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Abstract

With the consume of traditional petrifaction energy origin such as coal,
matelote and physical gas and the increasingly serious question of entire
warming, the penetration ratio of wind power in the energy economy contin-
ues to enhance. Wind farms are generally built-in areas with strong winds,
tough working environments and a high probability of equipment failure.
Faults on large grid-connected wind turbines will seriously influence the
safety and stability of conventional strength grids. In addition, unplanned
maintenance after a breakdown of wind turbines needs a lot of manpower and
corporeal resources, which greatly decrease the efficiency of wind strength
production and enhance production costs. Therefore, the key to solving the
above problems is to quickly and efficiently identify fan faults, which in turn
enables accurate troubleshooting. In the article, the malfunction diagnosis
of intelligent wind power system based on data fusion is discussed, and it
is found that the GBoost algorithm has high accuracy in detecting sensor
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gain error, sensor offset error and sensor standard error when the Gaussian
white-to-noise ratio exceeds 45 dB. In addition, DBN has different diagnostic
effects for different faults with different Gaussian noises, at 45 dB and 35 dB,
each type of error varies slightly, and the dotted line varies; at 25 dB, each
type of error has a large difference. The difference is large, indicating that
at 25 dB, this type of error is more sensitive; comparing the state estimation
effect makes DLSTM have good adaptability to time series, and also shows
that DLSTM considers the system to be reliable enough, and can be obtained
by data fusion of the parameters of each system. What is the state of its
system, and then take corresponding measures.

Keywords: Data fusion, wind power generation system, intelligent fault
diagnosis.

1 Introduction

Combined with the basic design of wind turbines, the types and failure
mechanisms of wind turbines are introduced, and the practical application of
condition monitoring and malfunction diagnosis methods is described. Based
on the theory and advantages of BP neural network, the use of artificial neural
network to build an intelligent fault diagnosis system is discussed in detail,
and the functional system design diagram and software are provided [1].
Aiming at the question of low malfunction diagnosis rate of large permanent
magnet wind turbines, a typical short circuit simulation model is built on the
basis of generator design, and the typical short circuit is studied by combining
thermal field and electromagnetics. Using the same model, the field circuit
switching method solves the electromagnetic and thermal fields to obtain
data and the distribution of the electromagnetic and thermal fields when a
fault occurs. PNN is mainly based on the dynamic diagnosis of the system,
by combining different data (instantaneous magnetic field temperature and
vibration characteristics) to evaluate the occurrence of single or multiple
faults for short-circuit diagnosis. Combined with experimental data from
permanent magnet direct-use samples, wind farm generators, and rotational
data, paper diagnostics and faults are classified through theoretical combined
testing, classification, and comparison of diagnostic results [2]. The construc-
tion and operation of gas fields has become an integral part of the growth
of the clever city. But, the malfunction in the network operation circuit has
some reception errors, which are very relevant for the normal operation of
high-end urban drivers. Since the new fault analysis method cannot use a
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single data source in the main circuit, a method is proposed to determine the
combination of fault indicators and fault analysis data sources. By combining
two SCADA data sources, real-time monitoring economy data and major
vibration circuit monitoring data, the main features of the circuit are obtained
and an intelligent elaboration model of sin. The analysis results show that
the malfunction model due to the combination of the two data sources can
accurately identify faults in key fan functions and provide reliable techni-
cal support for performance and maintenance [3]. This article introduces a
new smart way of problem detection due to Multimodal in-depth research,
which combines chatter and operational semaphore to investigate transmis-
sion faults in wind turbines. This method is considered to be a separate
attribute learning network and attribute aggregation network, mainly due to
the prevalent deep studying model called Deep Faith Network (DBN). First,
two separate DBNs were devoted to the study of the properties associated
with the disturbance of surface vibrations and current semaphore; then com-
bines the vibration-based analysis stuff with current characteristics and a third
DBN for final evaluation, which tests the suggested method in the test area for
gas electric motors. The test results show that this method is considered more
of a reference method based on the combination of a single signal and a data
plan for analysis accuracy, relative to other statistical vibration information
and current symptoms [4]. To improve the error correction accuracy of the
fan control system, an error correction method for neural networks has been
proposed. Due to the different methods of transmission control, the accu-
racy of the probe depends on the control environment and the transmission
vibration signal. In addition, the oscillating signal offers non-linear, non-flat
and complex properties. The error characteristics of the oscillating signal are
determined based on the combined data. Based on the data obtained from
the signal analysis, the slow network is used to model the error analysis and
provide changes in the analysis of network parameters. The simulation results
show that the method chosen for taking the action may reflect the nature of
the metal defects, and that the error analysis system created by the neural
network is clearly not very accurate in detection of errors [5]. Due to the
continuous growth in the size of the gas field, the construction, operation and
management of gas fields is becoming increasingly important. To enhance the
trusty of reception error analysis, in conjunction with data driven technique,
a multi-malfunction reception analysis way based on a neural frequency
network has been proposed. In the light of the wind rate data, regular surgery
and fault data for the production system shown in the system simulation,
the classification forecast model is due to the nerve network arithmetic, it
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is said yes. 10 different output error signs for wind turbines. The model
learns the specific rules learned in the host model with continuous model
training, optimization, and testing to ensure arithmetic efficiency. Comparing
parameters for example accuracy, lack of detection speed, target F1 and
other similar arithmetic such as network depth trust shows that the suggested
arithmetic can solve analytical problems with errors in multifactor in gas
systems [6]. The invention relates to a malfunction arithmetic technology for
an intelligent fan, in particular to a fault diagnosis method for an intelligent
fan based on fault detection. The method adopts the fault sample with the
highest success rate and the minimum support square vector regression.
Operated using the PSO algorithm and trained to create a failure detection
pattern for fan troubleshooting, the success rate of the error database is the
change made on each success or failure, diagnostics and updates are added.
The invented intelligent diagnosis method helps to better identify the failure
of the fast end of the wind turbine, and avoids the situation that the wind
farm maintenance personnel cannot read the wind farm correctly or do not
know the monitoring data. The invented intelligent diagnosis method can
better detect the terminal failure of high-speed wind turbines, and avoid the
disadvantage that wind farms cannot read the monitoring data of wind tur-
bines correctly without professional knowledge. It has many advantages [7].
In view of the problem of misdiagnosis of a photovoltaic power generation
system, a method of misdiagnosis of a photovoltaic power generation system
based on deep confirmation learning has been provided. First the missing
PV data is filled in with a compression algorithm, then the state of the
environment, functions, policies and recovery functions are filled in. Based
on factors such as interaction laws, a misdiagnosis model is built for solar
cell production systems and a deep neural network is used to approach the
optimal the strategy for diagnosing the disturbances in solar cell production.
Finally, the efficiency and accuracy of the method are ensured by simulation.
The simulation results show that this method can accurately diagnose types
of faults in PV systems, which is of great importance for improving the
safety and performance of PV systems [8]. The article presents an electrical
system and develops suitable agents for the proposed system using multi-
threading techniques, which is implemented with a mix of PROLOG and
JAVA. Experiments on a developed prototype of the proposed system show
that a new method for diagnosing faults is possible. This can improve the
system’s responsiveness to power outages and lower current diagnostic goals
when its environment changes significantly [9]. Based on the STAR-90 power
plant simulation technology, a prototype system of intelligent fault diagnosis
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for thermal power plant systems is being developed. It can easily realize
the multiplexing of fault diagnosis information and the development of fault
diagnosis system. The main algorithm of fault diagnosis of intelligent heating
system based on modular modeling method is introduced, and an example of
fault diagnosis of high pressure heating system of 300 MW unit is given [10].
A real-time intelligent diagnosis system architecture based on full data fusion
was developed, and the cluster analysis method and genetic optimization
algorithm were introduced into the traditional BP neural network to reduce
the complexity of BP neural network training and improve the training effi-
ciency and accuracy. The method of genetic neural network and the method
of fuzzy inference system of adaptive neural network are integrated in the
data fusion diagnosis layer, which improves the reliability of misdiagnosis
and makes full use of the diagnosis information in the diagnosis data. D-S
evidence theory is used to analyze decisions at the decision level in order to
effectively use the diagnostic results of each diagnostic unit. Simulation tests
confirm that the diagnostic system can diagnose errors quickly, accurately
and reliably [11]. The article examines control and data acquisition data
(SCADA), examines fan status data, design of fault diagnosis models, and
data-based monitoring of air conditioning functions. The magician’s point
of view. First, in view of the problem that the noise density-based spatial
clustering algorithm (DBSCAN) cannot detect high-density abnormal data,
an abnormal data processing method that combines the density clustering
algorithm with the normal power range estimation is proposed to improve
the wind direction. Wind Turbine Performance Data Accuracy for Wind Tur-
bine Performance. Secondly, for the multi-parameter problem, a proportional
optimization system based on Bayesian Optimization Algorithm (BOA) and
three models is proposed, which improves the efficiency and accuracy of
intuitive mapping. Monitor data from SCADA fault identification systems.
Finally, based on the multi-function integration of monitoring parameter
data, the fan condition monitoring circuit is designed. The proposed fan
condition monitoring system can report generator system failure for 3.67
hours, driveline failure for 5.17 hours, and hydraulic system failure for 2.33
hours [12]. According to five dimensions of total power forecast, plant data,
unique machines and resources, plant availability, AGC order balance, and
AGC order follow-up, determine the reasons for the difference in operating
hours, input performance and energy consumption of wind farms in the same
area. By collecting data and the extraction attribute analysis determines the
opening time, and strives to reveal the key factors affecting the opening time
of different regions. Based on the results, individual measures to improve the
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operating time of the power plant are proposed, and the resulting calculation
method is applied to the wind power data of a specific province, and the time
difference function is analyzed [13]. Identify network patterns for condition
assessment modeling by integrating real-time data from multiple sources such
as SCADA, PMU, and safety and robustness systems. When the limit or
node current fault voltage is high, the wind power range of active power
control is determined by considering the measurement data collected by
the wind farm central control system and the wind power prediction data
of energy prediction. The performance of wind farms is determined by a
quadratic programming model, where wind farms are grouped according to
the topology of the wind farm, and then each group is divided according to
static characteristics and operating conditions, and is dynamically equal. Cal-
culate wind turbines and transformers based on model and static parameters.
The proposed method has been shown to be fast and efficient in analyzing
real mesh examples [14]. Given the disadvantages of low frequency, non-
uniformity, non-linearity and difficult detection of the wind axis oscillation
signal, a graph based on melting data is offered. Wave noise attenuation
has been proposed to attenuate oscillating signals and noise attenuation from
several EEMD-based sources. The experimental results show that the graph
is consistent with the theoretical calculation of the characteristic error rate,
which fully demonstrates the efficiency of the magnetic rotor fault diagnosis
system [15]. The wind power system is applied in other scenarios, for exam-
ple, correlation analysis between wind energy production and pumping [16],
and periodic analysis of wind power system [17].

2 Wind Power Generation System

2.1 Composition of Wind Turbines

A wind power generation system is a motor that converts wind energy into
mechanical energy [18], and then converts mechanical energy into electrical
energy, also known as a wind turbine. Generally, it is a motor that collects
thermal energy, with the sun as the heat source and the atmosphere as the
working fluid. For centuries, wind turbines, like hydraulic presses, have
played an important role in increasing productivity as an alternative to human
and animal power. Wind turbines can be divided into three parts: wind
turbines, machines and towers. A wind turbine consists of three parts: the
hub, the blades, the stepped system and the casing. The machine is the most
complex, including the main shaft system, transmission, alternator, rotating
system, braking system, cooling system, cover, anemometer and other parts.
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2.2 Fault Mechanism of Wind Power Generation System

Ventilation failure can be divided into mechanical failure and electrical failure
according to the type. When it comes to defective parts, most are cutters, gear-
boxes and generators. According to domestic and foreign statistics, power
outages for large wind turbines are mainly concentrated in large components
such as blades, gearboxes, generators and main propulsion circuits. One of
them is the lack of wind turbines. A wind turbine system consists of a hub and
rotor designed to convert wind energy into mechanical energy. Among them,
the magnetic pole failure is mainly due to the abnormal operation caused by
mechanical fatigue. Another important factor is the disadvantage of the chain.
The main chain drive system is composed of main bearings, gears, main
shafts and other components, which are used to connect the main bearings
and generators, and are the hinge parts of the hurricane. Shipping is the most
important part. The internal structure of the transmission and the load box are
very complex and more prone to damage due to rapid changes in operating
environment and load. The third failure is a mechanical failure in the system.
The mechanical braking system includes braking system, reversing system
and generator system. The defects of the first two are mainly due to excessive
fatigue of the particles added to the oil due to lubrication irregularities.
Such power outages rarely occur during scheduled maintenance. Fourth,
generator failure. Generator faults usually include winding faults, including
stator windings and rotor windings. Defects in stator and rotor windings are
mainly due to short circuits. Fifth, the electronic power is insufficient. These
faults are mainly capacitor lines, circuit faults, semiconductor devices and so
on. Sensors are a common failure, accounting for about 14% of all failures.
Other factors that can cause damage to power electronics include ambient
humidity, temperature, and various vibrations. As shown in Figure 1 below.

(1) Mechanical failure. Generally, occurs in the wind turbine system, the
main transmission chain and the mechanical braking system;

(2) Electrical failure. The electrical faults of wind turbines mainly include:
control system faults, generator electrical part faults, power electronic
converter faults and circuit electrical faults in other parts.

2.3 Main Fault Diagnosis Methods

One is error signaling and handling. When a failure occurs, the signal data
collected from various sensors changes frequently. Therefore, the analysis
and use of each signal value is useful for quick diagnosis, problem location
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Figure 1 Failure of wind power generation system.

and even early failure. The following are some commonly used important
control signals: vibration signal, temperature signal, acoustic emission signal,
strain gauge signal, lubricating oil signal, electrical signal, SCADA signal
and other fault signals. In addition to the above generally important fault
signals, there are also X-ray detection signals, infrared temperature signals,
ultrasonic scanning signals, etc. These models are very suitable for diag-
nosing fan blade faults. It is relatively easy to receive these signals, usually
using portable equipment. The second is an algorithm for diagnosing faults.
Fault diagnosis is a technology with strong technical feasibility. With the
continuous development of modern advanced technology, the progress of
modern science and technology development is continuously accepted by
people in fault diagnosis. Fault diagnosis is closely connected with disciplines
such as automatic control, system detection, artificial intelligence, sensor
monitoring, computer, mechanical dynamics and vibration technology. The
close combination of these disciplines has produced many advanced and
efficient troubleshooting techniques, namely expert system diagnosis, arti-
ficial neural network algorithm diagnosis, wavelet transform diagnosis, fuzzy
logic diagnosis and algorithm diagnosis, Gray’s theory method for diagnosing
faults, and methods for diagnosing shell faults. As shown in Figure 2 below.

One is fault signal and processing. When a fault occurs, the signal data
collected by various sensors often have some changes. Therefore, analyzing
and using each signal quantity is helpful for rapid diagnosis, locating the
problem, and possibly even realizing the early warning of the fault. Several
important monitoring signals commonly used: vibration signal, temperature
signal, acoustic emission signal, strain sensor signal, lubricating oil signal,
electrical signal, SCADA signal, other fault signals.
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Figure 2 Fault diagnosis system structure.

The second is the fault diagnosis algorithm. There are many advanced and
effective fault diagnosis methods, namely expert system fault diagnosis, ANN
algorithm fault diagnosis method, wavelet transform fault diagnosis method,
fuzzy logic fault diagnosis method, fault tree fault diagnosis method, grey
theory fault diagnosis method, Troubleshooting methods for the case.

2.4 Demand Analysis of Intelligent Fault Diagnosis System for
Wind Power System

It aims to improve the efficiency and accuracy of fault diagnosis of wind
farms by analyzing the current situation of wind farms, focusing on the
key functions that the intelligent troubleshooting system should implement.
For personnel use, the user group is relatively simple; for users, as shown
in Figure 3; business view means that users can view real data, time error
information and offline error information, database data, wind farm demon-
strations, ranking lists, etc.; business refers to allowing users The function
of generating diagnostic reports and troubleshooting; browsing data means
that users can retrieve data, logs, various reports, etc.; downloading data
means that users can export important basic information, such as reports, logs,
databases created by the system, etc. Changing information means that users
can edit their personal information and make technical changes to the system.
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Figure 3 User use case diagram.

In the wind power system intelligent troubleshooting system, users should be
divided into roles, and different roles have different permissions.

3 Data Fusion Model

3.1 Problem Description of Wind Turbine Drive System Sensor

The wind turbine drive system consists of a low-speed shaft, a high-speed
shaft, a gear box, etc. It is an important device for transmitting the mechanical
power to the generator after the rotor of the wind turbine is accelerated by the
generator. Create a wind turbine operating system template:

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (1)

y(t) = Cx(t) (2)

x = [ωr1, ωr2, ωg1, ωg2, θ∆]T (3)

x is the system state variable, ωr1 is the rotor speed monitor 1, ωr2 is the rotor
speed monitor for the generator speed monitor 2, ωg1 is the generator 1 speed
monitor, ωg2 is the generator 2 speed monitor, u = [τa, τg]

T is the input state,
d stands for unknown input or system failure.

x is the state variable of the system, ωr1 is the rotor speed observer 1,
ωr2 is the rotor speed observer and generator speed observer 2, ωg1 is the
generator speed observer 1, and ωg2 is the generator speed observer 2.
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Given the presence of sensor failures in Equations (1) and (2), the model
can be written as:

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (4)

y(t) = Cx(t) +Dff(t) (5)

where f(t) ∈ Rlf and Df are the systematic error signal and the systematic
error distribution matrix, respectively.

3.2 Unknown Input Observer Design

In describing the space of a system of objects, external perturbations of the
actual situation are replaced by unknown input data. For unknown inputs
and actual system outages, the unknown input can be disconnected from the
unknown input to eliminate the influence of uncertain external factors on
system performance. For unknown input observers, the system uncertainty
appears as an additional unknown input. For systems with unknown inputs,
an observer with unknown inputs can estimate the state of the system such
that the state estimation error vector e(t) always tends to asymptotically zero.

The block diagram of the full sequence unknown input observer, and its
state equation can be expressed as:

ż(t) = Fz(t) + TBu(t) +Ky(t) (6)

x̂(t) = z(t) +Hy(t) (7)

where F, T, K, H are matrices that extend the unknown input partition, z ∈ Rn

is the state vector, and x̂(t) is the estimated state vector.
F, T, K, H are the matrices to be designed for the decoupling of the

unknown input, z ∈ Rn is the state vector, x̂(t) is estimated state vector.
An unknown full-order input observer is designed for the system, and its

estimated error is as follows:

ė = (A−HCA−K1C)e(t) + [F − (A−HCA−K1C)]z(t)

+ [K2 − (A−HCA−K1C)H]y(t)

+ [T − (1−HC)]Bu(t) + (HC − I)Ed(t) (8)

K = K1 +K2 (9)
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If the following equation is correct:

(HC − I)E = 0 (10)

T = I −HC (11)

F = A−HCA−K1C (12)

K2 = FH (13)

In this case, the state estimation error can be expressed as:

ė(t) = Fe(t) (14)

If the eigenvalues of F are guaranteed to be stable, then e(t) gradu-
ally approaches zero at point x̂ → x. Therefore, in addition to solving
Equations (10) to (13), it is also necessary to ensure the stability of the
eigenvalues of F for the matrix F when designing reliable unknown input
observations for the system model. Constructing conditions for unknown
input observations, two lemmas are introduced here.

The necessary and sufficient conditions for solving Equation (10):

rank(CE ) = rank(E) (15)

Its specific solution is:

H∗ = E[(CE )TCE ]−1(CE )T (16)

3.3 The Design of the Unknown Input Observer for the Single
Sensor Fault of the Transmission System

Assuming that there is a sensor failure in the system, such as the kth sensor
failure, the model can be expressed as

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (17)

yk(t) = Ckx(t) + fks (t) (18)

yk(t) = Ckx(t) + fk(t) (19)

where Ck = ck is row kth of matrix C; Ck is obtained by deleting row kth
from matrix C; yk is the sequence kth of vector y; yk is the string obtained
by deleting vector y; fk is the error signal of the kth sensor; fks . The error
signals of the remaining sensors including the kth sensor are the error signals
after the kth sensor is removed.
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Ck = ck is row kth of matrix C; Ck is obtained by deleting row kth
from matrix C; yk is row kth of vector y; yk is row kth obtained by deleting
vector y; fk is the fault signal of the kth sensor; fks is the fault signals of the
remaining sensors of the k sensors, that is, the fault signals after removing
the kth sensor.

From Equations (17) to (19), the error of a single sensor with an unknown
input signal to the observer can be expressed as:

ẋk(t) = F kxk(t) + T kBu(t) +Kky(t) (20)

rk(t) = (I − CkHk)yk(t)− Ckxk(t) (21)

The parameters of the above formula must conform to Hk = E(CKE)∗,
T k = I −HkCk, A1 = T kA, Kk

1 = pole(A1), F k = T kA −Kk
1C, Kk

2 =
F kHk, Kk = Kk

1 +Kk
2 .

The parameters of formulas (17)–(19) satisfy Hk = E(CKE)∗, T k =
I −HkCk, A1 = T kA, Kk

1 = pole(A1), F k = T kA−Kk
1C, Kk

2 = F kHk,
Kk = Kk

1 +Kk
2 .

4 Intelligent Fault Diagnosis and Analysis of Wind Power
Generation System Based on Data Fusion

4.1 The Situation of Wind Power System

Wind power is one of the renewable energy sources with the greatest devel-
opment potential at present. The grid-connected power continues to grow,
and the global wind power is ushering in a period of rapid development
and growth, with an average annual growth rate of 20%. Wind farms can
be installed in all sparsely populated and windy areas, including seas, plains
and mountains. The development and growth of the wind power industry
is currently stable, and the development model has changed from scale
and growth to focusing on efficiency and quality. As can be seen from
Figure 4, the annual newly installed capacity is increasing year by year, so the
cumulative installed capacity is also continuing to rise. In 2016, the annual
newly installed capacity was 54 GW, and the cumulative installed capacity
was 487 GW; in 2017, the annual newly installed capacity was 62 GW, and
the cumulative installed capacity was 543 GW; in 2018, the annual newly
installed capacity was 65 GW, and the cumulative installed capacity was
596 GW; in 2019. In 2020, the annual newly installed capacity was 74 GW,
and the cumulative installed capacity was 658 GW; in 2020, the annual newly



1860 Y. H. Tan et al.

0

100

200

300

400

500

600

700

800

2016 2017 2018 2019 2020

Annual new installed capacity
(GW)

Cumulative installed capacity
(GW)

Figure 4 Installed capacity of global wind power market.

installed capacity was 82 GW, and the cumulative installed capacity was
723 GW.

The development of power electronic conversion technology provides
reliable support for the stable operation of large wind turbines, and is an
important tool for new energy grid connection, which can effectively improve
reliability and controllability. With the gradual increase of the power of the
wind turbine, the topology of the power converter becomes more and more
complex, and the fault frequency of the power electronic equipment is higher
and higher, thus reducing the life of the wind turbine and the impact on the
power. Statistical results show that mechanical components such as rotor
blades and electrical systems have the longest downtime, while electrical
systems and electronic controls have the longest downtime. The “National
Wind Farm Equipment Performance Survey” released by China in 2012
also showed that the failure and failure duration of key components such
as converters, rotor blades, and gearboxes were the highest, and the most
common driving failure was 0.2 times per generator. The error distribution is
basically the same as abroad. The power electronics of modern wind turbine
inverters are the most common faulty components and the weakest part of
wind turbines. Their existence seriously affects the operation of the converter
and even the entire wind turbine, and causes serious damage due to power
fluctuations. As shown in Figure 5 below.
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Figure 5 Statistics of wind turbine failure frequency and power outage time in Europe in the
past 13 years.

4.2 Intelligent Fault Diagnosis of Wind Power System

First, by denoising, dealing with missing values, and solving the class imbal-
ance problem in the original data, the preprocessed sample data of each wrong
type of sample data is averaged, and there is no zero value in the sample;
then the data set is divided into Test with a training ratio of 8:2 and use the
XGBoost algorithm for 5 cross-validation. The statistical outcomes of the
accurateness rate, recovery rate and F1 score of the test validation results are
shown in Table 1. Cross-validation shows that the XGBoost arithmetic has
high recognition accurateness for sensor bias malfunction, sensor gain fault
and sensor constant value fault, P reaches 0.93, R is −0.94 and F1 is −0.93.
Simulation outcomes demonstrate the effectiveness of the XGBoost-based
diagnostic arithmetic in detecting wind turbine sensor faults.

The cross-validation outcomes show that the XGBoost arithmetic has
high recognition accurateness for sensor gain failure, sensor bias failure and
sensor constant value failure, the average precision P reaches 0.93, the recall
ratio is 0.94, and the F1 index is 0.93. The simulation outcomes demonstrate
the efficiency of the XGBoost-based diagnostic algorithm for identifying
sensor faults in wind converters.

Sensors typically collect noise data during operation. Noise information
systems improve performance, reduce stability and introduce safety risks,
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Table 1 Verification results of XGBoost algorithm for converter current sensor fault
Fault Type Fault Number P R F1
Sensor gain failure fga 0.92 0.92 0.92

fgb 0.91 0.92 0.91
fgc 0.88 0.93 0.92

Sensor Bias Failure foa 0.90 0.88 0.88
fob 0.92 0.91 0.90
foc 0.93 0.92 0.92

Sensor constant value failure fca 0.95 0.97 0.96
fcb 0.98 0.98 0.98
fcc 0.98 1.00 0.99

Total 0.93 0.94 0.93

making wind power systems difficult to operate and maintain. The white
Gaussian sound model is an example that best simulates sound stacking.
The white Gaussian noise probability distribution is a normal function con-
sisting of a uniform spectral density distribution of first-order momentum
independent of second-order distance and signal power best suited for sound
simulation. The Gaussian ratio of the white noise to the audio signal is the
value of the dotted line to the noise. The lower the ratio of sound, the higher
the composite noise. Figure 6 shows the change in accuracy of the LSTM-
based error algorithm after adding white Gaussian noise with different noise
ratios to the test signal. White Gaussian SNR control circuit is 35–50 dB
with a range of 5 dB. Using the Monte Carlo method, 50 test samples were
selected for validation evaluation. Since the ratio of Gaussian noise to white
noise is 50 dB, the average value of the F1 index of the six faults is greater
than 0.8. The value of detector F1 decreases gradually as the signal to noise
ratio reduce. When signal to noise ratio drops to 35 dB, the f1 index drops
to 0.57, indicating the difficulty of PWM fault diagnosis. Most error types
show relatively reliable diagnosis when the white Gaussian signal-to-noise
ratio exceeds 45 dB.

When signal to noise ratio of white Gaussian noise is 50 dB, the average
value of the F1 index of the six fault types exceeds 0.8, which is similar to the
noise-free test results. With the decrease of signal to noise ratio, the value of
F1 index gradually decreased. When signal to noise ratio decreased to 35 dB,
the F1 index of fault types f1 and f64 dropped to 0.57, which showed the
difficulty of open-circuit fault diagnosis of back-to-back PWM converters.
When the signal-to-noise ratio of white Gaussian noise exceeds 45 dB, most
fault types show relatively reliable diagnostic performance.
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Figure 6 Accuracy analysis of LSTM fault location network under Gaussian white noise
interference.
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Figure 7 DBN diagnosis effect under different Gaussian noise interference.

As can be found out Figure 7, the average fault diagnostic reading F1
only decreases slightly when the noise SNR does not exceed 45 dB. When
the signal to noise rate is below 35 dB, the average value of F1 is slightly
below 0.8, but this value is still acceptable in the case of severe interference.
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Figure 8 Diagnosis effect of DBN on different faults under different Gaussian noises.

Table 2 Comparison of state estimation effects
Estimation Method Fuzzy ANN DLSTMRF
RMSE 0.0109 0.0123 0.0078

In addition, the corresponding F1 F1-Measure values are shown for all sounds
at 25 dB, 35 dB and 45 dB Gaussian noise. As can be found out the figure,
the show of the FID deteriorates as the noise keeps increasing.

Figure 8 shows that DBN has different diagnostic effects on different
faults in different Gaussian noises. At 45 dB and 35 dB, each fault type
is only slightly affected, and the fluctuation of the broken line is small; at
25 dB, each fault type fluctuates greatly, indicating that the fault type is more
sensitive to 25 dB. Fault 1, fault 3, fault 4 under different Gaussian noise, the
value of F1-Measure is relatively unchanged; fault 2, fault 5, fault 6, fault 7,
fault 8 under different Gaussian noise, the value of F1-Measure The changes
is more pronounced, indicating that actuator failures and system failures are
more susceptible to uncertain failures, which is one of the reasons why these
failures are difficult to detect accurately.

It is hard to see from the results in Table 2 that the average RMSE
estimated by DLSTMRF for each wind farm variable is only 0.0078, which
is much lower than other commonly used methods. The DLSTM represents
a good fit to the time series and also shows that the estimates made by the
DLSTM system are considered sufficiently credible.
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Table 3 Comparison results between DLSTMRF and model-based methods
Fault Index Fuzzy ANN DLSTMRF
1 Prec 0.99 0.99 1

MDR 0.001 0.001 0
F1 0.99 0.994 1
Td 0.02 0.01 0.002

2 Prec 0.96 0.772 1
MDR 0.003 0.001 0

F1 0.993 0.871 1
Td 0.08 0.8 0.002

Avg Prec 0.975 0.881 1
MDR 0.002 0.001 0

F1 0.9915 0.9325 1
Td 0.05 0.405 0.002

The ANN fault diagnosis has a significantly better impact on the fan. It
can be seen from Table 3 that the INS quickly and accurately detects fault 1,
with a Prec of 99%, a missed alarm rate of only 0.1%, and an average delay
of fault diagnosis time of only 0.01 s; but for fault 2, the Prec is only 77.2%,
which is significantly lower in other methods. As a data-based FDI method,
fuzzy error diagnosis outperforms artificial neural networks. Fuzzy diagnoses
these two faults very quickly, with an average Prec of 97.5%, an average F1
of 99.15%, an average fuzzy MDR (0.2%) and an average diagnosis time
(0.05 s), which is higher than that of ANN (0.1%, 0.405 s). For the internal
fuzzy comparison, the fuzzy diagnostic performance of Prec (96%) for fault
2 is poor, while the MDR for fault diagnosis is 0.3%. Combining the above
two methods, the diagnostic performance of ANN and Fuzzy for fault 2 is
below average. The ANN and Fuzzy methods have poor diagnostic effect
on fault 2, but the DLSTMRF accuracy rate reaches 100%, and the MDR
is 0%. In addition, in terms of performance mean, DLSTMRF has higher
accuracy (mean: 100%), lower MDR value (mean: 0%), and lower diagnosis
time (0.002 s) than other methods.

The Euclidean distance between the sensor output under the correspond-
ing fault condition and the sensor output during normal operation is displayed
in Table 4. It can be found out the table that the Euclidean distance between
the wind farm sensor output and the sensor output is only 2813.1. When
fault 2 occurs, the Euclidean distance is only 2813.1. Close to the Euclidean
distance (2808.4) from the normal output. In the data-driven approach, the
output of the sensor for fault 2 is indistinguishable from that of a normally
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Table 4 Euclidean distance between fault output and normal output

Fault Normal Operation Fault 1 Fault 2 Fault 3

Euclidean distance 2808.4 118489.9 2813.1 10155.9

Table 5 State characteristic parameters of cooling pump

Rated Allowable Measured

State Feature Parameter Name Value Range Weights Value

Inverter inlet pressure 0.5 <1.1 0.3 0.9

Inverter INU temperature 2.5 <55 0.3 35

Inverter Coolant Level Requirements 0.5 < −1.0 ∼ +1.4 0.15 0

Wind tower ambient temperature 22 <35 0.25 23.6

working sensor, which makes it difficult to identify fault 2 in the traditional
data-driven approach.

The rated value of the inlet pressure of the inverter is 0.5, the allowable
range is below 55, the weight is 0.3, and the measured value is 0.9; the rated
value of the inverter INU temperature is 2.5, the allowable range is below
1.1, the weight is 0.3, and the measured value is 55; the inverter coolant The
required rated value of the liquid level is 0.5, the allowable range is below
−1.0 ∼ +1.4, the weight is 0.15, and the measured value is 0; the rated value
of the ambient temperature of the wind tower is 22, the allowable range is
below 35, the weight is 0.25, and the measured value is 23.6. As shown in
Table 5 below.

The temperature rating of the pitch motor of blade 1 is 55, the allowable
range is below 100, the weight is 0.12, and the measured value is 68; the
temperature rating of the pitch motor of blade 2 is 55, the allowable range is
below 100, the weight is 0.12, and the measured value is 87; The temperature
rating of the pitch motor of blade 3 is 55, the allowable range is below 100,
the weight is 0.12, and the measured value is 100; the temperature rating of
the inverter box of blade 1 is 25, the allowable range is below 45, the weight
is 0.2, and the measured value is 31; The temperature rating of the frequency
converter box of blade 2 is 25, the allowable range is below 45, the weight
is 0.2, and the measured value is 31; the temperature rating of the frequency
converter box of blade 3 is 250, the allowable range is below 430, the weight
is 0.2, and the measured value is 300. As shown in Table 6 below.

The main bearing temperature rating is 30, the allowable range is below
80, the weight is 0.35, and the measured value is 36.2; the allowable range of
the main bearing grease pump startup time interval is below 500, the weight is
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Table 6 Blade state characteristic parameters

Rated Allowable Measured

State Feature Parameter Name Value Range Weights Value

Blade 1 pitch motor temperature 55 <100 0.12 68

Blade 2 pitch motor temperature 55 <100 0.12 87

Blade 3 pitch motor temperature 55 <100 0.12 100

Blade 1 Inverter Box Temperature 25 <45 0.2 31

Blade 2 Inverter Box Temperature 25 <45 0.2 31

Blade 3 Inverter Box Temperature 250 <430 0.2 300

Table 7 State characteristic parameters of spindle system

Rated Allowable Measured

State Feature Parameter Name Value Range Weights Value

Main bearing temperature 30 <80 0.35 36.2

Main bearing grease pump start interval <500 0.15 394

Main bearing grease pump operating cycle <14 0.15 6

Table 8 Data fusion evaluation results
Subsystem Status Semantic Description of
Name Evaluation Results Status Evaluation Results
Cooling pump (0.13,0.77,0.46) Abnormal state, the fault should be

found in time
Blade (0.24,0.59,0.90) If it is in a state of failure, it should be

checked and repaired
Spindle system (0.79,0.03,0) In good condition, can continue to

operate

0.15, and the measured value is 394; the operating cycle of the main bearing
grease pump is allowed the range is below 14, the weight is 0.15, and the
measured value is 6. As shown in Table 7 below.

It can be seen from Table 8 that the cooling pump system is in an abnormal
state, the equipment is in the fault range and the development is unfavorable,
and the fault should be found in time; it can continue to run, but the control
system must be adjusted to improve the detection ability and avoid sudden
failures. If the blade system is near failure and operating parameters are
out of range, troubleshooting should be done to identify any equipment or
components that may be causing the failure; if not detected and repaired in
time, a shutdown must be prepared. The spindle system is in good condition
and can continue to be used.
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5 Conclusion

The integration of large-scale wind power into the grid has effectively
alleviated the shortage of traditional fossil energy and reduced the impact
of power generation on the environment, and has become one of the key
development areas. There are various faults in the large wind power system
operating in this area, which increases the operation and maintenance of
wind farms, and also brings security risks to the traditional power system.
Aiming at the problems of the existing model-based wind farm fault diagnosis
algorithm, slow automation and slow data fusion algorithm, a wind farm
fault diagnosis method based on online adaptive DLSTMRF is proposed. The
approach is based on monitoring the condition of wind farms using DLSTM
and combines the benefits of remaining traditional analytical methods with
a new substructure that enables automatic diagnosis and reporting of various
faults in wind farms. The simulation test results show that the wind farm fault
diagnosis performance of this method is better than the existing diagnosis
methods, which provides a new possibility for wind farm network-level
adaptive fault diagnosis.
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