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Abstract

The prediction of nodal electricity price (NEP) is a primary step to be done
before the bidding process starts in the actual market environment. NEP plays
a significant role for the efficient working of the electrical system. NEP
follows a common trend as during peak hours when the load is high the
price will also be high similarly during off-peak-load times the price will be
lower and common to all the node. Thus, accurate forecasting of the NEP can
help electricity generation companies to be more proactive in the wholesale
electricity market to maximize its overall benefits. In this paper, exponential
smoothing (ES), and holt’s exponential smoothing (HES) have been utilized
for forecasting the NEP. Furthermore, a comparative analysis between ES
and HES has been done considering several alpha values and several trends.
The model evaluation and the forecasting performance have been tested using
different parameters of ES, and HES techniques such as Akaike Information
Criterion (AIC), Akaike Information Criterion Corrected (AICc), Bayesian
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Information Criteria (BIC). The performance of the proposed technique
has been authenticated efficaciously on average nodal real-time price data
collected from ISO New England (BOSTON Zone).

Keywords: Nodal electricity price (NEP), electricity load forecasting
(ELF), exponential smoothing (ES), Holt’s exponential smoothing (HES).

1 Introduction

Nodal electricity price (NEP) plays a crucial role in the development of
the nodal electricity market (EM). For maximizing profitability, NEP is
very essential for all the electricity market participants such as generating
companies, sellers, buyers, and investors [1, 2]. EM always maintains the
balance between generation and consumption because it can’t be stored at a
large level for economic reasons [3]. Market-Clearing Price (MCP) is a basic
pricing tool. It can be used to show the numerous zones and buses in electrical
networks where there is no transmission congestion. Whenever locational
marginal price (LMP) would be employed in the congested line, electricity
prices (EPs) will be increased in congested areas. LMPs would be predicted
for each bus in the entire power system. LMP is the cost of delivering the
next MW of load at a particular location (node), taking into account the
generation marginal cost, transmission congestion cost, and losses [4]. LMP
is the same as MCP with no congestion. LMP is also known as nodal pricing.
Load forecasting is a significant feature in the improvement of any model
for power planning, especially in the present-day transforming power system
structure [5]. The LMP method is the primarily used pricing technique in the
EM such as New York, California, New England Independent System Opera-
tor [6]. Electricity load forecasting (ELF) represents a very important role in
the preparation of consumers’ necessities, operations, and maintenance in the
EM. Electrical load depends on the consumption of electrical energy. In our
day-to-day life, electrical power is a vital issue for growth of the country. The
EP and consumption depend on the non-renewable energy that is increasing
rapidly. The development of ELF to satisfy the growing needs of power is
a great challenge for the country. To store electrical power in a buffer is a
challenging task hence, to confirm the appropriate distribution of electrical
power to customers, it is essential to forecast electricity load (EL).

There has been a large number of economic and statistical models for
the EP and load forecasting (LF) put up in the literature over the years. L.
Hu, G. Taylor, and M. Irving et al. [2] presented that the power distributor
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uses a fuzzy logic technique for the optimal bidding schemes for achieving
maximum profits in the competitive UK EM. In [1], presented optimal bid-
ding techniques for the energy distributor in UK EM. R. Weron et al. [3]
represented the electricity price forecasting (EPF) review, error evaluation,
and also, it’s statistical testing. V. Bianco, O. Manca, and S. Nardini et al. [7]
proposed long-term electricity consumption forecasting in Italy. In the first
stage evaluation of price and electricity consumption is done. While in
the second stage different regression models and their statistical tests are
done in the proposed models. Power consumption and economic develop-
ment in Turkey were described by U. S. Ramazan Sari et al. [8] using
several sources of power consumption and employment. J.-C. JulidnPérez-
Garciaa et al. [9] presented an analysis of electricity demand using a simple
growth rate decomposition technique. This technique develops a long-term
prediction model to obtain the predictions of energy demand in Spain till
2030. H. Daneshi et al. [4] gave a brief survey of different methodologies
and their development in the field of EP forecasting. H. Zheng et al. [10]
represented forecasting the electricity price using GARCH. EP is considered
an economic time series and analyzes its volatility, which illustrates the
existence of heteroskedasticity. Next, a price prediction is developed using
the GARCH model, which aims to estimate the price. The case studies
evidence supports the validity of the suggested model. R. Y. Ksenia Letovaa
etal. [11] discussed on Russian electricity market background and its targets.
B. Han et al. [12] proposed an ideal grid-connected microgrid using demand
profile forecasts. Y. Yu et al. [13] proposed enhanced Dragonfly algorithm-
based support vector machine for forecasting offshore wind power. Y. Liang
et al. [14] suggested the enhanced deep belief network to forecast the renew-
able energy loads. S. Borovkova and M. D. Schmeck et al. [15] proposed
EP modeling, dependent on the stochastic time change. The stochastic time
change presents stochastic along with deterministic characteristics in the
price method volatility and the jump component. X. Xu et al. [16] proposed
the full-cost electricity pricing to provide an integrated approach for power
supply, power grid, and load. F. Xianyu et al. [17] proposed the secure power
system optimal dispatch model that includes electricity pricing demand
response. G. Lei et al. [18] described the hybrid approach for predicting the
electricity price of the Iranian EM that utilizes both multi-layer perceptron
and radial basis function.

Most of the available research has not provided an insight into the
electricity forecasting techniques that could be used for the nodal electricity
market. As a result, a research gap has been found in this circumstance, and
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our manuscript is the most suited one to fill that gap. The novel approach
presented in this manuscript intends to forecast the NEP using ES, and HES
techniques with the help of several values of alpha, and different trends. In
this way our approach performs better for the NEP forecasting. In this paper,
the nodal electricity market model is the most advantageous solution is to be
used that optimizes the price in the EM. So, here in this work efforts are on
NEP forecasting. Last but not least the summary of various electricity market
price and load forecasting models is presented in Table 1.

1.1 Motivation

To the author’s knowledge and reviewing the previous literature regarding
ES, and Holt’s ES techniques it has been concluded that these techniques
have not been properly implemented so far for NEP in the electricity market.
The NEP are highly volatile, posing a rise to substantial price and load risk
for the nodal EM. As a result, it has inspired us to give more emphasis to the
NEP forecasting.

1.2 Contributions
The main contribution of the paper has been listed below: —

* The modeling of nodal EM as an additional advantage has been
developed.

* The authors have represented the various forecasting techniques and
influence factors for the NEP.

* The ES method has been applied to a number of different alpha values,
and the results show that optimal alpha provides the best predicting
accuracy with the lowest possible values of AIC, AICc, and BIC for
NEP.

* Additionally, the HES methodology has been applied to a number of
trends, and the outcomes have shown that additive damped trends pro-
vide the most accurate forecasts, with the lowest values of AIC, AICc,
and BIC for NEP.

1.3 Organization of the Paper

The hierarchy of the paper have been prepared as follows: Section 2 presents
the various influencing factor of NEP and benefits of the nodal electricity
market whereas, Section 3 describes the classification of EPF. Section 4
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Table 1 Summary of various electricity markets price and load forecasting

Attributes
References  Electricity Market Model Type Load/Demand  Price
[4] New England GARCH v
[7] Italian Electricity Linear Regression (LR), v
Market Support Vector
Regression (SVR)
[19] Italian Electricity Neural Network
Market
[20] Day-ahead, Rajasthan ~ ANFIS v
state electricity board
[21] Greek and Hungarian Support Vector Machine
Day ahead EM
[22] PJM Power Market Convolutional Neural
Network
[23] PJM Power Market LSSVM (Least Squares
Support Vector Machine),
ARMAX (Autoregressive
Moving Average with
External Input)
[24] New South Wales Empirical Mode v
(NSW Australia Decomposition, SVR,
Market) PSO, AR-GARCH Model
[25] Indian Electricity Autoregressive GARCH
Market Model
[26] Australian National Principle Component
Electricity Market Analysis (PCA), Granger
Casuality network
[27] German/Austrian ANN
Power Market
[28] PJM and Australia Dynamic Choice ANN
Electricity Market
[29] Mainland Spain PCA/Nonparametric v
models
[30] ISO New England Autoregression, NARX
neural network
[31] Australia Electricity Multilayer neural network
Market
[32] New York Independent  Quadratic Programming
System Operator
[33] Western Danish ARMA, Holt-winters v
[34] Mainland Spain and ARIMA

California Markets
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discusses the problem formulation and its proposed methodology such as ES,
and HES. Section 5 summarizes the results while Section 6 concludes the

paper.

2 Nodal Electricity Price Influence Factors

An EM depends on the price and load because the buyer wants to buy the
electricity at a lower price and the seller wants to sell at a higher price. The
price will be decided by the electricity consumption. Hence, there are many
factors, which influence the different types of the electricity market. The elec-
tricity price influenced by these six factors are categorized as namely, weather
conditions, seasons, fuel cost, supply, demand, and government regulations.
There are also numerous factors which cause the fluctuation an NEP.

Examples of NEP influence factors: - Gross Domestic Product (GDP) [7],
People income level [8], Employment rate [9], etc. The major effects of NEP
are shown in Figure 1.

2.1 Benefits of Nodal Electricity Market [35]

The paper utilizes the data of nodal electricity market of New England,
Boston Region for validation purpose. The benefits of having a nodal
electricity market have been listed below:

* The nodal electricity market includes the production cost as well as
energy transmission cost.

Electricity Price Influence Factors

T 1T 1 1T 1

Government
Seasons Fuel Costs | Supply Demand | Regulations

Weather
Conditions

Maintenance Historical
p(Temproature) Lp(Csummer ) B Gas ) | ) | Demand )
N " Power usage
»(Wind speed) bp(Cwonsoon ) By Coa ) —>(720coss ) (" hatiom )
oTar i .( Types of )
-)( Winter ) -)(Petro\eum) —b@lanl Oulaga ‘_\-p
Rainfal

Figure 1 Nodal electricity price influence factor.
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* Better usage of the system by decreasing security margins.
* Transparency and reasonable prices for EM customers.
* The model is beneficial to business novelty.

3 Classification of EP Forecasting

Forecasting is a methodology that uses historical data (present and past data)
as inputs to estimate the prediction of future trends. Forecasts are used by
the EM to determine how to distribute their expenses or to plan for projected
costs in the future. The various approaches have been developed for EPF
where most of the algorithms are employed in LF and particularly short-term
LF, and other applications. The comparison of EP prediction algorithms is
shown in Table 2.

3.1 Electricity Price Forecasting Methods

The EPF is categorized into three groups that are Data mining, Time series,
and Simulation model technique. The EPF model is shown in Figure 2.

3.2 Time Series Model

Time series forecasting is a significant area of artificial intelligence because
numerous forecasting issues including a time component is resolved by a time
series model. Mostly specified time-series models are:

(1) Linear Regression

Regression is a form of predictive modeling approach which inspects the
connection between two variables, one which is dependent and the other is an
independent variable. The following are three main applications in regression
analysis: —

(a) Identifying the strength of predictors: — It’s used to evaluate the strength
of the influence independent variables have on a dependent variable.

(b) Influence of Forecasting: — It’s used to predict the effect of changes. To
comprehend the regression analysis how much the dependent variable
variations with a variation in one or more independent variables.

(c) Trend forecasting: — It is used to predict trends and future values.
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Table 2 Comparison of seven types of optimization algorithms for electricity price predic-

tion
References Methods Merits Demerits
[24] PSO * To maximize the power * Difficult to design
Quality initial parameters
* Less computing space * Premature convergence
(memory) and trapped to local
* High convergence minima
compared to GA
[19,27,28] ANN » Easy model building * Takes longer time to
with less formal process of large neural
statistical information network
required ¢ Black box nature
* Capable of capturing
non-linearity’s between
predicators and
outcomes
[25] GARCH ¢ To estimate e It can’t be estimated
Model maximum-likelihood using the least square
function function
¢ It has probabilistic
information about the
future market range
[34] ARIMA * Appropriate for * Unable to respond
non-stationary time immediately
series
* Stability
* High accuracy
prediction
[26, 29] PCA * It has low sensitivity ¢ Independent variable
noise becomes less
* Decreased interpretable
requirements for  Data standardization is
capacity and memory must before PCA
[21] Support * High accuracy * Increased Speed and
Vector * Consist of non-linear size requirements for
Machine transformation machine learning
algorithms
[31] Multilayer * It is used for deep * It includes too many
Neural learning parameters
Network * Complex design and

maintain
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Electricity Price Forecasting Model
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Figure 2 Electricity price forecasting model.

LR is statistics and a machine learning algorithm. The LR model attempts
to find the connection amongst the two variables (input variables (x) and the
single output variable (y)) by fitting the linear equation to observed data.

We are familiar with the equation that is y = mx + c.

Where y is the dependent variable; m is the slope or gradient, and c is the
intercept. LR a single independent variable and is used to forecast the value
of a dependent variable is represented in Equation (1):

y =200+ 01x1 + -+ Xy + € (1)

Where, dg, 01, ..., d; are the regression coefficients, and €is the random
error. In Figure 3 displays the linear regression model in which x-axis
represents the hours and y-axis represent the price.

Regression Forecasting Performance

Regression coefficient of determination (R?) indicates how much amount of
variation in y can be explained by the reliance on x by the given regression
model.

* A higher R? indicates a better fit, and the model can better describe the
variation of the output with different inputs.

* The value of R? = 0.7 to 1 corresponds to the sum of squared residuals
= 0, is the most accurate fit, since the values of forecasted and actual
responses fit entirely to each other.

Sum of Residuals(SSyes)
Sum of Mean(SSmean)

RZ=1- )
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Regression Line

Price (y)

~—

Error Term (e)

o
o
4

y

Hours (x)

Figure 3 Linear regression model.

n

_ 1 . 2
SSies = - 1EZ;(y — y_predicted) 3)
SSmean = Zn}y—y)2 )
mean n —
Ssmean > SSres (5)

(2) GARCH Model

The GARCH model is an acronym that stands for generalized autoregressive
conditional heteroskedasticity. The objective of the GARCH model is to pro-
vide variance measurements for heteroscedastic time series data, ad similarly
standard deviations are viewed in the simplified models. In economics and
finance, GARCH models can be used to evaluate the time series data in sev-
eral ways. It is particularly beneficial when there are phases of fast-changing
variation (or volatility).
The GARCH (p,q) method is given in the following sections [10]: —

p q
of =w+ Z Bioy—j + Z aief_; (6)
=1 i=1

w>07a12076j20
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q
Z aze? , = ARCH Term
i=1

p
> Bjo—j = GARCH Term
=1

wherever, the (p,q) in comments is a common representation in which the
p specifies the number of autoregressive lags included in the equation and
q specifies the number of lags is involved in the Moving Average (MA)
component of a variable.

From Equation (6), the conditional variance is a linear function of q
lags the squares of the error terms (e%) or ARCH (autoregressive conditional
heteroskedasticity) terms and p lags of the historical values of the conditional
variances (o) or the GARCH terms, and a constant w.

A GARCH model follows 3 fundamental steps:

1. Calculate the most suitable autoregressive model.
2. Determine the autocorrelations of the error term
3. Test with statistical significance.

(3) ARIMA Model

A modification of basic Auto-Regressive Moving Average incorporates with
the integration that is ARIMA. This abbreviation conveys the most important
aspects of the model. The following are the brief description of them:

* AR (Autoregression): — A model based on the relationship between an
observation and a number of lagged observations.

* I (Integrated): — To maintain the time series stationary, the difference
between raw data (e.g., subtracting an observation from the previous
time step) is used.

* MA: — A model that highlights the connection between an observation
and a residual error from a MA model applied to lagged data.

Parameters are used to represent each of these elements in the model. This
is typical notation for ARIMA (p,d,q) in which the parameters are replaced
by integer values to make it easier to identify the ARIMA model being used.
The ARIMA model includes the following variables:

p: The lag order refers to the number of lag observations in the model.

d: The degree of difference is the no. of times that the raw observations are
differenced.

q: The MA window size, which is referred to as the MA order.
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(4) Stochastic Model

Jump diffusion is a stochastic process that includes jump and diffusion.
It has applications in Price forecasting and pattern theory in physics.
The jump-diffusion model was developed to try to describe non-continuous
(i.e., gapping) price behavior in the electricity market. The formula is the
geometric Brownian motion and jumps are assumed to be the sources of
unpredictability in the EM and prices. It is written as in Equation (7) as:

dsiSt = pdt + odWy + (J — 1)dN(t) )
t

d—st change in EP
St

Where pudt is the drift due to the risk-free rate, cdW, is the Geometric
Brownian motion for specified volatility, and (J-1)dN(t) factors the size of
the jump as a percentage of the EP and the probability of a certain number
of jumps will occur. EP jumps are often considered to follow a probability
rule. For example, Poisson processes, are continuous-time discrete processes
that may be used in the model. In the interval [0, t], at a particular time t, let
us assume Xy is the number of times a special event. Then X; represents a
Poisson process if

m4m

P,(Xy =m) = - exp(—At) (8)

X depicts the Poisson distribution with parameter A\;. The parameter A
governs the occurrence of the special event and is mentioned as the rate.

(5) Hidden Markov Model

It is a specific type of mathematical model in which the system is modeled
through Markov method that is termed as hidden states. The Hidden Markov
model is the process in which the behavior of Y depends on X. The main aim
is to learn X by observing Y.

(6) Moving Average (MA)

The primary benefit of MA is that it provides a smoothed line which is
less prone to whipsawing up and down concerning minor, transitory price
fluctuations. MA forecasts the future points by using an average of several
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past data points. It is a classical method of time series forecasting. MA of
order m, T is calculated as:

k
1
T, = — E ; 9
t m kYt+J 9
J=

Where, m = 2k+1; to evaluate the trend-cycle at time t is achieved by
averaging values of the time series within k periods of t.

4 Problem Formulation and Methodology

The NEP problems is formulated based on the two scenarios such as ES, and
Holt’s ES. The benefits of ES are that it reacts to EP fluctuations more rapidly.
Due to the fact that the ES shows trend shift more quickly, this is especially
beneficial to bidders looking to bid the electricity in the competitive EM. ES
is used for time series forecasting where the dataset doesn’t follow any trend
or seasonality.

(a) Trend: — Upward and downward slope
(b) Seasonality: — It shows the specific pattern due to seasonal factors like
hours, days, years, etc.

ES works on a weighted average i.e., the average of the previous period
and current observation. The most recent observations have the highest
weights, while the earliest observations have the lowest weights. Weights are
controlled by smoothing parameters. ES is calculated by: —

Y1 =Y+ a(Ay —Yy) (10)
Yt+1 = O[At + (1 - O()Yt (11)

Smoothing Constant: 0 < o <1

Where; Ay is actual nodal EP for the period, Y is forecast for the previous
period. The weighting is defined by the smoothing parameter o, which should
be larger than 0 and less than 1. If o = 0, the smoothed point will be reset to
its prior value, and if &« = 1, the smoothed point will be reset to the current
point.

Various other exponential smoothing models work on time series fore-
casts namely: —

(1) Holt’s method: — It is used when the datasets follow a specific trend like
upward or downward [36] as given below: —
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(a) Holt’s linear trend method: —
This technique consists of a prediction and two smoothing equa-
tions, one for level and the other for trend [36].

Forecast equation y 1,y = l; + hby (12)
Level equation ly = ayy + (1 — a)(ly—1 + be—1) (13)
Trend equation by = 5*(ly — li—1) + (1 — 8%)by—1 (14)

Where 1; and by evaluate the level and trend of the series at time
t. « is the level smoothing constant for 0 < o < 1 and §* is the
trend smoothing constant for 0 < g* < 1.

(b) Holt’s additive damped trend method: —
This technique consists of damping parameters ¢ (0 < ¢ < 1).

Forecast equation y ¢ = It + (o + O+t gzﬁh)bt (15)
Level equation Iy = ayy + (1 — a)(li—1 + ¢bi—1) (16)
Trend equation by = 5*(ly — li—1) + (1 — 8%)pbi_1 17

If ¢ = 1 then this technique is similar to Holt’s linear method.
The range of ¢ is [0,1] dampens the trend so that it approaches a
constant time in the future.

(c) Holt’s exponential smoothing method: —
Holt’s ES has two smoothing constants that represent the weight to
evaluate the trend of the data and range of O to 1.

Forecast equation: y¢ym = Iy + bg(m) (18)
Level equation: Iy = aX; + (1 — a)(lg—1 + by_1) (19)
Trend equation: by = y(ly — li—1) + (1 — v)bt—1 (20)

4.1 Scenario 1: — Algorithm for Price Forecasting using
Exponential Smoothing

Step 1 — Import the stats model library

Step 2 — Load the nodal electricity price datasets from the year 2004 to 2020.

Step 3 — Visualize and analyze the nodal electricity price datasets and create
a time series of the dataset. The frequency of the time series is
monthly so, pass the argument “M” in the series function.

Step 4 — Analyze the data using the line chart and use the plot library for
visualization.
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Step 5 — Forecast the model using exponential smoothing, take smoothing
level o (alpha) value. Now, create the three instances for three

different values of o ie., a = 0.2, « = 0.6, optimum o =
0.9999999850988388, « value is automatically optimized by stats
model.

Step 6 — Now, pass the datasets into exponential smoothing and fit the
datasets with different values of smoothing level. The minimum AIC
gives the best prediction model.

4.2 Scenario 2: — Algorithm for Price Forecasting using Holt’s
Exponential Smoothing

Step 1 — Import the stats model library

Step 2 — Load the nodal electricity price datasets from the year 2004 to 2020.

Step 3 — Visualize and analyze the nodal electricity price datasets and create
a time series of the dataset. The frequency of the time series is
monthly so, pass the argument “M” in the series function.

Step 4 — Forecast the model using Holt’s exponential smoothing, take
smoothing level a (alpha) value. Now, create the three instances for
three different trends. The three different trends are linear, exponen-
tial, additive damped trends for o = 0.8, smoothing slope = 0.2, is
optimized by the stats model.

Step 5 — Now, pass the datasets into Holt’s exponential smoothing and fit the
datasets with the three different trends. The minimum AIC gives the
best model for prediction.

5 Simulation and Results

Monthly average real-time electricity price data for Boston regions of ISO
New England Electricity market from 2004 to 2020 is used for the research
to estimate the NEP forecasting performance of the calibrated models [37].
Figure 4 represents the nodal electricity price, line plot from the year 2004 to
2020.

5.1 Scenario 1: Forecasting using ES

ES technique is used for EPF. The associated equations are accessible from
Equation (10). In this paper, forecasting consists of three different smoothing
levels that are at « = 0.2, « = 0.6, and at optimum alpha as shown
in Figures 5-8. The comparison of the forecasted price using ES at three
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Figure 4 Nodal electricity price line plot from the year 2004 to 2020.
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Figure 5 Forecasted plot of nodal electricity price using ES at alpha = 0.2.

different smoothing levels is shown in Figure 8. The algorithm used for model
selection is based on AIC. Model selection is a process in which to compare
the relative AIC value of various models and find the best fit model for the
observed data. Model evaluation and selection are done from Table 3. The
forecasted outcome shows that the optimum alpha is a better prediction than
the other two levels because the value of AIC, AICc, and BIC is minimum at
Model-3 as shown in Table 3.

5.2 Scenario 2: Forecasting using Holt’s ES

Holt’s ES method is used for price forecasting. The related equations are pre-
sented in (12)—(20). In this technique, forecasting consists of three trends that
are linear, exponential, and additive damped trends as shown in Figures 9-12.
The comparison of the results of forecasting by the above-mentioned three
trends is presented in Figure 12. The prediction results show that in this paper
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Figure 6 Forecasted plot of nodal electricity price using ES at alpha = 0.6.
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Figure 7 Forecasted plot of nodal electricity price using ES at optimum alpha.
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Figure 8 Comparison plot of nodal electricity price using ES for a different mode.
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Table 3 Model evaluation and selection of ES

Parameters Model-1 Model-2 Model-3

AIC 1227.436303  1178.314583  1155.624743
AlICc 1227.637308  1178.515588  1155.825748
BIC 1234.072543  1184.950823  1162.260983

=
-]
o

—=— Actual Nodal Electricity Price
—+— H-Linear_Trend

=
-]
=

Modal Price ($/MWh)
-
TEEERE:

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Sampling monthly datapoints from year 2004 to 2020

Figure 9 Forecasted plot of nodal electricity price using Holt’s ES for linear trend.

200
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175

Nodal Price (S/MWh)
-
7]
(-]

~
w

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Sampling monthly datapoints from year 2004 to 2020

Figure 10 Forecasted plot of nodal electricity price using Holt’s ES for exponential trend.

the additive damped trend method yielded a better prediction than linear and
exponential because the value of AIC is minimum in model-3 as shown in
Table 4.

5.3 Model Evaluation and Selection

The three important metrics for model evolution and selection in ES and
Holt’s ES are shown in Tables 3 and 4. AIC was developed by Hirotugu
Akaike et al., in 1970. AIC is a statistical test that determines how well
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Figure 12 Comparison plot of nodal electricity price using Holt’s ES for different trends.

Table 4 Model evaluation and selection of Holt’s ES

Parameters Model-1 Model-2 Model-3

AIC 1206.121134  1257.279359  1184.001033
AICc 1206.547530  1257.705755 1184.572462
BIC 1219.393614  1270.551839  1200.591633

the model fits the data. To prevent, over-fitting it penalizes the models with
more independent variables (parameters). We evaluated with at several values
ranging from O to 1, and eventually settled on the one that produced the best

results in terms of AIC, AICc, and BIC on the validation set.
AIC = —2log(likelihood) + 2P

Where, P is the number of expected parameters in the model.
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Minimizing the AIC gives the best model for the forecast.

2P+ 1)(P+2)
n—P

BIC = AIC + P(log(n) — 2) (22)

AICc = AIC + Q1)

6 Conclusion and Future Scope

This paper presents NEP forecasting methods and their performance analysis
using real-time price data. The NEP forecasting is done using statistical
techniques like ES, and Holt’s exponential smoothing method. The NEP
evaluation has been done on the minimum value of AIC, AICc, and BIC.
The performance of the proposed model is validated by forecasting real-
time ISO New England price data. The selection of ES has been done on
the three models at different alpha values i.e., 0.2, 0.6, and 0.9 respectively.
The minimal value of AIC, AICc, and BIC achieved in the Model-3 at
optimum alpha (alpha = 0.9) are 1155.624743, 1155.825748, 1162.260983
respectively using the ES technique. The performance of each model at
several values of alpha shows that the ES performs best when alpha is set
to the optimal value of 0.9. Moreover, the minimal value of AIC, AICc, and
BIC achieved in the Model-3 applying HES approach using additive damped
trends, are 1184.001033, 1184.572462, and 1200.591633 respectively. This
approach makes use of the benefits offered by each model to predict by not
only making use of the linear trend of the NEP but also makes use of the other
trends that are present in the electrical price in order to increase the accuracy
of the forecasting. The performance of each model at different trends such as
linear, exponential, and additive damped trend shows that the HES performs
best when the additive damped trend has been utilized. These results of the
proposed techniques show their proficiency in forecasting NEP.
Future directions for this work are as follows: —

* Itis suggested that nonlinear and logarithmic models should be explored
in future studies for comparison with the linear, exponential, and
additive damped trends models.

* The evaluation should be done on a different EM.

* In addition to that, the NEP forecasting should be done using a various
methodology.
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