLSTM (SCF))
In this case, the proposed model is used with the vision of attaining credible
prediction accuracy gains. Unlike the other investigation, this one assigned
a separate BiLSTM model to every component i.e., sum (IMF1–IMF14),
IMF15, Residual to forecast the solar irradiance. The ten time legs of every
component used as input features to their Bi-LSTM network. The output
is obtained by summing the forecasted value of every BiLSTM model to
produce final prediction. From Tables 4 and 5, it is observed that the proposed
model MAPE ranges from 1.12–3.11% for 1-hr. ahead, 2.54–6.94% for 2-hr.
ahead and 4.39–9.25% for 3-hr. ahead respectively; whereas, RMSE varies
from 10.98–28.11 W/m2 for 1-hr. ahead, 12.31–32.65 W/m2 for 2-hr ahead
and 17.28–37.14 W/m2 for 3-hr. ahead respectively. Table 6 showing the
R2 value varies from 0.94–0.98, 0.93–0.97, and 0.91–0.95 for 1-hr, 2-hr
and 3-hr ahead respectively. The proposed model achieves lowest annual
average MAPE which is 2.19%, 4.81% and 6.77% for 1-hr, 2-hr and 3-hr
ahead respectively and annual average RMSE value is 18.86 W/m2, 22.24
W/m2, 26.25 W/m2 for 1-hr, 2-hr and 3-hr ahead respectively. The improved
correlation coefficient value for 1-hr, 2-hr and 3-hr ahead is 0.96,0.95 and
0.93 respectively. Figures 6–8 represents the annual average RMSE (W/m2)
and MAPE (%) of all developed models.

5 Result Analysis

This research performs short term solar irradiance forecasting for the location
of Delhi, India. Various experimental analyses are performed to obtain precise
model with improved forecasting accuracy. The prediction performance of
the proposed model was compared with persistence, standalone deep learning
network (LSTM, GRU, Bi-LSTM) and CEEMDAN based Bi-LSTM mod-
els. Firstly, discuss the standpoint of overall outcomes than season wise
perspectives are discussed.

(1) Persistence model provide the lowest forecasting accuracy among all
developed models and its performance is checked for 1-hr, 2-hr and 3-hr
ahead solar GHI forecasting. The annual average RMSE obtained by
the same model is (70.49 W/m2, 73.64 W/m2, 77.17 W/m2) and annual
average MAPE value is (24.96%, 26.41%, 33.25%) for 1-hr, 2-hr and
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Table 4 Comparison of proposed model and reported model on RMSE, MAPE and R2 for
1-hr ahead solar irradiance forecasting

RMSE(W/m2)
Models Winter Spring Summer Monsoon Autumn Annual

1-hr Persistence 81.54 74.15 60.18 87.75 48.87 70.49
ahead LSTM 57.02 54.89 49.12 66.32 38.23 53.11
solar GRU 53.89 51.02 46.52 63.36 35.89 50.13
GHI BiLSTM 51.61 49.34 39 60.96 33.78 46.93
forecasting CEEMDAN-

BiLSTM(Standard)
45.88 44.41 36.81 50.28 26.21 40.71

CEEMDAN-
BiLSTM(modified)

39.29 38.01 29.3 43.76 21.36 34.34

Proposed Model 22.51 20.64 12.06 28.11 10.98 18.86
MAPE (%)

Persistence 29.22 23.03 21.47 35.45 15.64 24.96
LSTM 13.89 12.41 10.71 15.39 8.34 12.14
GRU 11.73 10.05 9.21 13.54 7.15 10.33
BiLSTM 9.86 8.49 6.35 10.68 5.43 8.16
CEEMDAN-
BiLSTM(Standard)

7.11 6.71 4.83 8.34 3.05 6

CEEMDAN-
BiLSTM(modified)

6.76 5.32 3.01 7.3 2.51 4.98

Proposed Model 2.35 2.19 2.21 3.11 1.12 2.19
Correlation Coefficient(R2)

Persistence 78.03 81.68 83.25 76.82 85.37 81.03
LSTM 89.78 90.68 91.68 87.26 92.88 90.85
GRU 91.89 93.24 94.56 90.2 94.89 92.95
BiLSTM 92.31 94.12 95.02 91.02 95.11 93.51
CEEMDAN-
BiLSTM(Standard)

93.45 95.45 95.86 92.26 96.98 94.8

CEEMDAN-
BiLSTM(modified)

94.98 96.02 96.91 93.89 97.79 95.91

Proposed Model 95.55 96.32 97.11 94.9 98.13 96.4

3-hr ahead respectively due to the weakest performance in the monsoon
and winter season. The value of R2 is also lowest which represent the
poorest performance of persistence model among all.

(2) In unidirectional deep learning models (LSTM, GRU, BiLSTM),
BiLSTM outperforms the LSTM and GRU in terms of forecasting
performance. The annual average RMSE provided by the BiLSTM is
46.93 W/m2, 50.58W/m2 and 51.54 W/m2; whereas, annual average
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Table 5 Comparison of proposed model and reported model on RMSE, MAPE and R2 for
2-hr ahead solar irradiance forecasting

RMSE(W/m2)
Models Winter Spring Summer Monsoon Autumn Annual

2-hr Persistence 84.72 77.79 63.81 89.13 52.79 73.64
ahead LSTM 59.72 55.08 51.81 69.13 40.21 55.19
Solar GRU 55.81 53.04 49.19 66.02 38.12 52.43
GHI BiLSTM 53.81 52.35 47.12 63.41 36.23 50.58
forecasting CEEMDAN-

BiLSTM(Standard)
47.81 45.15 35.41 54.29 28.56 42.24

CEEMDAN-
BiLSTM(modified)

41.25 39.05 30.26 47.08 23.54 36.23

Proposed Model 25.53 23.86 16.89 32.65 12.31 22.24
MAPE (%)

Persistence 30.24 24.85 22.67 37.69 16.64 26.41
LSTM 15.81 13.32 11.19 17.82 9.54 13.53
GRU 13.56 11.51 10.34 14.92 8.21 11.7
BiLSTM 10.98 9.41 8.54 12.76 6.34 9.6
CEEMDAN-
BiLSTM(Standard)

9.23 7.68 6.12 10.65 4.39 7.61

CEEMDAN-
BiLSTM(modified)

8.76 6.34 4.51 9.86 3.51 6.59

Proposed Model 6.41 4.86 3.31 6.94 2.54 4.81
Correlation Coefficient(R2)

Persistence 76.81 80.78 82.92 74.53 83.67 79.74
LSTM 88.68 89.39 91.46 85.88 91.22 89.32
GRU 89.99 91.12 92.89 88.66 93.89 91.31
BiLSTM 91.39 92.49 93.22 90.89 94.86 92.57
CEEMDAN-
BiLSTM(Standard)

92.99 94.11 94.89 91.21 95.45 93.73

CEEMDAN-
BiLSTM(modified)

93.11 94.98 95 92.89 96.02 94.4

Proposed Model 94.58 95.12 96.21 93.9 97.23 95.4

MAPE obtained by the same is 8.16%, 9.6% and 11.38% for 1-hr, 2-hr
and 3-hr ahead respectively. The annual average value of R2obtained
between forecasted and observed value is 0.93, 0.92 and 0.90 for 1-hr,
2-hr and 3-hr ahead respectively. Among GRU, LSTM and persistence
model, GRU perform better than the other two models with average
annual RMSE of 50.13 W/m2, 52.43 W/m2 and 53.74 W/m2 and average
annual MAPE of 10.33%, 11.7%, 14.31% for 1-hr, 2-hr and 3-hr ahead



1098 A. Gupta et al.

Table 6 Comparison of proposed model and reported model on RMSE, MAPE and R2 for
3-hr ahead solar irradiance forecasting

RMSE(W/m2)
Models Winter Spring Summer Monsoon Autumn Annual

3-hr Persistence 88.89 79.34 67.43 94.13 58.76 77.71
ahead LSTM 62.89 57.34 53.43 73.98 44.76 57.08
Solar GRU 56.03 54.86 50.26 69.21 41.35 53.74
GHI BiLSTM 54.45 52.16 46.41 65.81 38.91 51.54
forecasting CEEMDAN-

BiLSTM(Standard)
49.12 46.29 38.61 56.53 31.18 44.34

CEEMDAN-
BiLSTM(modified)

43.31 40.56 31.26 49.71 25.54 38.07

Proposed Model 31.68 26.29 18.86 37.14 17.28 26.25
MAPE (%)

Persistence 36.04 32.89 28.23 42.29 26.82 33.25
LSTM 18.98 16.49 13.35 21.76 14.65 17.04
GRU 15.31 13.51 11.81 18.89 12.05 14.31
BiLSTM 12.35 11.43 10.49 14.43 8.24 11.38
CEEMDAN-
BiLSTM(Standard)

11.23 9.81 8.21 12.56 6.52 9.66

CEEMDAN-
BiLSTM(modified)

10.94 8.32 6.45 11.32 5.12 8.43

Proposed Model 8.81 6.21 5.23 9.25 4.39 6.77
Correlation Coefficient(R2)

Persistence 70.04 75.89 78.89 68.28 80.24 74.66
LSTM 85.53 86.56 88.02 83.32 89.91 86.66
GRU 88.92 90.54 90.09 86.62 91.02 89.43
BiLSTM 89.09 91.89 92.02 88.02 93.89 90.98
CEEMDAN-
BiLSTM(Standard)

91.99 92.29 93.99 89.99 94.11 92.47

CEEMDAN-
BiLSTM(modified)

92.01 93.39 94.99 90.05 94.56 93

Proposed Model 92.18 94.12 95.28 91.9 95.23 93.74
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Figure 6 RMSE (W/m2), MAPE (%) and R2(%) of developed models on an annual average
basis.
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Figure 8 RMSE(W/m2), MAPE (%) and R2(%) of developed model on an annual average
basis.

respectively. The obtained value of R2 value is 0.92, 0.90 and 0.89 for
1-hr, 2-hr and 3-hr ahead respectively.

(3) The standard CEEMDAN-BiLSTM (Standard) model accuracy is better
than persistence and unidirectional deep learning models. It obtained
40.71 W/m2, 42.24 W/m2, 44.34 W/m2 of annual average RMSE,
6%,7.61%,9.66% of annual average MAPE and 0.94,0.93,0.91 R2 for
1-hr, 2-hr and 3-hr ahead respectively. On the other hand, modified
CEEMDAN-BiLSTM (modified) achieved high accuracy as compar-
ison to CEEMDAN-BiLSTM (Standard) in terms of RMSE (34.34
W/m2, 36.23 W/m2, 38.07W/m2), MAPE (4.98%,6.59%,8.43%) and
R2(0.95,0.94,0.92) for 1-hr,2-hr and 3-hr ahead respectively.

(4) At last, the proposed model had the best annual average RMSE (18.86
W/m2, 22.24 W/m2, 26.25 W/m2) and annual average MAPE (2.19%,
4.81%, 6.77%) for 1-hr, 2-hr, 3-hr ahead respectively.

Now, discuss the results on seasonal basis

(1) This paper evaluates the performance of all developed models on sea-
sonal basis: winter (December to January), spring (February to March),
summer (April to June), monsoon (July to mid-September) and autumn
(September end to November). It is evident in Tables 4–6; persistence
model accuracy is worst among all developed models. Among all sea-
sons, performance of persistence model is good in autumn and summer
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seasons due to less non-linearity in time series data in which easily
modeled by the predictor while in spring, winter and monsoon seasons
performance is not good due to overcast or rainy days in these seasons,
which makes it very difficult to forecast.

(2) As far as, comparison of unidirectional (LSTM, GRU & BiLSTM) mod-
els are concerned, the maximum accuracy is achieved by BiLSTM than
single LSTM and GRU in all seasons for 1-hr ahead case from Table 4.
The minimum RMSE (33.78 W/m2) and MAPE (5.43%) achieved by
the BiLSTM model in autumn season and R2 between real GHI and
forecasted GHI is highest (0.95) for the same. The results indicates
that the drastically improvement in forecasting accuracy of BiLSTM as
comparison to persistence model, GRU and LSTM due to movement of
information in both directions i.e., forward and backward direction

(3) The standard CEEMDAN based BiLSTM model outperform unidirec-
tional deep learning models and persistence model in terms of accuracy.
Due to extraction of statistical information of input series, performance
of CEEMDAN-BiLSTM (Standard) model is better in all seasons.
It obtained minimum RMSE (26.21 W/m2, 28.56 W/m2, 31.18 W/m2)
and MAPE (3.05%, 4.39%, 6.52%) to forecast 1-hr, 2-hr and 3-hr
ahead solar irradiance forecasting for autumn seasons while in monsoon
season, it achieved maximum RMSE (50.28 W/m2, 54.29 W/m2, 56.53
W/m2) and MAPE (8.34%, 10.65%, 12.56%) respectively to forecast
1-hr, 2-hr and 3-hr ahead solar irradiance forecasting.

(4) It is indicated in results, using the modified CEEMDAN approach
with the summation of deconstructed components IMF1–IMF14
improve the prediction accuracy over CEEMDAN-BiLSTM(Standard).
The CEEMDAN-BiLSTM(modified) model achieved minimum RMSE
(21.36 W/m2, 23.54 W/m2, 25.54 W/m2) and MAPE (2.51%, 3.51%,
5.12%) in the autumn season; whereas, it is (26.21 W/m2, 28.56 W/m2,
31.18 W/m2) and (3.05%, 4.39%, 6.52%) obtained by the CEEMDAN-
BiLSTM(Standard) for the same season.

At last, the proposed model uses the separate Bi-LSTM model for
each component: sum (IMF1–IMF14), IMF15, residual to forecast solar
irradiance. The proposed model obtained minimum RMSE (10.98 W/m2,
12.31 W/m2, 17.28 W/m2) for the autumn season and maximum RMSE
(28.11 W/m2, 32.65 W/m2, 37.14 W/m2) for the monsoon season; whereas,
the MAPE produced by the proposed model is also lower than others i.e., min-
imum MAPE (1.12%, 2.54%, 4.39%) for the autumn season and maximum
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Figure 9 Proposed model performance for all seasons.

MAPE (3.11%, 6.94%, 9.25%) for the monsoon season. The correlation
coefficient is drastically improved by the proposed model in the autumn
season i.e., 98.13, 97.23, 95.23 while initially it was 85.37, 83.67, 80.24 for
persistence model for one step, two step and three step ahead solar irradiance
forecasting respectively.

For the deeper examination of the findings, Figure 9 provides a statistical
representation of real and predicted GHI for the all seasons. These five
seasons are used to compare the outcomes of the season with the lowest
RMSE (autumn) and the season with the highest RMSE (monsoon). However,
for clarity, only real and predicted GHI curve of suggested model is shown for
selected seasons. From Figure 9, it is observed that substantial fluctuations
in the real GHI generate a larger error in the results. For example, smooth
curve of autumn season indicates the clear environmental circumstances in
which easily traceable by the model. On the other hand, monsoon season
shows substantial fluctuations in the real GHI due to existence of overcast
or rainy days making it difficult to trace by the model resulting in maximum
inaccuracies. From Figure 9, it can be deduced that if fluctuations in the real
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GHI is higher, than similarity exist between real and predicted GHI is lower.
Similarly, the resemblance between real and predicted GHI is higher when
variance in the real GHI is fewer. However, with in a tolerated range of error,
the suggested model also faces a number of ambiguities associated with a
genuine GHI. As a result of these findings, the suggested model is a good
forecasted model for stable as well as for unstable season.

6 Discussion

The previous section discusses about the developed forecasting model per-
formance in terms of RMSE, MAPE and R2. This section provides a more
comprehensive details of proposed model performance in terms of percentage
improvement, hypothesis test and directional change of forecast. The details
about the discussion are mentioned as follows:

6.1 Percentage Improvement

Percentage improvement is the main criterion to indicated the performance
of proposed model against other developed models. Figure 10 represents
that the proposed model offers a maximum percentage improvement in
RMSE (49.07 W/m2, 49.46 W/m2, 45.3 W/m2) and MAPE (75.87%, 61.24%,
50.14%) for 1-hr, 2-hr and 3-hr ahead respectively over single BiLSTM
model. Likewise, CEEMDAN-BiLSTM(Standard) has also shows a signif-
icant improvement in RMSE (40.07 W/m2, 35.88 W/m2, 31.75 W/m2) and
MAPE (57.04%, 45.91%, 36.39%) for 1-hr, 2-hr and 3-hr ahead respectively.
In addition, the proposed model exhibits a remarkable percentage improve-
ment in terms of RMSE (24.7 W/m2, 22.21 W/m2, 15.45 W/m2) and MAPE
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(47.8%, 27.63%, 25.36%) for 1-hr, 2-hr and 3-hr ahead respectively over
CEEMDAN-BiLSTM(modified) model

6.2 DMH Test

Diebold-Mariano developed the DMH test to determine the performance
differences between proposed and reference models. If zi is the actual time
sequence, z1i is the first predicted sequence and z2i is the next predicted
sequence, then prediction error between these sequences represented as:

L[F i
i ] = zi − z1i and L[F 2

i ] = zi − z2i

i = 1, 2, 3 . . . n

then Diebold Mariano test can be calculated as:

DMH =

∑n
i=1 L[F

1
i ]− L[F 2

i ]/n√
u2

n

u2 (28)

Where u2 is the deviation estimation.
Then, the null and alternative hypothesis can be calculated as:

If E0 = F (L[F 1
i ]) = F (L[F 2

i ]) (29)

If E1 = F (L[F 1
i ]) ̸= F (L[F 2

i ]) (30)

According to the null hypothesis, there is no significant difference
between two model’s performance while alternative hypothesis indicates the
considerable difference in the forecasting ability of two models. The sorts of
hypotheses are determined by comparing the output to a significance value
of the standard error Hβ/2. If the value of Diebold-Mariano test lie under
the [Hβ/2, H−β/2] is known as null hypothesis otherwise it is alternative
hypothesis. Table 7 shows the DMH value for each season.

As shown in Table 7, using the suggested model, the majority of the DMH
value are well over the crucial value of 1% level of significance. In other
words, an alternate hypothesis is accepted at a 1% significance level or with
a probability of 99 percent. The lower and upper values of DMH test for a
1-step ahead forecasting is 2.02 and 16.23 respectively. Furthermore, there
are only three values lie below the crucial level of 1% of significance but over
the 5% significance level. As a result, the suggested model accepts alternative
hypothesis with a significance level of 5%.
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Table 7 DMH test results for each season
CEEMDAN- CEEMDAN-

Step Persistence BiLSTM BiLSTM
Ahead Model LSTM GRU BiLSTM (Standard) (Modified)

Winter 1 6.78∗ 5.43∗ 5.77∗ 6.23∗ 2.23∗ 3.45*
2 7.82∗ 5.96∗ 6.45∗ 6.12∗ 5.12∗ 4.56∗

3 8.56∗ 6.11∗ 6.11∗ 7.21∗ 6.24∗ 5.34∗

Spring 1 5.34∗ 4.23∗ 4.98∗ 8.23∗ 7.58∗ 6.45∗

2 4.98∗ 3.98∗ 3.12* 8.13∗ 7.34∗ 6.11∗

3 4.12∗ 3.12∗ 2.96∗ 6.71∗ 5.67∗ 4.56∗

Summer 1 5.34∗ 4.12∗ 4.98∗ 4.56∗ 3.89∗ 2.19#

2 5.76∗ 4.78∗ 3.89∗ 3.97∗ 2.17# 3.59∗

3 5.98∗ 4.98∗ 5.34∗ 5.12∗ 4.45∗ 3.45∗

Monsoon 1 16.23∗ 15.89∗ 14.89∗ 13.28∗ 12.23∗ 11.23∗

2 16.57∗ 14.34∗ 13.56∗ 12.11∗ 11.67∗ 10.23∗

3 14.32∗ 13.24∗ 13.11∗ 12.21∗ 11.89∗ 10.12∗

Autumn 1 4.35∗ 3.45∗ 3.98∗ 3.45∗ 2.02∗ 3.45∗

2 2.63∗ 2.12# 2.55∗ 2.48∗ 2.67∗ 3.76∗

3 4.29∗ 3.95∗ 4.12∗ 3.76∗ 3.21∗ 4.56∗

‘*’ indicate the 1% level of significance and ‘#’ indicate the 5% level of significance.

Table 8 Crucial z value correspond to the significance level
Significance Level 10% 9% 8% 7% 6% 5% 4% 3% 2% 1%
Crucial z value 1.645 1.7 1.75 1.81 1.88 1.96 2.05 2.17 2.33 2.57

6.3 Directional Change in Forecasting (DC)

DC is used for evaluating the proposed model prediction ability and inform
people on predicting direction of movement with defining moments. Higher
DC value indicate the better forecasting model.

Figure 11 and Table 9 indicate the DC value of each model using below
formula:

DC =
100

M

M∑
i=1

G(t) (31)

G(t) =

{
1, if (xf,i+1 − xi)(xi+1 − xi) > 0

0, otherwise
(32)

From below results, it is clear that DC score of proposed model is highest
as comparison to other developed model. These findings can be viewed as a
plausible turning points or a shift in the forecasted outcomes.
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Figure 11 DC result for all seasons.

Table 9 DC Score of developed models
CEEMDAN- CEEMDAN- CEEMDAN-

Step Persistence BiLSTM BiLSTM BiLSTM
Seasons Ahead Model LSTM GRU BiLSTM (Standard) (Modified) (SCF)

Winter 1 79.03 90.78 92.89 93.31 94.45 95.98 96.55
2 77.81 89.68 90.99 92.39 93.99 94.11 95.58
3 71.04 86.53 89.92 90.09 92.99 93.01 93.18

Spring 1 82.68 91.68 94.24 95.12 96.45 97.02 97.32
2 81.78 90.39 92.49 93.23 95.11 95.98 96.12
3 76.89 87.56 91.54 92.89 93.29 94.39 95.12

Summer 1 84.25 92.68 95.56 96.02 96.86 97.91 98.11
2 83.92 92.46 93.89 94.22 95.89 96 97.41
3 79.89 89.02 91.09 93.02 94.99 95.99 96.28

Monsoon 1 77.82 88.26 91.20 92.02 93.26 94.89 95.9
2 75.53 86.88 89.66 91.89 92.21 93.45 94.56
3 69.28 84.32 87.62 89.02 90.12 91.05 92.45

Autumn 1 86.37 93.88 95.89 96.11 97.98 98.79 99.13
2 84.67 92.22 94.89 95.86 96.45 97.02 98.23
3 81.24 90.91 92.02 94.89 95.11 95.99 94.74
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Table 10 Forecast skill (%) of proposed model on annual basis
RMSE Forecast Skill MAPE Forecast Skill

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step
Model Ahead Ahead Ahead Ahead Ahead Ahead
CEEMDAN-BiLSTM(Standard) 42% 43% 43% 76% 71% 71%
CEEMDAN-BiLSTM(modified) 51% 51% 51% 80% 75% 75%
Proposed Model 65% 63% 59% 89% 81% 79%

6.4 Forecast Skill (FS)

FS is another criterion for scoring a suggested model in comparison to
the other developed model. Table 10 showing the FS of CEEMDAN-
BiLSTM (standard), CEEMDAN-BiLSTM (modified) and CEEMDAN-
BiLSTM(SCF) model with respect to persistence model. Greater value of
FS indicates the better training capability over reference model.

Table 10 displays the forecasting skill performance of CEEMDAN-
BiLSTM (standard), CEEMDAN-BiLSTM(modified)) and proposed model
with respect to persistence model.

6.5 Validation Based on Prior Research

Table 11 shows the performance of the proposed model compared to
previously published models in terms of MAPE, RMSE and forecast skill.

The proposed model performance is excellent over latest developed
models. Table 11 represents that the proposed model offers a percentage
improvement in RMSE (38.47 W/m2), MAPE (42.59%) and FS (44.70%)
respectively over singla, P., et al., 2022. Likewise, a significant improvement
in RMSE (71.49 W/m2) is showing by proposed model against Li et al.,
2021. In addition, the proposed model exhibits a remarkable percentage
improvement in terms of RMSE (45.35 W/m2) and FS (52.70%) respectively
over Toshniwal et al. model, 2021. The proposed model exhibits remarkable
improvement over recent techniques in all prospective. Moreover, in litera-
ture various authors used different techniques to forecast solar GHI like as
single, P., et al.; used a combination of WT-BiLSTM to forecast solar GHI.
However, WT based model produced satisfactory results due to its superior
localization features in both time and frequency domain. But it is unclear how
to choose the appropriate wavelet function for a given dataset [61]. Similar
problem occurred when using variational mode decomposition based method.
Toshniwal et al, implement XGBF-DNN model to forecast solar GHI and
measured developed model performance using RMSE (51.35 W/m2) which



A New Hybrid Short Term Solar Irradiation Forecasting Method 1107

Table 11 Comparison of proposed work with previous developed models
Author and Year Time RMSE MAPE FS
of Publication Model Place Horizon (W/m2) (%) (%)

Zang et al.,
2020 [47]

CNN-LSTM Texas, USA 1-hr 69.26 – –

Toshniwal et al.,
2021 [52]

XGBF-DNN NewDelhi,
India

1-hr 51.35 – 40.2

Li et al.,
2021 [42]

BiLSTM United State 1-hr 98.44 – –

Singla et al.,
2021 [57]

WT-
BiLSTM

Ahmadabad,
India

24-hr 45.61 6.48 47

Gupta, A., et al.
2022 [59]

EEMD-GA-
LSTM

New Delhi,
India

1-hr – 3.23 –

Gupta, A., et al.
2022 [60]

CEEMDAN-
GA-
BiLSTM

New Delhi,
India

1-hr – 2.23 59

This Work CEEMDAN-
BiLSTM
(SCF)-
Proposed
Model

New Delhi,
India

1-hr 18.86 2.19 89

is highly worst as comparison to current proposed work, because Extreme
gradient boosting algorithm (XGBF) does not perform well on unstructured
data and highly sensitive to outliers. So, in this research, the proposed work
uses CEEMDAN (advance version of EEMD) & BiLSTM (advance type of
LSTM) to predict solar GHI. CEEMDAN remove the Gaussian white noise
added with the EEMD may not be cancelled after reconstruction while
BiLSTM process the information in both direction (forward and backward)
twice training of data is possible and prediction accuracy is better than single
LSTM model. As a conclusion from the overall results, the proposed model
appears to be a good alternative for forecasting solar GHI. However, the hyper
parameters selection of deep learning models and longer simulation period
are the main difficulties in creating the proposed model.

7 Conclusion

Solar energy is one of the most important and essential energy resource
amongst all due to its great advantage over other renewable energy resources;
yet its consistency and efficiency are critical for the smooth operation of



1108 A. Gupta et al.

linked grid networks. So, this paper proposed a CEEMDAN-BiLSTM (SCF)
model to forecast the solar GHI. CEEMDAN decompose the historical
time series data into IMF’s and BiLSTM used to forecast each subseries;
whereas, grid search optimizes the learning parameters of deep learning
model in a suitable search band. The systematic comparison has been done
in the paper with other five models (LSTM, GRU, BiLSTM, CEEMDAN-
BiLSTM(Standard), CEEMDAN-BiLSTM(modified)) under different time
horizon (1–3hr ahead). The dataset of Indian location (New Delhi) is used
for evaluating the performance of proposed model. The developed models
performance is evaluate using DMH test, DC and common statistical metrics
such as: MAPE, RMSE and R2. The result shows that proposed model
achieves best performance among all developed models under all the time
horizon. Finally, the conclusion can be summed up as follows:

(1) Among all unidirectional models, BiLSTM outperform LSTM and
GRU. The BiLSTM achieve lowest annual average RMSE (46.93 W/m2)
than those of LSTM (53.11 W/m2) and GRU (50.13 W/m2). These
findings show that the BiLSTM has a superior data characterization
training capability.

(2) The CEEMDAN based hybrid models reduces the error and perform
better as comparison to standalone models. For a 1-hr ahead forecast
of solar irradiation, CEEMDAN-BiLSTM (standard) model obtained
approximately average 65% of improvement in standalone BiLSTM.
These results prove that CEEMDAN extract the hidden characteristics
of time series data and improve the quality of input data.

(3) Moreover, the CEEMDAN-BiLSTM (modified) model further improve
the forecasting accuracy. This model uses different-2 combination of
IMF’s component with time leg input. From investigation, it is observed
that combination of sum (IMF1–IMF14) resultant single sub series,
IMF15 and residual gives a best result for all seasons. In the case of
one step ahead forecast for Delhi location the RMSE (21.36 W/m2–
43.76 W/m2) and MAPE (2.51%–7.3%) are significantly improved
when compared to CEEMDAN-BiLSTM (Standard).

(4) Furthermore, the selected component forecast model CEEMDAN-
BiLSTM (SCF) provides superior results as compare to all other devel-
oped models. This one assigned a separate BiLSTM model to every
selected component i.e., sum (IMF1–IMF14), IMF15, Residual to fore-
cast the solar irradiance. The output is obtained by summing the fore-
casted value of every BiLSTM model to produce final prediction. For
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a case of one step ahead forecasting, the CEEMDAN-BiLSTM (SCF)
provides lowest RMSE (10.98–28.11 W/m2) and MAPE (1.12–3.11%)
over CEEMDAN-BiLSTM (modified).

(5) The Diebold-Mariano test represents that the score obtained by the
proposed model is vastly different from the other developed models. The
Proposed model accepts alternative hypothesis with a significance level
of 5% for all seasons.

(6) The results of DC demonstrate the proposed model forecasting ability
and better defining moment of the suggested model. Higher value of DC
indicates the better forecasting model.

(7) The forecasting skill is another criterion for checking model perfor-
mance. The proposed model achieves 89% FS against persistence model
for one step ahead respectively.

From the overall results, it is proven that CEEMDAN-BiLSTM (SCF)
model is best among all developed model and suggested to be good choice
to forecast solar irradiation. However, while constructing the model, some
challenges are face by the researcher such as higher computational time,
accurate hyperparameter selection. As a result, by taking these issues into
account in the future, more reliable and accurate results can be obtained in
a shorter simulation period. Last but not least, it is meaningful to consider
meteorological data and satellite images as input of the forecasted model
and some other soft computing technique to automatically tune the hyper
parameter with less running time.
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