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Abstract

A grid-connected or islanded microgrid made up of distributed energy
sources (DERs), requires a power management/dispatch system to control
the power dispatch and meet the load demand in the system. At the tertiary
control level in a typical microgrid, an optimal scheduling mechanism is
used to manage the power generated from the local DERs, energy drawn
from the grid and energy consumption by the load. This paper proposes a
novel hybrid optimization technique for day-ahead scheduling in a smart-
grid. A Hybrid Feedback PSO-MCS algorithm is implemented using swarm
intelligence and cuckoo search to enhance the performance and obtain a
cost-effective solution for a microgrid prosumer. A comparison has been
made of the Hybrid Feedback PSO-MCS (HFPSOMCS) algorithm with PSO
and modified CS (MCS) algorithm. The best performing algorithm among
the three is executed in MATLAB/Simulink and Python IDE platforms to
compare the execution time.

Keywords: Microgrid, PSO, CSA, hybrid algorithm, optimization, EMS,
tertiary control.
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1 Introduction

Microgrids, an important component of modern power systems, have been
rapidly evolving over the past two decades, with the goal of reaching net
zero in the coming decades [1]. Economic operation of the networks besides
maintaining high energy production efficiency have been the major focus
areas. Several strategies aiming to minimize the overall microgrid costs
through economic dispatch have been dis-cussed in [2–5].

Electricity/Utility sector has seen significant changes because of world-
wide technology advancements. Solar PV and wind energy farms are gaining
momentum be-cause of their widespread availability and the promise to offer
an environmentally beneficial solution for the long-term sustainable electric-
ity requirements of the future. These resources fluctuate widely, necessitating
efficient and responsive power generation systems. Smart grid concepts play
a crucial role in these transformations. The main problem is developing a
Distributed Generator (DG) system for remote places. Presently, 17% of the
world’s population lacks access to electricity, according to recent figures.
These regions are often served by diesel generators, which is not only
expensive but also produces a large amount of environmental pollution. In
this case, a hybrid system made up of one or more renewable energy sources
or the idea of a localized generation (microgrid) has the potential to supply
electricity eco-nomically.

With an ever-increasing global population and correspondingly higher
electricity demands, power & automation engineers/researchers are investi-
gating the potential of renewable energy sources. The installed capacity of
renewables has grown drastically over the last several years. Due to falling
PV panel prices, abundance of solar energy, government issued incentives
and installation of such farms and roof top models, the usage of renewables
has experienced a significant uptick. It is difficult to regulate the fluctuating
nature of the renewables while still incorporating it into an overall microgrid
system. However, there are several advantages to doing so.

References [6–8] give an overview of the literature on energy manage-
ment systems (EMSs) that include renewable energy sources. An in-depth
analysis of the EMS is discussed in [9] giving a detailed study of optimum
energy dispatch. EMS in islanding mode is optimized using methods like
Tabu Search [10], dynamic programming [11], Particle Swarm Optimization
(PSO) [12, 13], and hybrid PSO Fuzzy Logic [14]. Astitva et al. provided
a novel EMS for a microgrid with extensive focus on PV penetration
and battery energy storage systems in grid connected mode of operation.
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A modified Grey Wolf Optimization technique was used for microgrid control
and facilitate the economic dispatch of DERs [15].

EMS in a microgrid participates in optimization, planning & scheduling
using several control strategies, programming methods, and a set of con-
straints. Its performance can be enhanced by using machine learning, deep
learning, data science, data mining techniques/applications. A comprehensive
and extensive review of the above-mentioned aspects of microgrids including
advantages and disadvantages was studied in [16]. Battery energy storage sys-
tems (BESSs) are deployed into the hybrid microgrids to reduce fluctuations
in power output, maintain main grid frequency, to alleviate transients in the
system, and efficient storage of excess power [17].

A microgrid performs in an efficient manner with a robust EMS. In [18],
the authors implemented a novel technique based on stochastic methods.
Although, the strategy could handle the cost of operation and stand-by
reserves, there was no technical investigation into microgrid’s performance.
Y. Li et al. [19] presented an autonomous nonlinear control strategy to enable
smooth transitioning from grid-connected mode to islanded mode and vice
versa. Multi objective optimization was implemented using a meta-heuristic
algorithm called the ant colony optimization technique to obtain the optimal
global solution. The system’s goal is to reduce the amount of electricity
purchased from the utility grid, hence increasing the local in-dependence.

This study applies a novel algorithm called HFPSOMCS to a microgrid
with EMS in grid connected, islanded, and combined modes, considering
a full day load fore-cast profile. Taking grid tariff rates and operational
constraints into account, the proposed EMS monitored demand 24 hours a
day, at the lowest operational cost for the DGs. When demand is high or
when the microgrid’s generation is insufficient to meet it, power can be
purchased from the utility grid. If output exceeds demand during off-peak
hours, electricity can be sold back to the main grid. The MG can supply
electricity to important loads even when it is detached from the main grid.
Testing the case studies using Texas Instruments C2000 microcontroller to
send signals to the relays of the DGs is underway.

The rest of this paper is organized as follows. The microgrid modelling is
presented in Section 2, and it contains schematics and mathematical functions
of dis-tinct DERs and system boundaries. The implementation of optimiza-
tion algorithms to the EMS system are discussed in Section 3. Section 4
throws light on simulation results for several case studies analysed during
this work. Finally, Section 5 concludes the paper.
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2 Microgrid Modelling

Figure 1 depicts the MG model that is utilized for the EMS and its corre-
sponding schematic design. As part of this research, the conventional MG
model is employed, which comprises several DGs, such as the Combined
Heat & Power (CHP) plant, diesel generators (DG) and natural gas-fired
generators (NGG). A PV system, Wind and Energy Storage Systems (ESS)
are also included in this model. At the PCC, the DGs are linked and integrated
to deliver electricity to the group of loads. Operationally, the MG may be used
in three distinct ways:

• Grid Connected Mode: MG sells power back to the utility if generated
power exceeds demand in this mode. MG purchases grid power when
demand is greater than supply.

Figure 1 Schematic of the microgrid with EMS.
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Table 1 Power ratings of the generators [28]
Lower Limit (MW) ≤ PMicro source ≤ Upper limit (MW)

0 ≤ PCHP ≤ 1.5
0 ≤ PDG ≤ 1

0 ≤ PNGG ≤ 1
0 ≤ PPV ≤ 0.5

0 ≤ PWind ≤ 0.5
0.05 ≤ PESS ≤ 0.45
−1 ≤ PGrid ≤ 1

• Islanded Mode: When operating in this mode, the microgrid is cut off
from the utility grid and only distributes electricity to the most essential
loads. During this time, a process known as “load shedding” takes place
to balance production and demand.

• Combined Mode: Due to a scheduled power outage, the system is
running in grid connected mode on a certain day transition to islanded
mode. As a result, the demand for power drops during these hours,
allowing the EMS to determine the most cost-effective method of
dispatching electricity to critical loads.

The power ratings of the system’s distributed generators are shown in
Table 1.

The mathematical modelling of each DG is formulated below as cost
functions.

2.1 Fuel-fired Generators

Fuel costs for CHP, diesel generators, and natural gas generators may
all be represented mathematically using the quadratic functions shown in
Equation (1).

CGen(t) = αGen + βGenPGen(t) + γGenP
2
Gen(t) (1)

Where αGen , βGen , and γGen are the generator set’s cost coefficients and
the values considered for the study are tabulated below in Table 2 [26, 28].

2.2 PV

For a typical PV farm, the cost associated with generating and harnessing
solar energy is given by

CPV (t) = aIPPPV (t) +GEPPV (t) (2)
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Table 2 Cost coefficients settings of various DGs
DGs αGen βGen γGen

CHP 15.30 0.210 0.000240
Diesel Generator 14.88 0.300 0.000435
Natural Gas Generating Station 9.00 0.306 0.000315

Figure 2 PV farm power forecast for 24 hours.

Where PPV (t) is the power generated by the farm in kW; IP is the total
investment cost per unit installed power ($/kW); GE is cost of operation
& maintenance ($/kW); a is coefficient of annuitization (no units) and it is
calculated as follows:

a =
r

[1− (1 + r)−N ]
(3)

Where r is the rate of interest; N is investment period (=20 years).
When calculating the entire cost of generating solar energy, it is important to
consider the equipment’s depreciation. Equations (2) and (3) are utilized to
do this. The values for IP and GE are assumed to be $5000 and 1.6 cents/kW,
respectively, in this case. As a result, it is possible to determine the ultimate
cost function, which is shown by the Equation (4) [21, 28].

CPV (t) = 545.016× PPV (t) (4)

Figure 2 illustrates the estimated power for this study’s solar farm
throughout a 24-hour period.
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Figure 3 Wind farm power forecast for 24 hours.

2.3 Wind

Wind power’s cost function is comparable to that of solar generation, accord-
ing to Equations (2) and (3). However, IP and GE are estimated to be $1400
and 1.6 cents/kW [28], respectively. As a result, the total cost function may
be determined, and it is shown as Equation (5) in the following way:

CWind (t) = 152.616× PWind (t) (5)

For this study, Figure 3 shows a typical assumed generated power of the
wind farm during a 24-hour period. This data isn’t seasonal or regionally
specific; it’s just assumed for the sake of this experiment [22].

2.4 ESS

A battery with a capacity of 500 kWh was used for this investigation with
a constraint that the daily number of cycles is fixed at 2. If the usage of
ESS exceeds allowed number of cycles in each day, then it is automatically
disconnected from the system. The minimum and maximum SOC of ESS are
set to 10% and 90% respectively, initial SOC being 50%. The battery’s cost
function is obtained from Equations (2) and (3), much like the two prior DGs.
It is expected that the IP and O&M expenses per unit of produced energy
(GE) are 1000$/kW and 1.6 cents per kilowatt hour [28]. Equation (6) was
used to calculate the final cost function [26].

CB(t) = 119× PB(t) (6)
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Table 3 Constraints

Mode of Operation Governing Equations Action

Grid-connected PGrid = PGen − PLoad ; PGrid > 0 Buy

PGrid = PGen − PLoad ; PGrid < 0 Sell

Islanded PGen = PLoad ; –

2.5 Constraints

Constraints functions are employed to aid the system in achieving its goals.
Grid-connected mode allows the MG to purchase or sell power from or to the
main grid based on load. If the power generated by the DGs does not match
the power necessary to satisfy the load, then electricity purchased from or
sold to the grid equals the difference between the power generated and the
demand for the load. When the MG is in islanded mode, it is not connected
to the main grid, hence there is no way to buy or sell power during this mode.

3 Methodology – Optimization Algorithms

This section introduces the novel optimization which is based on the out-
standing behavior of swarm intelligence and cuckoo bird search capabilities.
Details of HFPSOCS algorithm and its implementation to discover the most
optimal solution set to the chosen microgrid problem are presented.

3.1 Overview of Particle Swarm Optimization (PSO)

PSO is one of the widely implemented meta-heuristic algorithms in various
fields because of ease of implementation and faster convergence towards an
optimal solution set. It is a population-based optimization algorithm discov-
ered by Kennedy and Eberhart in 1995. This meta-heuristic algorithm uses
swarm intelligence consisting of particles or swarms. Each swarm is cognate
with position and velocity vectors, namely xij and yij . The dimension of the
search space determines the size of these vectors. The PSO, much like other
evolutionary algorithms, initializes a swarm (a set of candidate solutions)
and then searches for the best possible global optimum. It considers several
particles to be potential solutions and each particle moves across the search
space at a certain velocity to locate the optimal candidate set. The term PLBest

refers to the best local solution that a particle has come up with as iterations
go on. The PLBest that is superior to all the other particles is referred to as the
PGBest . Each particle must consider its current location, its current velocity,
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Input Data :
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limit, Load demand

Initialize Population; 
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Calculate Fitness: 
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Update personal best & global best solutions

iter = max_iterations

Output optimal solution candidate

Stop

Update particle’s position & velocity

Yes

No

 
Figure 4 Flowchart of PSO algorithm.

and the distance to local best and global best before it can update its position.
Each particle attempts to improve by mimicking successful peers. The best
place in the search space that each particle has ever visited may also be stored
in its memory [20, 23].

vpop(t) is used to determine the velocities of the particles after each
iteration. After that, Xpop(t) is used to determine where the particle position
is updated to. Until a stopping criterion is reached, the particle position keeps
changing. The flowchart (Figure 4) defined in Table 5 gives a step-by-step
approach to the algorithm.
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Table 4 Pseudocode breakdown of PSO
Pseudo code of the PSO Algorithm:

1: Begin Process
2: Initialization

A. Params:

C1: Cognitive component
C2: Social component
W: Inertia factor
Wdamp : Damping factor
Np: Swam population size

B. Generate initial swarm using randomly uniformly distributed function
C. Evaluate fitness function

3: Main Loop
4: for (iter = 1, iter ≤ itermax, iter ++) do
5: for (pop = 1, pop ≤ Np, pop++) do

//Evaluate particle velocity
vpop(t) = w ∗ vpop(t− 1)+
c1 ∗ r1 ∗ (PLBest − (t− 1))+
c2 ∗ r2 ∗ (PGBest −Xpop(t− 1))
//Update particle position
Xpop(t) = Xpop(t− 1) + vpop(t)

6: if f(Xpop) ≤ f(PLBest) then PLBest = Xpop

7: if f(Xpop) ≤ f(PGBest) then PGBest = Xpop

Update Xpop & vpop
8: end if
9: end if
10: end for
11: end for
12: Best Solution
13: End Process

3.2 Overview of Modified CSA

Inspired from the lifestyle and brooding behavior of the cuckoo bird, this
algorithm was introduced by Xin-She-Yang and Suash Deb in 2009 [27].
Instead of using basic isotropic random-walks, Levy flights is used to improve
the performance of the technique. The standard CSA uses the following three
important rules, in solving an optimization problem:

• Each cuckoo bird picks a nest at random and lays one egg every time.
• The highest quality eggs (solutions) in the best nests will be passed down

to the future generations of birds.
• Given that the number of host nests is invariable, the probability of

discovering an egg laid by cuckoo bird in the host nest is paϵ(0, 1); 1
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Table 5 Pseudocode breakdown of MCS
Pseudo code of the MCS Algorithm:

1: Begin Process
2: Initialization

a. Params:
Np: Population Size
max iter: Maximum number of iterations
pa: probability of discovery rate of alien eggs
sigma: 0.6966, beta: 3/2
a,b: Two positive random numbers, ∃ 0 < a < b < 1

b. Initialize swarm and evaluate fitness and update pg

3: Main Loop
4: while (iterations <= max iter) do
5: for i from 1 to Np: do

//Calculate Self-Adaptive step size

αt = (b− a) ∗ (e

10∗(t−1)

tM−1 −1)

e10−1

//Update position by applying levy flights
randomStep = findStep()
xi(t+ 1) = xi(t) + randomStep ∗ (xi(t)− pg)
//Generate Gamma exemplar for xi

gammaExemplar()
// Update global best

6: if f(xi) ≤ f(pg) then pg = xi

7: end if
8: end for
9: end while
10: Best Solution
11: End Process

being discovered. In this circumstance, the host bird has two options:
either remove the egg from the nest or abandon the nest and construct an
entirely new one.

For implementation, the following representation is adopted: each egg in
a nest symbolizes a solution. The goal is to leverage new and superior options
(cuckoo bird) to replace poorer quality solution/eggs. By controlling the
switching parameter pa, the local search random walk and global explorative
capability. The equation to express local random walk is given as follows:

σu =

(
Γ(1 + β)× sin(π + β

2 )

Γ( (1+β)
2 )× β × (2

β−1
2 )

)1/β

; σv = 1 (7)
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Figure 5 Flowchart of HFPSOMCS algorithm.

Also included are two search capabilities – local-search and global-
search, which are governed by a switching probability and/or discovery
probability. As mentioned in the earlier paragraph, the local-search (for
pa = 0.25) is relatively time-consuming, accounting for around one-fourth of
the whole search time, whereas the global-search accounts for approximately
three-fourths of the total search time. As a result, the global optimality can be
found with a higher probability because of a more efficient global search [24].

The fact that it employs Lévy flights rather than normal random walks as
part of its global search is an additional benefit of CSA. CSA can traverse
the search space more efficiently than other meta-heuristic methods using the
ordinary Gaussian process because Levy flights have an infinite mean and
variance. The flowchart (Figure 5) defined in Table 6, gives a step-by-step
approach to the algorithm.
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Table 6 Benchmark functions with constraints
Function Variable Global
Name Dimension Problem Bounds Minimum
Sphere 30 f(x) =

∑d
i=1 x

2
i xi ∈ [−5.12, f(x∗) = 0, at

Function 5.12] x∗ = (0, . . . , 0)

Rastrigin 30 f(x) = 10d+
∑d

i=1 xi ∈ [−5.12, f(x∗) = 0, at

Function (x2
i − 10cos(2πxi)) 5.12] x∗ = (0, . . . , 0)

3.3 Overview of HFPSOMCS

The prime motivation behind the conceptualization and implementation of
hybridized algorithm is that PSO can converge swiftly on the local best
solution, though not always on the global best candidate set. According to
some evaluations, it is implied that the mathematical equations used in PSO
do not meet the global convergence criteria, and so there is no certainty of
convergence to the global solution set. MCSA, on the other hand, has proven
to satisfy the global convergence criterion and so ensures global convergence.
This means that when it comes to solving multimodal optimization case
studies, cuckoo search may generally converge to the optimality while PSO
may converge to a local optimum set.

In contrast, MCSA takes several iterations to get the global best in
the specified search space. A consequence of this is a significant increase
in computing time, which is a disadvantage in scheduling applications.
A novel feedback algorithm has been developed to achieve a balance between
two desirable characteristics. Figure 6 illustrates the flow chart of the
hybridization technique.

For the benchmark functions displayed in the table, the hybrid algorithm
was used to optimize the performance of the system. The following table
lists the parameters that were selected for use in the system. Traditional
PSO and HFPSOMCS methods yielded the optimization results depicted in
Figure 7. The hybrid algorithm outperformed PSO in both functions tested
here. Afterwards, the hybrid system was used to resolve the EMS problem in
the microgrid under consideration. After that, the findings and case studies
are reviewed and developed more fully.

4 Case Studies & Results

In this section, the findings of EMS are discussed. Investigation is carried out
for a day (24 hours operation) to determine the most efficient dispatch of the
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Figure 6 Flowchart of MCS algorithm.

DERs and utility grid. Microgrid is subjected to three different case studies,
as follows:

1st Case Study Grid Connected Mode Summer season tariff rates
Winter season tariff rates

2nd Case Study Islanded/Standalone Mode Summer season tariff rates
Winter season tariff rates

3rd Case Study Combined Mode Summer season tariff rates
(Grid + Islanded) Winter season tariff rates

Figure 11 depicts the load demand for a 24-hour time, which was utilized
for all the case studies. There is a large difference in load demand between
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Figure 7(a) Three algorithms’ performance on the sphere function.

Figure 7(b) Three algorithms’ performance on the Rastrigin function.

HFPSOCS Algorithm

Economic Load Dispatch Layer

Constraints

Cost 
Minimization

DER 
Scheduling

Objective 
Functions

Variable Sources:
Irradiance, temperature, 

wind speed

Load Demand

Conventional Sources:
Cost coefficients, 
generation limits

Energy Management System

Figure 8 EMS architecture.
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Figure 9 Main grid tariff for summer season.

Figure 10 Main grid tariff for winter season.
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Figure 11 Load demand forecast for a 24-hour period.

the islanded mode and the grid connected mode, as seen in the Figure 11.
As a result, load shedding is necessary, and the system only provides power
to vital loads while the system enters standalone mode.

The main grid tariff is obtained from the website of the Oshawa PUC,
with tariffs effective November 2021 [25]. The case studies are carried
out during both the summer and winter seasons, with the primary goal of
understanding BESS participation and the secondary goal of investigating
the interaction between the main grid and DG units. Figures 9 and 10 show
time-of-use schedule for a 24-hour operation period dependent on operating
circumstances. When it comes to Summer, there is a distinct midday peak
hour. This is the busiest time of year for air conditioners. Early morning and
evening are two of the busiest times of day in the winter. When it is cold
outside, people tend to use more heating, lighting, and appliances in their
homes.

4.1 1st Case Study: Grid-connected Mode

All the system’s power needs are covered by the DG units, ESS, and the main
grid in this mode.

CHP, Diesel generator, Natural gas generators, Wind, Solar, Energy Stor-
age Systems (ESS), and the main grid are all examined in this case study
during a 24-hour operating period. Load demand, main grid tariff, and wind
and PV power availability are all taken into consideration in an optimal EMS



1136 P. Balasubramanyam and V. K. Sood

Table 7 MG’s hourly operation cost breakdown (Case 1)
Cost (in $) Cost (in $)

Hour Summer Winter Hour Summer Winter
1 47.50 46.90 13 −2.54 14.59
2 7.30 6.10 14 3.65 13.94
3 15.79 14.88 15 28.44 40.90
4 46.38 46.38 16 58.38 64.90
5 86.99 87.08 17 96.46 96.46
6 113.92 116.30 18 116.09 150.99
7 122.74 124.97 19 127.84 170.68
8 134.10 175.17 20 105.70 108.10
9 117.53 125.59 21 92.58 94.50
10 169.68 169.30 22 72.90 74.10
11 65.21 26.40 23 48.30 48.60
12 15.02 29.92 24 7.30 6.10

Figure 12 EMS optimum dispatch for grid-connected mode with summer tariff.

model. In addition, it is assumed that all the generators are running, and the
objective of the optimization algorithm is to identify the approach that results
in the lowest possible operating cost while still satisfying the demand for
electricity. Table 7 and Figures 12 & 13 summarize the findings of this case
study in both seasons.

Figures 12 & 13 shows the EMS in grid-connected mode at its optimum
output. The algorithm was able to discover the best way to deploy DGs to
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Figure 13 EMS Optimum Dispatch for Grid-connected mode with winter tariff.

meet the given demand during the time period. System purchases and sells
electricity from the grid during both off-peak and peak periods. The total cost
of operation over a day with summer tariff is $1690.03 whereas with winter
tariff is $1852.95.

Table 7 breaks down the MG’s hourly operational costs. When demand is
lower than production, as shown in the table, operating costs are lower than
those experienced when demand is higher (5–9 & 17–23). As a result, MG
may save money by selling excess power back to the main grid. Similarly,
if output falls short of demand, the utility must pay additional fees for
power from the main grid. This indicates that the algorithm can make
decisions about when to purchase and sell power to and from the main
grid, which is beneficial for the system. The convergence trend for three
different algorithms—namely, PSO, MCS, and HFPSOMCS—is depicted in
a single graph in Figure 14. Because it can bring together the excellent search
capabilities of MCS in tandem with the quicker convergence feature of PSO,
the hybrid algorithm is able to converge at a faster rate than the other two
optimization algorithms, as can be observed. The reason for this is because
the hybrid algorithm was designed to maximize efficiency.

4.2 2nd Case Study: Islanded Mode

A more advanced EMS has been installed in an MG to cut down on the
amount of energy needed to cater the load for a whole day, just as was
done in the previous investigation. In this situation, however, the MG has
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Figure 14 Cost convergence characteristics in grid-connected mode.

Figure 15 EMS optimum dispatch for islanded mode with summer tariff.

been separated from the main grid and is operating in an islanded state.
Figure 11 illustrates the load requirement that was considered appropriate for
this scenario. With no choice for power trading, this study’s algorithm will be
forced to choose the best strategy to dispatch three available generators. PV
and Wind power plants are expected to be fully operational throughout each
of these time periods.

The optimal output that the EMS was able to obtain for the islanded
mode of operation is shown in Figures 15 & 16. The algorithm was able
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Figure 16 EMS optimum dispatch for islanded mode with winter tariff.

to determine the best way to distribute each generator so that it could meet
the specified load requirement at each interval. For this scenario, the 24-hour
total operating cost with summer tariff is $1788.281. With winter tariff, the
cost of operation is $1792.92. The slight difference is due to the fact that the
way DGs are fired up is entirely unidentical in both scenarios.

As can be seen in Table 8, the MG’s operating costs when in islanded
mode are broken down into discrete time intervals. In islanded mode, the
system only provides power to essential loads, hence peak and off-peak
hours were not significant for this case study’s load demand. There is a
noticeable difference in price between periods 9 and 16 hours, based on the
data presented. All three generation sources—DGs, solar photovoltaics, and
wind turbines—are operating at or near their full capacity because to the high
demand for electricity. Figure 17 depicts the convergence of operational costs
in this mode.

4.3 3rd Case Study: Combined Mode

In this situation, the MG system that is functioning in grid linked mode makes
the transition into islanded mode for either a finite or an infinite amount of
time. When it comes to everyday life, this kind of situation is not out of the
question. The master controller, also known as the “brain” of the EMS, is
responsible for turning off the power to the system’s non-critical loads and
isolating the main grid at the PCC when certain events occur, such as when
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Table 8 MG’s hourly operation cost breakdown (Case 2)
Cost (in $) Cost (in $)

Hour Summer Winter Hour Summer Winter
1 39.67 39.69 13 142.73 142.73
2 39.72 39.75 14 145.54 145.50
3 40.32 40.36 15 133.95 133.93
4 41.19 46.10 16 113.34 113.40
5 41.44 41.47 17 76.94 76.91
6 48.44 48.44 18 53.09 53.09
7 61.45 61.46 19 50.60 50.63
8 60.08 60.11 20 39.74 39.73
9 102.77 102.65 21 39.81 39.68
10 122.42 122.37 22 39.67 39.79
11 134.51 134.39 23 39.79 39.67
12 141.28 141.23 24 39.65 39.70

Figure 17 Cost convergence characteristics in islanded mode.

equipment fails, fuses blow, scheduled maintenance is performed, natural
disasters occur, and so on.

The optimum outputs for dispatch are shown in Figures 18 & 19 when
the system is operating in combined mode. The load is decreased to fifty
percent as the system transitions from grid-connected mode to islanded mode
between the fourteenth and fifteenth hours of the day. The cost of operation
increases to $2005.30 when using the winter tariff, up from $1855.87 when
using the summer rate. Because of the availability of power from PV and
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Figure 18 EMS optimum dispatch for combined mode with summer tariff.

Figure 19 EMS optimum dispatch for combined mode with winter tariff.

wind farms in addition to the contribution of ESS, the generators are ramped
up and down when in islanded mode. However, they do not operate at their
full capacity because of the contribution of ESS.

The breakdown of the microgrid’s costs, broken down by the hour, may
be found in Table 9. Figure 20 depicts the convergence of operational costs
in this mode.
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Table 9 MG’s hourly operation cost breakdown (Case 3)
Cost (in $) Cost (in $)

Hour Summer Winter Hour Summer Winter
1 47.50 46.90 13 −2.54 14.59
2 7.30 6.10 14 3.65 13.94
3 15.79 14.88 15 133.89 134.01
4 46.38 46.38 16 113.40 113.34
5 86.99 87.08 17 96.46 96.46
6 113.92 116.30 18 116.09 150.99
7 122.74 124.97 19 127.84 170.68
8 134.10 175.17 20 105.70 108.10
9 117.53 125.59 21 92.58 94.50
10 169.68 169.30 22 72.90 74.10
11 65.21 26.40 23 48.30 48.60
12 15.02 29.92 24 7.30 6.10

Figure 20 Cost convergence characteristics in combined mode.

5 Conclusion

This paper deals with an EMS to regulate the power flow, balance production
to the demand, to keep the grid energy costs as low as possible using an
optimization algorithm in a generic microgrid.

The microgrid is composed of a CHP plant, a natural gas generator, a
diesel generator, a PV energy source, a wind energy source, and a battery
energy storage system, as well as critical and non-critical loads. The micro-
grid can operate in grid-connected, islanded, or a combination of the first two
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modes. An AI-based EMS was developed using mathematical modelling of
distributed energy sources and the main grid, and it can make decisions based
on time-of-use and day-ahead forecasting. The cost functions are power and
time dependent equations.

As described in Section 4, three algorithms, i.e., PSO, MCS, and HFP-
SOMCS, were implemented on three case studies for this research work. A
robust feedback-based hybrid PSO-MCS optimization technique is developed
with the goal of optimizing the EMS and improving battery life. By combin-
ing the best aspects of two different algorithms (PSO & MCS), the novel
technique resulted in optimal scheduling and cost-saving solutions of energy
management components in grid-connected, islanded, and combined modes
of operation by adhering to the system’s limits.

When compared to PSO and MCS, the implementation of the novel
algorithm resulted in a reduction of 6%, 9%, and 2.5%, respectively, in
the cost of operation and maintenance for grid-connected, combined, and
islanded modes of operation throughout the summer season. In a similar
vein, the costs of operation and maintenance dropped by 11%, 2%, and 4%,
respectively, throughout the winter season in grid-connected, combined, and
islanded modes of operation, respectively. As PSO’s functionalities were
added, the convergence of hybrid feedback PSO-MCS increased by 8%,
resulting in lower microgrid running costs. Convergence occurred in under
10 seconds on average during Python code execution.

In the future, machine learning can be integrated into the system to obtain
more precise predictions of solar and wind factors (such as irradiance, cloud
cover, wind speed, and so on), and cloud computing can be used to make
judgments based on past data of these aspects.
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