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Abstract

This article presented the comparative study of the second-class lever princi-
ple single-axis solar tracking system (SCLPSAST) with the fixed solar axis
(FSA) system. The SCLPSAST system continuously tracks the sun regardless
of atmospheric conditions from sunrise to sunset. This SCLPSAST system is
a cost effective and straightforward solar tracking system built with negligible
operational costs. The Photovoltaic (PV) panel are directed towards the sun
throughout the year without using any additional power. The main advantage
is that an external motor is not required to control the solar panel. A detailed
performance evaluation of the SCLPSAST system is carried out for 90 days
(from Jan 2022 to Mar 2022) with the FSA system. Finally, the working
functionality, efficiency improvement, and experimental consequences of the
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SCLPSAST system are detailed. SCLPSAST and the fixed solar system
generated 8.92 kWh and 7.03 kWh, respectively, which is around 26.87%
more energy than the FSA system.

Keywords: Fixed solar system, incident solar energy on fixed and tracked
system, photovoltaic efficiency, single-axis solar tracking system.

1 Introduction

Sun is a significant supplier of energy to the earth and solar energy is one
of the greatest significant sustainable energy. The PV module is an essen-
tial component in solar energy applications. The PV system converts solar
irradiation into energy, harnesses renewable energy, and plays a significant
role in the energy transition in our energy system [1, 2]. The technological
development in PV offers us the chance to generate clean energy at a low
cost. PV power can be utilized for a diverse number of applications, including
power loads like lighting from domestic to large systems [3, 4]. PV has a
significant role in the increasing global energy demand scenario. The per-
formance of the system depends on several factors like quantity, timing,
operating condition, and the detailed configuration of the system. By solar
tracking system, we can increase PV power production from 10 to 90% based
on the location and the season.

Commonly two configurations of PV panels are used to generate solar
energy, which are (1) static fixed-tilt angle where the panel is fixed at a tilt
angle depending on the latitude, and (2) PV panel continuously tracks the
sun angle at a pre-programmed time. In the present research, there is a greater
possibility of simplifying the single-axis tracking mechanism. If a PV module
is oriented toward the sun during the day relatively than remaining stationary,
the amount of solar energy incident on the panel will increases. Finster has
introduced the first solar tracking in 1962. It is reportedly mechanical and
showed only a slight improvement in performance compared with the FSA
system [5]. The state of art and developments of the single-axis solar tracking
system (SAST) systems with its salient features are presented in Table 1.

Here, the authors observed that the tracking mechanism has increased
the complexity of the system. The deduction of energy used by tracking
components from the energy collected is not evident in most of the literature
review. Moreover, the examinations do not include a valued analysis of
energy yield and power consumption of the motor driver and electronic
circuits. Here, the power consumption of a tracking system has 3–10%
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Table 1 Development of SAST system
Year Salient Features
2004 • SAST system works based on a programmable logic controller (PLC)

• Compared to the FSA system, the daily power extracted is 20% more [6]

2004 • A Passive SAST system is Aluminium/Steel bimetallic strips are controlled
with a viscous damper

• Improvement in energy is 23% greater than that of the FSA system [7]

2007 • 3-position automated tracking system
• Extracted power is 24.5% greater than that of the FSA system [8]

2012 • Single-axis and dual-axis automatic system
• Extracted power is 18% greater than that of the FSA system [9]

2013 • PIC microcontroller based SAST system
• Mean power improvement is 66.9% greater than FSA system [10]

2013 • South-east 50◦, South and Southwest 50◦ 3-position SAST system
• Energy extracted is 24.2% greater than FSA system [11]

2014 • Fuzzy logic-based control system
• Energy extracted is 47% greater than that of the FSA system [12]

2014 • Hybrid (dual-axis + single-axis) SAST system
• Energy enhancement is 25.62% higher than the FSA [13]

2015 • MPPT based low power SAST system
• Energy extracted is 12-20% greater than FSA system [14]

2015 • Tripper motor based single and two-axis solar tracking system
• Energy extracted is 31.67% greater than FSA system [15]

2015 • Robot arm based SAST system
• Power improvement is 17.2% greater than FSA system [16]

2015 • A passive SAST system working based on liquid vapor pressure (Thinner,
Methanol, and Acetone)

• Power improvement is 23.33% greater than FSA system [17]

2016 • A SAST system based on a real-time clock (RTC)
• Energy savings are 15-20% greater than in the FSA system [18]

2016 • Scaled down version of SAST with 15◦ step movement per hour
• Energy improvement is 28-43.6% greater than FSA system [19]

2016 • Sunlight intensity based 3-position SAST system
• Extracted energy is 20% greater than that of the FSA system [20]

2017 • A passive SAST system works reactor with metal hydride
• Energy extracted is 7.2% greater than FSA system [21]

2018 • Irradiation monitored microcontroller SAST system
• Energy extracted is 40% higher than in the FSA system [22]
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of improved effectiveness. The sun trackers essential not need to point
directly sun effectively. If the object is off by 10◦, the production will be
still 98.5% of that of the full-tracking system [23]. Hence, the authors are
motivated to comparative evaluation a new SAST using the second-class
lever principle (SCLP) method with low capital investment and low power
requirements [24]. The SCLPSAST system was successfully established
using locally available resources to track the maximum power during the day.

The rest of this article is organized as follows: In Section 2, mathematical
formulation of the SCLPSAST system. Section 3 has the estimation of sunrise
and sunset time and incident solar energy (Ho). Section 4 is presented the
illustration of the SCLPSAST system. Section 5, the SCLP based single-axis
tracking system working functionality and the experimental setup and data
monitoring system are explained. Section 6 has a performance evaluation
of the SCLP system. Section 7 presented the statistical evolution of the
SCLPSAST and FSA systems. And in the conclusion, a comparison of the
SCLP system with the FSA is given in Section 8.

2 Mathematical Formulation of SCLPSAST

Archimedes’ lever law states, “The magnitude is in equilibrium at distances
reciprocally proportional to their weights” as shown in Figure 1(a). The lever
is equivalent to a beam. Three elements make up this device: the center or
fulcrum, two weights, the one that creates movement and the one that causes
it. The ideal mechanical advantage (IMA) of the lever is the ratio of input
to output force (1). IMA of the fulcrum can determine the balance moments
lever. A and B are the distances between the masses M1 (Left side mass) and
M2 (Right side mass) of the lever with fulcrum L. The input and output forces

(a) (c) (d) 

Figure 1 (a) Law of lever, (b) Second class lever, and (c) Water tank.
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F1 and F2 are shown in Figure 1(a).

IMA =
B

A
(1)

2.1 Second-class Lever Principle

Second-class levers are defined as the input force required to produce a
significant output force. The present invention defines M as the mass (kg)
required to hold a PV module facing eastward at an angle β.

W1 = IMAM2 (2)

Mload +M1 = IMA ∗M2 (3)

M = (Mload +M1) ∗A ∗ Sin β (4)

Here, the work done by the area of arc W1 is given in (2). The force is
equal to M·g. By using (2) and (3) can get the required mass M to keep the PV
panel to the east position (sunrise) at angle β. Here, Mload = Mw +Mt,Mw

is mass of water, and Mt is mass of the tank.

2.2 Pressure at the Orifice

The SCLPSAST system is to maintain the PV module’s constant movement.
So, the velocity of the discharge through the orifice for a predefined time ‘T’
(sec) should be constant. By using a constant pressure valve, it is possible
to maintain a constant pressure output discharge of water at the orifice. The
following section will explain this concept in detail. The illustration of water
tank is given in Figure 1(c), where ‘h’ is height of water, Pa is the bottom
pressure and a is the area of the orifice. From the derivation of the expression
for the pressure at the orifice, the time taken to drop the water level from ‘h’ to
‘hp’ must be calculated (the minimum height required for discharge through
the orifice when the pressure level is less than the specified lower limit of the
pressure valve). In (5), it is noted that the amount of water flowing through
the orifice in time ‘T’ seconds is proportional to the amount of water leaving
the tank through the orifice.

At h = Cd a V T (5)

Here, At is an area of the tank, T is time in seconds for the water to fall
from ‘h’, and V is velocity through the orifice in m/s. The value of Cd ranges
from 0.61 to 0.69 and it is determined by the orifice’s shape and size.
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From the Bernoulli’s principle, kinetic pressure at the orifice, and the
water velocity through the orifice is m/s is given in (7). Here ρ is the density
of the fluid (kg/m3). By using (5) and (7) can get the pressure at the orifice
Pa (pascal) in terms of discharge ‘T’ seconds.

P =
1

2
ρV 2 (6)

V =

√
2P

ρ
(7)

Pa =
ρ

2

(
At h

Cd a T

)2

(8)

3 Estimation of Sunrise and Sunset Time and Incident
Solar Energy (Ho)

Many factors affect the estimation of sunrise, sunset, and incident solar
energy (Ho) like time zone, latitude (∅), longitude (λ), collector orientation
(collector tilt angle (β)), time of the day (ω), sun declination angle (δ), time
of the year and atmospheric conditions [9].

3.1 Solar Declination Angle (δ)

According to the earth’s centric viewpoint, a person standing at the equator
would observe the sun moving in a definite pattern annually. During the
summer solstice (Jun 21st), the sun reaches the extreme point in the northern
hemisphere and the line assembly between the center of the sun and the earth
would pass through the Tropic of Cancer thus making an angle of 23.45◦

with the equatorial plane. As days progress, the sun moves down, aligns itself
along the equatorial plane on Sep 21st (equinox), and further moves down to
cut the Tropic of Capricorn latitude in the southern hemisphere at an angle
−23.45◦ on Dec 21st which is known as the winter solstice. Then it ascends
and aligns with the equatorial plane again on Mar 21st (equinox). The cycle
repeats every year and the earth-centric view is shown in Figure 2. δ angle
differs from 23.45◦ to −23.45◦ [23]. The δ is as given in (9), where N is day
number, which is 1 for Jan 1st and 365 for Dec 31st [27–29].

δ = 23.45◦ sin

(
2π(N + 284)

365

)
(9)
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Figure 2 Earth-centric solar paths.

Figure 3 Solar geometry system.

Figure 3 represents the solar geometry. The view direction is as though
viewing the center of the earth from the east coordinate axis of the locale
as well as the earth-centric coordinate system. The zenith axis can obtain
using (10) [32].

LSC = L cos θz = L cos ∅ cosw cos δ + L sin ∅ sin δ (10)

3.2 Sunrise and Sunset Time

The sunrise and sunset time (11) and (12) can be obtained from (10).
The sunrise angle is considered negative for the east and the sunset angle
is considered positive for the west directions. To estimate the sunrise and
sunset time for any day of the year, two values are to be calculated, the solar
time correction (SC) and the solar declination angle (δ). SC is the minute’s
difference between local time and solar time [30]. Sunrise and sunset are
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Figure 4 δ, sunrise, and sunset time.

calculated based on standard time. The (δ), sunrise, and sunset time the
throughout the year are shown in Figure 4. The sun hour angle can be obtained
from (13). Here ts is the specific time.

Sunrise = 12− cos−1(−tan ∅ tan δ)

15◦
− SC

60
(11)

Sunset = 12 +
cos−1(−tan ∅ tan δ)

15◦
− SC

60
(12)

wh = 15◦(ts − 12) (13)

3.3 Estimation of Incident Solar Energy (Ho)

The daily incident solar energy MJ/m2/day can be obtained on a horizontal
flat plate on the earth’s surface is given in (14) [25, 26]. Here, LSC is the
mean solar constant equal to 1.37 kW/m2 [31]. In fact, the conventional PV
is a fixed-position with a tilt angle (β).

Ho =
86400LSCk

π
[cos(∅) cosδ sin wsrt

+ wsrt sin(∅) sinδ] (14)

k =

(
1 + 0.33cos

N360

365.25

)
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Figure 5 Annual incident solar energy.

Hot =
86400LSCk

π
[cos(∅ − β)cos δ sin wsrt

+ wsrt sin(∅ − β) sin δ] (15)

Gin = LSCk cos θz (16)

GFixed = Gin sin(α+ β) (17)

GTrack = Gin cos(δ) (18)

The extraction of maximum energy in this case is possible only at the
instant when the sun’s rays are usual to the PV surface. But in solar tracking
system, ∅ and β does not influence the system because the single-axis solar
trackers always align parallel to the sun [32]. This is one of the benefits of
a solar tracking system. Using (15), can be obtain the daily available energy
(Hot) of a fixed tilt. By using Equations (16), (17), and (18) can be obtaining
the solar radiation of horizontal surface (Gin), fixed tilt surface (GFixed ),
and single axis tracker (GTrack ). Figure 5 shows the energy available of the
horizontal flat plate, fixed tilted plate, and the plate while tracking the sun.

4 Illustration of SCLPSAST System

A and B are separated by 0.20 m and 0.37 m, respectively, by the fulcrum.
The weight of the PV module is 2 kg. From Equation (1), it is calculated
that the IMA is 1.6818 and the mass for holding the lever in the balance is
2.183 kg. Moreover, a mass of 2.29 kg is calculated from (4), with the PV
panel being kept at an angle of 45◦ toward sunrise.
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The design calculations of the SCLPSAST system are given below:

a. Calculation of weight

• Length A = 0.20 m
• Length B = 0.37 m
• IMA of the Fulcrum

IMA =
B

A
=

0.37

0.22
= 1.6818

• M1 = 0.7017 kg
• M2 = 1.2982 kg
• Mload +M1 = IMA ∗M2 (Under balanced conditions)

Mload +M1 = 1.6818 ∗ 1.2982 = 2.183 kg

• M = (Mload +M1) ∗A∗ Sin β; where β = 45◦

Mβ = 2.183 ∗ 0.20 ∗ Sin 45 = 0.309 kg

• Total weight of water required to keep the PV pane through east
direction at angle 45◦

M = Mload +M1 −Mt +Mβ = 2.183− 0.400 + 0.309

= 2.292 kg

b. Calibration of water flow rate
The SCLPSAST system needs to track the sun over the longest sunny
day (13.24 hours). At the bottom of the container, the calibrated the flow
rate at 2.883 ml/min by using a handle screw.

• Total water container dimension (l∗b∗h) (m3) = 0.15 m * 0.15 m
* 0.15 m = 0.003375 m3 = 3.375 litres.

• The exact amount of water which have to be filled in the container
is 2.292 liters.

• Discharge through orifice:

Total Volume Discharge Through Orifice Per
Discharged Per Second Per Min Per Hour
(Milliliter) (Milliliter) (Milliliter) (Milliliter)
2292 0.048 2.883 172.98
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Table 2 Design parameters of boost converter
Description Parameters
Boost converter L = 1.0 mH, C1 = C1 = 100 µF

fs = 20 kHz, IGBT – 1MBH60D100,
Diode- RHRG30120, RLoad = 100 Ω/5A

Figure 6 Functionality diagram.

• Discharge through orifice per second

=
Total Volume of water needed to be discharged

Time of the day (sec)

=
2292

47700
= 0.048 litres

5 SCLPSAST Functionality and Data Monitoring System

This analysis uses two identical PV set-ups with tracking and without track-
ing. To obtain the maximum power from the SCLPSAST and FSA system,
MPPT (Perturb and Observe) DC-DC boost converters are used [33–35].
Table 2 provides the design parameters for the DC-DC boost converter. The
system specifications of the PV module, water tank, and solar water pump
used in the experimental are presented in Tables 3 and 4. The FSA system
(ref Figure 10(d)) is immovable with a tilt angle of 11◦ facing south.

SCLPSAST will begin functioning every morning before sunrise for the
entire year, and it will keep working from sunrise until sunset. It should be
noted that the solar panel’s starting position before the day’s sunrise will be in
the West (Sunset). Based on control signal from the timer circuit, the Arduino
microcontroller communicates with the pump. Just before sunrise, the pump
is turned ON and automatically fills water in the tank. Once water is filled
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Table 3 Technical specification of water tank and water pump
Name of the Parameter Value

Water tank
Liters 3000 ml
Empty tank weight (MW) 200 g
Length of tank 0.15 m
Width of tank 0.15 m
Height of tank 0.15 m
Constant pressure valve specification 0.01 to 0.8 MPa

Solar water pump controller
DC Voltage 12 V
Pump power 8 W
Height max 5 m
Flow 5 L/min
Timer DS3231
Arduino controller Arduino Uno

Table 4 Technical specification of solar panel
Name of the Parameter Value
Maximum power rating (P) 20 W
Number of cells in series 36
Open circuit voltage, (Voc) 21.6 V
Maximum power voltage (Vmp) 17.2 V
Short circuit current (Isc) 1.31 A
Maximum power current (Imp) 1.16 A
Mass of solar panel (m) 1.5 Kg
Length of the solar panel (L) 570 mm
Width of the solar panel (W) 330 mm
Height of solar panel (D) 11 mm
Specifications total angle (β) 86◦

in the tank to the required level, the DC pump turns OFF automatically. All
of these processes are managed by a predefined programmed that is created,
using Arduino controller. Functional work diagram is given in Figure 6. The
water required throughout the year is shown in Figure 7. ON and OFF time
of the pump, and the pump run time is shown in Figure 8. The variation of
the curves representing PV module angle and water height in the tank from
the sun hour angle curve plotted against time is shown in Figure 9.

At the starting time, i.e. sunrise, the position of the PV module is at an
angle β as shown in Figure 10(a). The constant pressure value is provided
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at the base of the water tank. Water starts discharging through the constant
pressure value at a constant velocity once the tank is filled to a certain level.
It reduces the weight of the tank and allows the solar panel to track the sun.
SCLPSAST system, during solar noon and sunset positions, are shown in
Figure 10(b) and 10(c) respectively. The data monitoring system and DC-DC
converters of the SCLPSAST and FSA system are shown in Figure 11.
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Figure 10 SCLSAST system (a) Morning, (b) After noon (c) Evening, and (d) FSA system.

Figure 11 Data monitoring system and DC-DC converter of SCLPSAST and FSA.

Most stainless steel needle valves feature a significant pressure drop
from the inlet to the outlet, which makes them ideal for low flow rates. All
fluid control applications are uses needle valves because they can precisely
control flow rate. Threads in these valves allow the plunger’s tapered end
to be precisely positioned away from the valve seat to control the flow rate
accurately. Its tapered end raises and lowers as it spins, opening and closing
a constant pressure valve. By varying the plunger setting, the flow rate can be
adjusted between zero and maximum.

The holding structure of the water container prevents north-south move-
ment, so the wind does not significantly affect the container in this direction.
Parallelogram diagonal control structures can be used to reduce east-west
wind energy’s impact on water containers. Equation (19) can be used to
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Figure 12 Parallelogram diagonal control structures for SCLPSAST system.

determine the shape of the parallelogram diagonal control structure as shown
in the Figure 12.

q =
√
x2 +A2 − 2xA cos θ (19)

SCLPSAST controls the liquid pumping unit, which aligns the PV mod-
ule with the sun. In addition to forecasting the sun’s position, it also predicts
the time of day. The program for controlling the liquid pumping unit to fill the
water holding unit to a preset threshold volume is also stored in memory. This
program, the panel is positioned according to the sun’s position. The real-
time weather parameters like solar irradiation, air and ambient temperature,
et, have been taken from the Davis Vantage Pro2 (6152C) weather station.

6 Performance Evaluation

SCLPSAST and FSA systems are evaluated and compared in terms of perfor-
mance indices such as module efficiency (η) and energy improvement (EI).
The power curve of both SCLPSAST and FSA systems for a typical day
(28-01-2022) and a partly cloudy day (24-02-2022) is shown in Figures 13
and 14, respectively. From the figures, it is detected that the SCLSAST system
generates 70% to 1.61% excess power compared to the FSA system. The
minimum excess power is obtained, during the noon time zone from 11.30
am to 1.30 pm, when the SCLPSAST system’s PV panel is in a horizontal
position facing the sun directly.

The energy improvement (EI) and efficiency (η) of SCLPSAST system
and FSA system is calculated using (20) and (21), respectively. Here, Pdc is
the PV panel power, Gt (W/m2) is the solar irradiation, Am is the module
area (0.19 m2), and NPV is number of PV modules in the arrangement. Here,
NPV = 1. ESCLPSAST and EFSA are the generated energy in Watt-hour for
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SCLPSAST and FSA systems, respectively.

EI % =
ESCLPSAST − EFSA

EFSA
× 100 (20)

η =
Pdc

Gt ·Am ·NPV
(21)

The plots of energy generated, energy improvement, and efficiency for
a duration of 3 months are shown in Figures 15, 16, and 17 respectively.
From these plots observed that the SCLPSAST system has an average energy
improvement of 26.87% compared to the FSA system. The useful energy
generation after deducting the expended energy consumed by support acces-
sories of SCLPSAST system such as Adruino controller and pump is shown
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in Figure 18. Therefore, the total energy generationj of the SCLPSAST and
FSA system during testing period is found to be 8.92 kWh and 7.03 kWh,
respectively.

7 Statistical Evaluation

The statistical performance characteristics is observed during testing the
effectiveness of the SCLPSAST system over FSA system. The box chart
shown in Figure 19 compares the statistical parameters of daily generated
energy for three months namely, mean, standard deviation, median, quadrille,
etc. A hypothesis test is also carried based on daily values to demonstrate the
SCLPSAST system’s efficiency. Table 5 shows the T-test hypothesis param-
eters observed over a typical three months. The following conclusions are
drawn from the T-test. SCLPSAST system’s average daily solar generation
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Table 5 Hypothesis testing (Jan to Mar). Null Hypothesis µ1 − µ2 = 0. Alternative
hypothesis µ1 − µ2 > 0

Parameters SCLPSAST FSA Difference
N 90
Mean 85.45 57.76 27.68
SD 12.66 9.71 6.33
SEM 1.32 1.01 0.66
Median 91.28 59.74 28.36
T-statistics 41.91
DF 91
Probability 2.71E-61

is 27.68 Wh more than the FSA system. The test evaluates the uncertainty
in calculating the genuine difference of daily energy generation between
the mean of SCLPSAST and FSA systems. There is a 95% of assurance
that the true improvement is caluculated as 26.87%. Moreover, there are no
unexpected data points that indicate a significant influence on the results.

8 Conclusion

Solar PV trackers will play an important role in PV energy generation world-
wide in the coming days. The SCLPSAST system is a solar tracker that runs
in chronological order. It follows the sun regardless of weather conditions.
One of the advantages of the SCLPSAST system is the requirement of very
low energy of its support accessories and no external motor is required.
The SCLPSAST is simple to use and easy to implement, requiring less
maintenance. The water is used as the working fluid and is not wasted. The
SCLPSAST is compared to a conventional FSA system with the same rating.
In comparison to the FSA system, there is a significant energy improvement
of 26.87%. Moreover, the SCLPSAST is efficient in tracking the sun and
has guaranteed improvements in energy produced which is validated using
hypothesis testing.
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