
Optimal Design of PV/WT/Battery Based
Microgrid for Rural Areas in Leh Using

Dragonfly Algorithm

Subhash Yadav∗, Pradeep Kumar and Ashwani Kumar

National Institute of Technology, Kurukshetra, Haryana, India
E-mail: subhash05754@gmail.com; pradeepkumar@ieee.org;
ashwani.k.sharma@nitkkr.ac.in
∗Corresponding Author

Received 18 November 2022; Accepted 23 August 2023;
Publication 31 January 2024

Abstract

This study proposes an optimal microgrid design for rural electrification in
India’s Leh and Ladakh regions, using wind energy, solar, energy, and battery
energy storage system. The Dragonfly Algorithm (DA) is used to calculate
the optimal number of microgrid units, and results are compared with popular
optimization algorithms such as Grey Wolf optimization (GWO), Differential
Evolution (DE), and Discrete Harmony Search (DHS). The optimal design
is based on an objective function to minimize the Levelized cost of energy
(LCOE) while keeping the loss of power supply probability (LOPSP) as a
reliability constraint. Three configuration studies are carried out, with three
cases, each with a different maximum permissible LOPSP (LOPSPmax )
value. The results show that optimal design and efficient energy management
reliably meet the load demand. The energy generated from the proposed
microgrid is clean compared to the grid supply, and the amount of green-
house gas (GHG) emissions is reduced by 91.2% from Configuration-I,
Case-I, which is the most economical configuration. The LCOE obtained
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from Configuration-I, Case-I is 0.129 $/kWh, the lowest among similar
systems available in the literature. To determine the parameter cost with
supply, the LCOE and Total life cycle cost (TLCC) sensitivity to LOPSPmax

are considered. Furthermore, statistical analysis shows that DA outperforms
GWO, DE, and DHS in terms of accuracy and convergence rate.

Keywords: Photovoltaic, wind energy, battery energy storage, greenhouse
gas emissions, microgrid, levelized cost of energy.

Nomenclature
Symbol Name
BESS Battery energy storage system
BSO-OS Brainstorm optimization in objective space
COE Cost of Energy
CSP Concentrated solar power system
DG Diesel Generator
FC Fuel cell
FPA Flower pollination algorithm
HGWOSCA Grey wolf optimizer-sine-cosine algorithm
LCOE Levelized cost of energy
MFO Moth flame optimization
MOEA/D Multi-objective evolutionary algorithm based on

decomposition
NPC Net present cost
NSGA Non-dominated shorted GA
PHS Pump storage plant
PSO Particle swarm optimization
PV Photovoltaic
SA Simulated annealing
SCA Sine cosine algorithm
SPEA-II Strength Pareto evolutionary algorithm
S-SSA Simplified squirrel search algorithm
TES Thermal energy storage
TNPC Total net present cost
WT Wind energy generation
Ah Battery Amp-hour
CPr Capital cost of rth component in $
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Symbol Name
Gh(t) Solar irradiation incident at the horizontal surface at t hour in

kW/m2

i Interest rate
INT(.) Function used to return the smallest integer number
Lr Complete lifetime of rth component in year
Lp Complete lifetime of the project in the year
Nr The number of components
Lrem
r Surplus life of rth component in year

Nbat Number of batteries
NC Component used in microgrid
OMnpv,r Maintenance cost of rth component in $
Pext(t) Generated excess power supplied to the dummy load in t hour

in kW
PR
inv Rated power of the inverter

RPnpv,r Replacement cost of rth component in $
Rrp

r Last replaced time of rth components
SVnpv,r Salvage value of the rth component in $
αr Initial capital cost of components in $/unit
βr Operation and maintenance cost of components in $/unit/year
ξr Replacement cost of components in $/unit
λr Resale price of rth components
δ Inflation rate
γ Escalation rate

1 Introduction

Microgrids have solved the problem of rural electrification in several Asian
and African countries, where grid-connection is difficult and uneconomi-
cal [1]. The renewable energy source (RES)-based microgrids have provided
clean and affordable energy sources in several remote locations [2–6]. The
availability of energy sources in the area influences the choice of energy
sources for the microgrid. Table 1 summarizes the literature’s various hybrid
energy system configurations, optimization algorithms, operation modes,
locations, and objectives. The primary concern in these areas is an economical
operation using various optimization algorithms. The energy storage systems
(ESS) and the reliability index loss of power supply probability (LOPSP) are
used to assess system reliability [7–10].
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Table 1 Literature review of different studies
Ref. Algorithm Configuration Mode Location Objectives

[8] Multi-objective
genetic algorithm
(MOGA)

PV/ WT/BESS Isolated Rabat, Morocco Minimizes Levelized cost
of energy (LCOE) and
maximizes power supply
reliability.

[9] Harmony search
(HS), Jaya, and PSO.

WT /PV/
Biomass/BESS

Isolated Saudi Arabia Cost minimization,
maximum allowable
LOPSP, and reducing
allowable excess energy
fraction.

[10] PSO PV/BESS/ PHS Isolated Ipoh, Malaysia Minimize the Cost of
energy (COE) at LOPSP
0%.

[11] NSGA-II, MOPSO,
MOEA/D, SPEA-II

PV/WT/BESS/
PHS/ hydrogen/
thermal ESS

Isolated Karachi,
Pakistan

Minimizing economy,
LCOE and Improving
reliability, LOPSP.

[12] NSGA-II WT/BESS/FC/
supercapacitor

Isolated Tanda, Ivory
coast

Optimal sizing and
minimization of the total
annual cost considering
LOPSP.

[13] Firefly algorithm
(FA)

PV/ WT/FC Grid-connected Hurghada, Egypt Optimal sizing,
minimizing Total net
present cost (TNPC)
considering LOPSP as
reliability index.

[14] Multi-objective PSO
(MOPSO)

PV/WT/BESS Grid-connected Ismailia
Governorate,
Egypt

Minimizes LOPSP, COE
and maximizes RES
fraction.

[15] MOPSO PV/WT/DG/
hydroki-
netic/BESS

Isolated Sub-Saharan
Africa

Minimize the LOPSP,
COE, total emission, and
diesel contribution factor.

[16] Genetic algorithm
(GA)

PV/ WT/BESS Isolated Jeju Island,
South Korea

Optimal Sizing, Capacity
fading, temperature
variation, and sensitivity
study of RES penetration.

[17] HOMER software PV/WT/BESS/FC Isolated South Africa and
Nigeria

Minimize the TNPC and
calculate LCOE.

[18] Hybrid GA with
PSO and MOPSO

PV/ WT/BESS Isolated Tehran Minimize TNPC and
maximize reliability for
the off-grid residential
load.

[19] PSO, GA, FA, and
Ant colony
optimization

WT/ PV/BESS/
PHS

Isolated Island
Jiuduansha,
China

Minimize net present
cost (NPC).

[20] Teaching learning
based optimization
(TLBO)

PV/BESS Grid-connected Iran Minimize the TNPC and
evaluate COE.

[21] HOMER software PV/WT/DG/BESS Isolated India Optimal design and
minimize NPC and
calculate COE.

(Continued)
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Table 1 Continued
Ref. Algorithm Configuration Mode Location Objectives

[22] HGWOSCA, GWO,
PSO and SCA

PV/WT/FC Isolated Iran Optimal sizing and
minimizing the life span
cost of hybrid systems
and load interruption
probability.

[23] GA, CS, SA, HS,
Jaya, FA, FPA,
MFO, BSO-OS,
S-SSA

PV and WT/BESS Isolated Algeria Minimize the TNPC,
subject to deficiency of
power supply probability.

[24] Modified electric
system cascade and
power pinch analysis

PV/CSP/WT/TES
/BESS

Isolated Oujda, Morocco Optimal sizing of hybrid
system with multiple
storage systems and
Minimizing the LCOE by
ensuring maximum load
supply.

[25] Improved Artificial
Ecosystem
Optimization (IAEO)

PV/WT/FC Grid-connected,
Isolated

Suez Gulf,
Egypt

Minimize the COE,
considering reliability
index LOPSP and excess
energy.

[26] HOMER software PV/WT/BESS/
Biomass

Isolated Fars province,
Iran

Minimize the NPC and
calculate COE.

[27] TRNSYS software PV/WT/DG/BESS Isolated Konya, Turkey Optimal design and
dynamic simulation,
Minimizing LCOE and
CO2 emissions.

[28] FA, PSO, and
Shuffled Frog
Leaping algorithm

PV/WT/FC Isolated Egypt Minimize the NPC,
subject to LOPSP.

[29] Fuzzy logic PV/WT/BESS Isolated South Australia Minimize NPC and
optimal sizing using
novel demand side
management.

[30] Hybrid Optimization
of Multiple Energy
Resources
(HOMER) Pro

PV/WT/BESS/
Biomass

Isolated China Optimal designing of
hybrid renewable energy
system with minimizing
NPC, and COE

[31] HOMER Pro PV/WT/BESS Isolated Cameroon Techno-economic
analysis, Minimizing
NPC, COE

Based on the literature review conducted, it is realized that

• None of the studies consider the feasibility of wind energy generation at
high altitudes where air density (δar) is very low.

• Only a few authors [14] have considered and evaluated Greenhouse gas
(GHG) emissions from renewable energy generation units and battery
energy storage systems (BESS) due to life cycle procedures such as
manufacturing, material transfers, assembly, system installation, and
disposal or recycling.
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• Limited studies been performed by applying the Dragonfly algorithm
(DA) for optimal design of PV/WT/BESS based isolated microgrid.

As a result, the primary goal of this study is to optimally design a
PV/WT/BESS to electrify rural/remote areas using distributed RES that are
locally available at minimum Levelized cost of energy (LCOE), as well as
feasibility and reliability studies of wind energy generation (WT) with solar
photovoltaic (PV) and BESS at high altitudes. Using RES-based microgrids
eliminates fossil fuel-based energy generation and GHG emissions, serious
issues for global warming, the environment, and social and health safety. The
following are the work’s significant contributions:

• Optimal design of microgrid consisting of PV, WT, and BESS to min-
imize the LCOE in the study area using DA, comparing with popular
metaheuristic algorithm GWO, DE, and DHS, and analysis of feasibility
at low air density area (due to high altitude).

• Power supply reliability in isolated mode with LOPSP constraint.
• The algorithms are statistically analyzed for accuracy, robustness, and

convergence rate.
• GHG emissions from microgrid components have been assessed and

compared to grid supply.

The study is performed for 48 village hamlets in four blocks, Chuchat,
Durbuk, Kharu, and Nyoma, of Leh district of Union Territory of Ladakh,
India. There are no such studies in the literature for the site. Because of
the area’s slow electrification rate, development in Leh and the surrounding
territories has been gradual [32]. Grid connectivity may be limited or non-
existent due to difficult terrain and low population density [33]. According to
[34, 35], the site has solar and wind energy potential. As a result, the primary
energy sources chosen are solar energy and wind energy, both of which are
operated with the combination of BESS. The Dragonfly algorithm (DA) [36],
Grey Wolf optimization (GWO) [37], differential evolution (DE) [38], and
discrete harmony search (DHS) [5, 39] are used to optimize the sizing of
these sources.

These algorithms were chosen for their simple structure and ability to
handle nonlinear optimization problems. These optimization techniques are
examples of different meta-heuristics algorithms, such as DA and GWO for
swarm intelligence, DE for evolutionary algorithms, and DHS for physics-
based algorithms [40]. The primary objective of this paper is to reduce the
LCOE. The ability of the generation system to meet the load requirement is
assessed using the LOPSP reliability index [9]. LOPSP is the probability that
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the available energy supply is insufficient to meet the load demand (PL) [8].
Three different configurations are used for the study. Each configuration is
evaluated with the maximum allowable LOPSP (LOPSPmax) of 0%, 2%,
and 4%.

The rest of the paper is organized as follows: Section 2 discusses the
System Configuration. Section 3 presents the mathematical model of the
different energy sources used. Problem formulation is presented in Section 4.
Section 5 presents the different optimization algorithms used. Results are
discussed in Section 6. Finally, the conclusions are drawn in Section 7.

2 System Configuration

2.1 Site Description

The study site is ‘Chushul,’ located at 33◦ 35′11.9′′N, 78◦ 38′35.8′′E, with
an elevation of 4510.4 m above sea level and a net altitude of 4560.4 m
above sea level. It comprises of 48 village hamlets in four remote blocks of
Leh district, India, with hilly terrain and extremely high altitudes [41]. Due
to the difficult terrain and low population density, grid interconnections are
difficult and uneconomical at these locations [42]. ‘Chushul’ has an annual
average wind speed (v) = 6.6 m/s at 50 m above ground level, an annual
average density of 0.7 kg/m3, and an annual average daily solar irradiation
(Gh) of 221.29 Watt/m2 [35]. The site has high wind and solar potential [34].
As a result, RESs are a viable option for meeting energy demand. The
monthly average hourly Gh and v data, as shown in Figures 1(a) and 1(b), and
load variation pattern shown in Figure 1(c) shows a peak occurring between
20:00 and 23:00 hrs.

2.2 Microgrid Components

The proposed microgrid, depicted in Figure 2, comprises PV panels, a WT, a
BESS system, AC electrical load, and dummy loads. The inverter, connected
to the AC load, receives the DC output from the WT and PV. The BESS is
linked to a DC bus. If the electric load is less than the generation, the BESS
stores the surplus power, and vice versa. The excess power (Pext ) is feed to the
dummy load if BESS is fully charged. Cost minimization is achieved while
meeting load demand with these sources. Table B1 (Appendix B) shows the
technical specifications of the inverter [43], PV panel [43–45], WT [43, 44],
BESS (lead acid type, 24 V and 150 Ah) [44] used to calculate the generating
and storage units.
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a) 

b) 

c) 
Figure 1 Waveforms of the a) Monthly average hourly solar irradiation, b) Monthly average
hourly wind speed, and c) Hourly load profile.
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Figure 2 Layout of the proposed microgrid.

3 Mathematical Modeling

The mathematical model of microgrid components is discussed below:

3.1 Solar Photovoltaic

The total output power from the PV panel PPV ,T is given as [43]:

PPV ,T (t) = NPV × P r
PV × dLoss × (Gh(t)/GSTC ) (1)

where, NPV is the number of PV panels, dLoss is the derating factor,
Gh represents solar irradiation, GSTC refers to solar irradiation at standard
temperature conditions, P r

PV indicates the rated power of a PV panel, and
NPV is the number of PV panels.

The derating or loss factor of the PV panel, dLoss accounts for the aging
factor, shadow formation and dust deposition over the PV panel surface, etc.

3.2 Wind Turbine

The total output power from the WT, PWT ,T , is calculated as follows:

PWT ,T (t) = NWT × PWT (t) (2)

where, NWT is the number of WT, and PWT is the power generated by the
WT given as [44, 46, 47]:

PWT (t) =


0 0 ≤ v(t) ≤ vCin & v(t) ≥ vCof

PRW
v3(t)− v3Cin

v3Rt − v3Cin

vCin < v(t) < vRt

PRW vRt ≤ v(t) < vCof

(3)
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where, PRW is the rated power WT, vCin , vRt, and vCof are cut-in, rated and
cut-off wind speed.

3.3 Battery Energy Storage System

BESS stores the surplus energy when total renewable power generation
(PRes,T ) is more than PL and discharges the stored energy whenever
PRes,T < PL, to meet the PL. The charging and discharging of the battery
are described below. In each case, the charging or discharging is decided by
the PRes,T , PL, and state of charge (SOC) of the BESS [11, 18, 20].

Charging: If PRes,T (t) ≥ (PL(t)/ηinv ), and SOC(t) ≤ SOCmax (Maximum
value of SOC) [11] BESS stores the energy. Then,

SOC (t) = SOC (t− 1)× (1− λ) + (PRes,T (t)

− (PL(t)/ηinv ))× ηbcg (4)

where, λ refers to the hourly self-discharge rate, ηbcg represents the charging
efficiency of the battery and ηinv , indicates the efficiency of the inverter.

If SOC (t) = SOCmax , BESS is fully charged and Pext(t) feeds the
dump load, [9, 48]. The Pext(t) is calculated as Equation (5)

Pext(t) = PRes,T (t)− (PL(t)/ηinv )− (SOCmax − SOC (t− 1)

× (1− λ))× ηbcg (5)

Discharging: If PRes,T (t) ≤ (PL(t)/ηinv ) and SOC(t) > SOCmin (Minimum
value of SOC), BESS feeds the load, and its SOC is

SOC (t) = SOC (t− 1)× (1− λ)− ((PL(t)/ηinv )

− PRes,T (t))/ηbdg (6)

where, ηbdg represents discharging efficiency of the battery.
The SOCmin depends on the DOD of the BESS [11, 49]. If SOC (t)

becomes less than SOCmin during this process, then a fraction of the load is
not supplied, and set SOC (t) = SOCmin . The loss of power supply (LOPS)
is calculated as [44]:

LOPS (t) = (PL(t)/ηinv )− PRes,T (t)− [SOC (t− 1)

× (1− λ)− SOCmin]× ηbdg (7)
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3.4 Inverter

The inverters convert the DC output power of PV, WT, and BESS into AC to
feed the AC loads. The total inverter capacity (Pinv ,T ) depends on peak load
demand (PL,Peak ) [43], and the number of inverters (Ninv ), is calculated as
follows:

Pinv ,T (t) = PL,Peak (t)/ηinv (8)

Ninv = Pinv ,T (t)/P
R
inv (9)

where, PR
inv is the rated capacity of the inverter.

3.5 Life Cycle Cost

Using the life cycle cost (LCC), the cost analysis is performed for the
proposed microgrid. LCC analysis calculates the net present value (npv)
of all the expected expenses over the system life span. The LCC of the
rth component, LCC r, is given as (10), and the cost components can be
evaluated as (11)–(16) [10, 14, 50]:

LCC r = CPr +OM npv ,r + RPnpv ,r − SV npv ,r (10)

CPr = αr ×Nr (11)

OM npv ,r = βr ×Nr ×
LP∑
j=1

((1 + γ)/(1 + i))j (12)

RPnpv ,r = ξr ×Nr ×
INT [(Lp/Lr)]−1∑

k=1

((1 + δ)/(1 + i))k×Lr (13)

Rrp
r = Lr × INT (Lp/Lr) (14)

Lrem
r = Lr − (Lp −Rrp

r ) (15)

SV npv ,r = λr ×Nr × (Lrem
r /Lr)× ((1 + δ)/(1 + i))Lp (16)

where, δ, is the inflation rate, i represents the interest rate, γ refers to
escalation, Lp represents project lifetime, αr is the initial capital cost of
components, βr shows the operation and maintenance cost of components,
λr indicates the resale price of components and ξr is the replacement cost of
components.
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Total LCC (TLCC) of the microgrid includes LCC of PV, WT, BESS, and
inverter. To convert the TLCC into annual cost, capital recovery factor (CRF)
is used (17) [10, 19]. It is considered that the power generated by RES is
the same every year till the project’s lifetime. The LCOE is defined as (18)
[10, 19, 50]:

CRF (i, Lp) = (i(1 + i)Lp/((1 + i)Lp − 1)) (17)

LCOE = CRF (i, Lp)×

( ∑
r∈NC

LCCr

/
T=8760∑
t=1

PL(t)

)
(18)

3.6 Greenhouse Gas (GHG) Emission

RESs generate clean energy, meaning they don’t emit GHGs while operating.
However, their production, material transfer, assembly, system installation,
and disposal or recycling emit significant amounts of GHG. Because of
the properties of the emitted gases, the GHGs emitted from different units
have different effects on global warming. All emissions are referred to as
CO2 equivalents (CO2-eq) to compare the GHG effect of various gases.
The CO2-eq is a measuring scale in which CO2 is the reference point and has
a global warming potential (GWP) of 1, and other GHGs have a GWP greater
than CO2. Methane (CH4), Nitrous oxide (N2O), and Sulfur hexafluoride
(SF6) have GWPs of 21, 310, and 23900, respectively [14, 51]. To compare
GHG emissions for the proposed system, the base case is the load supplied
from the grid, which comprises thermal energy sources. The grid’s GHG
emissions are given as follows:

GHGgrid = PL supplied by grid × gridesf ×GWP (19)

where gridesf is electricity specific factor whose value in India is 1.3332
(kgCO2-eq/kWh) [52].

The GHG emission from a PV system (EPV ) is calculated as:

EPV =
T=8760∑
t=1

PPV ,T (t)× efPV ×GWP (20)

where, efPV is the emission factor of the PV system. For mono, Si PV efPV
is 0.045 kgCO2-eq/kWh [9, 53].
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Similarly, the GHG emission from the WT system (EWT ) as:

EWT =

T=8760∑
t=1

PWT ,T (t)× efWT ×GWP (21)

where, efWT is the emission factor of the WT system. Here, efWT = 0.011
kgCO2-eq/kWh [54].

The GHG emission from BESS(EBESS ) occurs during the manufacturing
and operation phase [55]. The yearly emissions are evaluated as:

EBESS =

(
Nbat ×

Cbat

Lbat
× ecoBESS +

T=8760∑
t=1

Pbd(t)× eopBESS

)
×GWP (22)

where, Lbat is the lifetime of the battery, ecoBESS is the emission factor of
the BESS for the construction phase (149 kgCO2-eq/kWh) for lead acid
battery [56], eopBESS is the emission factor of the BESS for the operation phase
(0.004 kgCO2-eq/kWh) [55] and Pbd is the power delivered by BESS.

The total GHG emissions for the proposed microgrid (GHGTL MG) and
net savings in GHG emission (GHGNet Svg) are evaluated as:

GHGTL MG = EPV + EWTG + EBES (23)

GHGNet Svg = GHGgrid −GHGTL MG (24)

4 Problem Formulation

4.1 Objective Function

The objective function is to minimize the LCOE for the proposed microgrid
subjected to constraints. PRes,T is evaluated as:

PRes,T(t) = NPV × PPV (t) +NWTG × PWTG(t) (25)

The LCOE is a function of the NPV , NWTG and Nbat. Thus, the objective
function is given as:

F = min{LCOE (NPV , NWTG, Nbat)} (26)
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4.2 Constraints

4.2.1 Operational constraints
The operational constraints are

Nmin
PV ≤ NPV ≤ Nmax

PV

Nmin
WTG ≤ NWTG ≤ Nmax

WTG

Nmin
bat ≤ Nbat ≤ Nmax

bat

SOCmin ≤ SOC (t) ≤ SOCmax

 (27)

4.2.2 Reliability constraints
The reliability constraint considered is

LOPSP ≤ LOPSPmax (28)

Here, LOPSPmax is the maximum allowed LOPSP, which is considered
0%, 2%, and 4%.

The LOPSP is a reliability index with values between 0 and 1, and 0
indicates a fully feed load, whereas 1 indicates no load is feed. It is defined
as [9, 14]:

LOPSP =
T=8760∑
t=1

LOPS (t)

/
T=8760∑
t=1

PL(t) (29)

The solutions need to satisfy the above constraint to be considered
optimal.

4.3 Flowchart of Operational Strategy

Figure 3 depicts the flowchart for the proposed microgrid optimal design
and energy management for the year. Set day d = 1 first, then calculate
the hourly power using Gh and v data. The total RESs power generated,
load demand, and battery SOC determine the BESS status, i.e., whether to
charge or discharge the battery. Thereafter, the constraints are checked to be
within the range limit. The DA, GWO, DE, and DHS algorithms are used for
optimization. If the evaluations are finished for the day, they are repeated the
next day until the entire year is completed.

5 Dragonfly Optimization Algorithms

DA imitates dragonfly swarming behaviour [36]. There are nearly 3000
different species of dragonflies in the world. Dragonflies swarm to pursue two
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Res,T: , ,PV WTGCalculate P P P

Re , ( )s T

PLP t
inv

Figure 3 Flowchart of operational strategy.

objectives: hunting and migration. Static swarm refers to hunting, whereas
dynamic swarm refers to migration. They form small groups and fly back
and forth over a small area, hunting other flying prey such as mosquitoes and
butterflies. In a dynamic swarm, massive numbers of dragonflies swarm to
migrate in one direction over long distances.

Dragonfly static and dynamic swarming behaviours are similar to the two
main phases of meta-heuristic optimization: exploration and exploitation.
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Dragonfly static and dynamic swarming behaviours are similar to the
two main phases of meta-heuristic optimization: exploration and exploita-
tion. The swarm’s main aim is survival, so all these individuals should
attract toward sources and distract outward enemies. Considering these
two behaviours, five main factors are used to update the position of indi-
vidual swarms: separation (Sj), alignment (Aj), cohesion (Cj), attraction
towards food (Fj), and distance from the enemy (Ej). These behaviours are
given as [36]:

Sj = −
N∑
k=1

X −Xk (30)

Aj =

∑N
k=1 Vk

N
(31)

Cj =

∑N
k=1Xk

N
−X (32)

Fj = X+ −X (33)

Ej = X− +X (34)

where, X indicates the position of the current individual, Xk represents
the position of kth neighbouring individual, Vk depicts the velocity of kth

neighboring individual, N is the number of neighboring individuals, Cj is the
cohesion for of jth individual, X+ indicates the position of food source and
X− represents the position of the enemy.

The DA uses step vector ∆X and position vector X for updating the
position in search space as:

∆Xt+1 = (sSj + aAj + cCj + fFj + eEj) + w∆Xt (35)

Xt+1 = Xt +∆Xt+1 (36)

where w is inertia weight, and t indicates current iteration.
The levy flight factor improves the randomness when there is no neigh-

bouring solution. The detailed algorithm is available in [36].
The GWO algorithm in detail is discussed in [37]. The following advan-

tages of the GWO algorithm tempt the research community to use it: (i) it
requires only two parameters for initialization; (ii) it has a relatively fast
convergence rate; (iii) it can be easily generalized to the next space; and
(iv) it has a shorter runtime [57]. DE algorithm detailed in [38]. The DE
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algorithm has the following advantages: (i) ability to handle nonlinear, non-
differentiable, noise, time-dependent, and multimodal cost function, (ii) ease
of use due to fewer control variables and fast rate of convergence, (iii)
effective global optimization capability, (iv) applicable for discrete, integer
and mixed parameter optimization etc. [58]. The DHS algorithm detailed
in [5,39], has gained attention due to its simplicity, fewer parameters, and
easy implementation [39].

6 Results and Discussions

The proposed microgrid primary energy sources are PV and WT, with
BESS as an energy storage system. Figure 1 shows the availability of
solar irradiation, wind speed and electrical load demand. The cost of com-
ponents and economic parameters influences the TLCC of the microgrid.
Table B2 lists the price and other information about the microgrid com-
ponents. The various source configurations are considered for the study
include: Configuration-I: PV-WT-BESS, Configuration-II: PV-BESS, and
Configuration-III: WT-BESS.

The reliability of each configuration is assessed by taking into account
Case-I: LOPSPmax = 0%, Case-II: LOPSPmax = 2%, and Case-III:
LOPSPmax = 4%. The simulations are run on the MATLAB platform for
the entire year while considering the same generated power each year until
the project completion and a consistent load profile. The optimal value is con-
sidered for optimal design and energy management based on the simulation
findings, which were achieved using 25 separate runs. Table B3 displays the
optimization algorithms parameters. The economic parameters δ, γ, and i are
8%, 7.5% and 6% respectively, and Lp is 20 years.

6.1 Configuration-I

Table 2 shows the results for Configuration-I. As opposed to 0.1290 $/kWh
and 0.1173 $/kWh in Case-I and Case-II, respectively, it demonstrates that the
LCOE is lowest in Case-III with DA, GWO, and DE, at 0.1056 $/kWh. With
the LOPSP reliability limitation being relaxed, the LCOE falls. The values of
the decision variables are always the same for DA and GWO. The optimal
values of NPV and NWTG are 164 and 100, respectively, for all cases, with
different Nbat using DA and GWO. In Case-III, the Nbat decreases, resulting
in a reduced LOCE and TLCC. With the DA and GWO algorithms, the Nbat

for Cases I, II, and III, respectively, are 2170, 1815, and 1460. In all cases,
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Table 2 Results obtained for Configuration-I
TLCC LCOE LOPSP Iteration

Case Algorithm NPV NWTG Nbat Ninv (M$) ($/kWh) (%) for Convergence

I DA 164 100 2170 60 3.450 0.1290 0.0 66
GWO 164 100 2170 60 3.450 0.1290 0.0 159

DE 162 100 2172 60 3.450 0.1290 0.0 95
DHS 367 90 2330 60 3.633 0.1358 0.0 59

II DA 164 100 1815 60 3.137 0.1173 2.0 102
GWO 164 100 1815 60 3.137 0.1173 2.0 105

DE 163 100 1816 60 3.137 0.1173 2.0 104
DHS 561 98 1608 60 3.269 0.1222 1.96 56

III DA 164 100 1460 60 2.825 0.1056 4.0 118
GWO 164 100 1460 60 2.825 0.1056 4.0 152

DE 164 100 1460 60 2.825 0.1056 4.0 141
DHS 247 91 1838 60 3.110 0.1163 3.61 122

the DE gives similar LCOE and TLCC as DA and GWO algorithms, with
different values of decision variables, as shown in Table 2. Compared to DA,
GWO, and DE, the LCOE value generated by the DHS method is higher.
DHS, however, has the fastest convergence. It shows that DHS is more likely
to come up with less-than-ideal solutions when compared to DA, GWO, and
DE. It also shows that at the optimal value of decision variables, the LOPSP
< LOPSPmax, and at the optimal value, DA has the fastest convergence rate,
followed by DE and GWO. Figure 4 shows the convergence characteristics of
the optimization algorithms. Figure 5, depicting the SOC variation of BESS
for all three cases, shows that during the 9th–10th hours SOC of BESS is
on the lower side after discharging from 1–10 hours, while charged from
11–20 hours and further getting discharged to meet the PL. The optimal
generations and load patterns shown in Figure 6, show that BESS can be
used to manage energy optimally while RES-based optimal generation can
fulfil the PL. Figure 6 also shows that optimal power generation by WT is
sufficient at low air density which indicates its feasibility for electrical energy
generation at lower air density area.

6.2 Configuration-II

The WT is unavailable in this configuration, and PV is available only, requir-
ing more number of BESSs to meet the load demand during night hours.
Table 3 presents the results for all cases. Similar to Configuration-I, Case-III
has a minimum LCOE of 0.1653 $/kWh, which is lower than 0.1710 $/kWh
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   a) 

b) 

c) 
Figure 4 Convergence characteristics for the optimization algorithms used in Configuration-
I, (a) Case-I, (b) Case-II, and (c) Case-III.
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Figure 5 Variation of SOC for Configuration-I using DA.

and 0.1887 $/kWh for Case-II and Case-I, respectively, with DA, GWO, and
DE. The NPV = 1350, and Nbat = 4330 for Case-I, and NPV = 350,
and Nbat = 3975 for Case-II, similarly NPV = 350, and Nbat = 3620
for Case-III, with DA and GWO. Like Configuration-I, DE, and DHS have
marginally different NPV and Nbat values, but LCOE and TLCC produced
from DE are identical to DA and GWO. Additionally, it should be noted
that DA, DE, and GWO have the fastest convergence rates when choosing
the optimum LCOE value. The LOPSP is obtained within LOPSPmax. The
convergence characteristics of the DA, GWO, DE, and DHS algorithms are
shown in Figure A1 (Appendix A). It also suggests that DHS may lead to
sub-optimal solutions. The variation of BESS SOC is shown in Figure A2.
It indicates that it charges during the day from 11 to 19 hours and discharges
during the night from 1 to 10 and 20 to 24 hours. Figure A3 depicts the
generation and load patterns. It shows that PV with BESS can meet the PL

and that BESS can help achieve effective energy management. However, the
LCOE is significantly greater than that of Configuration-I due to the large
number of NPV and Nbat .

6.3 Configuration-III

The configuration only has WT and BESS to handle the load demand, which
causes Nbat to be higher. Table 4 displays the results. The LCOE for DA,
GWO, and DE is the lowest in Case-III, at 0.1586 $/kWh compared to
0.1703 $/kWh and 0.1819 $/kWh in Case-II and Case-I, respectively. The
optimal value of NWTG is 100 in all cases, whereas Nbat has distinct values,
3939, 3584, and 3229 for Case-I, Case-II, and Case-III, respectively, with
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a) 

b) 

c) 
Figure 6 Generation and load profile for Configuration-I, (a) Case-I, (b) Case-II, and
(c) Case-III.
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Table 3 Results obtained for Configuration-II
TLCC LCOE LOPSP Iteration

Case Algorithm NPV NWTG Nbat Ninv (M$) ($/kWh) (%) for Convergence

I DA 1350 – 4330 60 5.047 0.1887 0.0 100

GWO 1350 – 4330 60 5.047 0.1887 0.0 181

DE 1350 – 4330 60 5.047 0.1887 0.0 109

DHS 1352 – 4382 60 5.094 0.1905 0.0 156

II DA 1350 – 3975 60 4.734 0.1770 2.0 100

GWO 1350 – 3975 60 4.734 0.1770 2.0 177

DE 1349 – 3976 60 4.734 0.1770 2.0 135

DHS 1354 – 3974 60 4.737 0.1771 1.99 71

III DA 1350 – 3620 60 4.422 0.1653 4.0 103

GWO 1350 – 3620 60 4.422 0.1653 4.0 160

DE 1350 – 3620 60 4.422 0.1653 4.0 105

DHS 1362 – 3621 60 4.433 0.1658 3.95 90

DA, GWO, and DE, similar to Configuration-I. Table 4 shows that similar
to Configuration-I and -II, DA has the fastest convergence rate, followed
by DE and GWO. Additionally, LOPSP is limited by LOPSPmax limits.
Figure A4 depict the convergence of the DA, GWO, DE, and DHS algorithms,
indicating that DHS may have sub-optimal solutions. Figure A5 shows the
SOC fluctuation of the BESS, which shows discharge from 0 to 10 hours
and charging from 13 to 20 hours before discharging to satisfy the PL.
The generation and load profile in Figure A6 demonstrates how the BESS
enables meeting PL with effective energy management. This configuration
LCOE is higher than Configuration-I and lower than Configuration-II. As
a result, Configuration-I has the lowest LCOE. Figure A6 also shows that
optimal power generation by only WT is sufficient to meet the PL with the
BESS combination, confirming its feasibility at low air density sites.

6.4 Statistical Analysis

The results above demonstrate that DA offers superior results over GWO, DE,
and DHS. Statistical analysis has confirmed the effectiveness of DA, GWO,
DE, and DHS in minimizing the LCOE and managing energy. However,
DHS provides a comparatively higher value of LOCE. The DA, GWO, and
DE also offer similar decision factors values. Each algorithm undergoes
25 independent runs, with recording the LCOE. The values of LCOE’s
maximum, minimum, mean, median, and standard deviation are shown in



Optimal Design of PV/WT/Battery Based Microgrid for Rural Areas 243

Table 4 Results obtained for Configuration-III

TLCC LCOE LOPSP Iteration

Case Algorithm NPV NWTG Nbat Ninv (M$) ($/kWh) (%) for Convergence

I DA – 100 3939 60 4.866 0.1819 0.0 12

GWO – 100 3939 60 4.866 0.1819 0.0 45

DE – 100 3939 60 4.866 0.1819 0.0 27

DHS – 98 4274 60 5.134 0.1920 0.0 111

II DA – 100 3584 60 4.554 0.1703 2.0 7

GWO – 100 3584 60 4.554 0.1703 2.0 50

DE – 100 3584 60 4.554 0.1703 2.0 19

DHS – 98 3942 60 4.842 0.1811 1.69 38

III DA – 100 3229 60 4.241 0.1586 4.0 15

GWO – 100 3229 60 4.241 0.1586 4.0 27

DE – 100 3229 60 4.241 0.1586 4.0 25

DHS – 100 3257 60 4.266 0.1595 3.84 16

Table B4. Comparing DA to GWO, DE, and DHS, it is evident that DA has a
lower standard deviation across all configurations. It can also be shown from
Tables 2, 3, and 4 that DA has the fastest rate of convergence and needs the
least iterations to achieve convergence, followed by DE and GWO. Therefore,
DA is best in such applications with reliability, accuracy, and convergence
rate.

6.5 Sensitivity Analysis

Figure 7(a) and 7(b) illustrate the variation of LCOE and TLCC with
LOPSPmax, respectively. Figure 7(a) demonstrates that the LCOE for a
reliable source is high and declines with declining system reliability, whereas
Figure 7(b) demonstrates that the TLCC is larger for highly reliable systems
and declines as the reliability index LOPSPmax increases.

6.6 GHG Emission Analysis

Table 5 displays the GHG emission of the optimal microgrid (Configuration-
I, Case-I). It covers the weight of emissions for CO2, CH4, N2O, and SF6.
The table also shows the proposed microgrid’s net reduction in GHG emis-
sions compared to the base case. It is assumed that the entire load is met
by the grid supplied in the base case. The total GHG emissions resulting
from the base scenario, PV, and WT are 74577372.48 tons, 293449.52 tons,
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a) 

b) 
Figure 7 Variations of (a) LCOE and (b) TLCC versus LOPSPmax% for DA.

Table 5 The annual GHG emission from Configuration-I microgrid
GHG Base PV WT BESS Net

Case Emission Types Case (Tons) (Tons) (Tons) (Tons) Saving (Tons)

I CO2 3077.64 12.11 23.2 235.99 2806.34
CH4 64630.44 254.31 487.2 4955.79 58933.14
N2O 954068.40 3754.1 7192 73156.9 869965.4
SF6 73555596.00 289429 554480 5640161 67071526

Total GHG emission 74577372.48 293449.52 562182.4 5718509.7 68003230.9

and 562182.4 tons, respectively. Optimal microgrid Configuration-I, Case-I
reduce GHG emissions by 91.2% compared to a base case. Figure 8 shows
the cumulative annual CO2 emissions from Configuration-I, Configuration-
II, and Configuration-III. Additionally, it shows that, as a result of having
more Nbat , Configuration-II has the most CO2 emissions, followed by
Configuration-III, and Configuration-I has the lowest. The CO2 emission



Optimal Design of PV/WT/Battery Based Microgrid for Rural Areas 245

 

0

100

200

300

400

500

600

Configuration-I Configuration-II Configuration-III

271.3

570.19

449.12

233.02

531.93

410.86

194.76

493.65

372.58

C
O

2 
em

iss
io

n 
(to

ns
)

Case-I Case-II Case-III

Figure 8 Total annual CO2 emission from proposed microgrids.

in Case-III for all configurations, shown in Figure 8, is lowest due to
using least generating and BESS units with maximum relaxation of 4% in
LOPSPmax . According to the aforementioned findings, Configuration-I has
the lowest LCOE and CO2 emission rates. Therefore, Configuration-I is
deemed appropriate from an environmental and an economic perspective.

Thus, from the analysis it is evident that the electricity supplied to the site
under consideration by the proposed PV/WT/BESS based isolated microgrid
is clean and environmental friendly. This proposed microgird has the ability
to mitigate the adverse environmental impacts possessed by a conventional
power plant in terms of climate change, global warming, human health, acid
rain, air pollution, and photochemical smog etc. This study will have potential
role for power supply to the local residents of remote hilly areas like Leh and
Ladhakh, Lahul and Spiti in Himachal Pradesh, India. The proposed micro-
grid has promising role in making the life of local residents comfortable in
harsh environment. Further, the degradable aspects like deforestation done in
such hilly areas for wood as a fuel source in winter will save the environment.
Moreover, this study will help in saving the environment by reducing the
natural calamities like cloud burst. The degradable impacts of cloud burst on
the local residents will be minimized due less erosion of soil and also due to
better ecological balance. Overall, it is apt to state that, with the proposal of
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Table 6 Different configurations of previous studies and the proposed plan
System Operation Study TNPC/ COE

Configuration Mode Location Year TLCC (M$) ($/kWh) Ref.

Current

PV/WT/BESS Isolated India – 3.450 0.129 Study

PV/WT/Biomass/
BESS

Isolated Saudi Arabia 2020 0.581 0.254 [9]

PV/WT/BESS Isolated Jeju Island, Korea 2020 84300 0.420 [16]

PV/WT/BESS/FC Isolated South Africa 2022 0.009 0.701 [17]

PV/WT/DG/BESS Isolated India 2022 0.233 0.183 [21]

PV/WT/BESS Isolated Algeria 2022 0.144 0.474 [23]

PV/CSP/WT/
BESS/TES

Isolated Oujda, Morocco 2021 913.7 0.183 [24]

PV/WT/FC Isolated Suez Gulf, Egypt 2021 10.437 0.429 [25]

PV/WT/Biomass/
BESS

Isolated Fars province, Iran 2020 1.085 0.154 [26]

PV/WT/DG/BESS Isolated Konya, Turkey 2020 0.131 0.247 [27]

PV/WT/FC Isolated Beni-Suef, Egypt 2020 2.698 0.450 [28]

PV/WT/BESS Isolated South Australia 2021 0.034 0.570 [29]

PV/WT/BESS/
Biomass

Isolated China 2023 6.701 0.273 [30]

PV/WT/Biomass/
BESS

Isolated Patiala, India 2016 0.063 0.173 [43]

PV/WT/DG/BESS Isolated Rabat, Morocco 2021 0.024 0.177 [50]

PV/WT/BESS Isolated Iran 2022 0.626 0.233 [59]

PV/WT/DG/ /BESS Isolated Saudi Arabia 2022 0.465 0.354 [60]

PV/WT/BESS Isolated Hohhot, China 2013 1.998 0.208 [61]

PV/Biogas/BESS Isolated Sierra Leone 2023 0.472 0.376 [62]

the PV/WT/BESS based isolated microgrid under consideration in this study
will be will be highly beneficial in such domestic hilly terrains.

6.7 Comparative Analysis

The results of the proposed microgrid are compared to microgrids existing in
the literature to show their effectiveness. The comparison is shown in Table 6.
The TNPC/TLCC is different due to different configurations, element sizing,
and economic considerations such as capital cost, operation-maintenance
cost, replacement cost, salvage value, interest, inflation, and escalation rate.
Nevertheless, LCOE is the essential comparative parameter to compare the
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energy cost generated from RES. The previous studies have LCOE in the
0.154 to 0.701 $/kWh range. For the current study, LCOEs are 0.1290
$/kWh, 0.1173 $/kWh, and 0.1056 $/kWh for 0%, 2%, and 4% of LOPSPmax

respectively, which is the lowest LCOE compared to previous studies.

7 Conclusions

This paper proposes an optimal microgrid design for the village hamlet in Leh
and Ladakh, India. Using DA, GWO, DE, and DHS algorithms, the optimal
number of PV, WT, and BESS is determined, considering the reliability index
LOPSP. Three studies are conducted with different sources and distinct values
of LOPSPmax. The major conclusions are

• Optimal sizing of PV, WT, and BESS are performed to minimize the
LCOE through DA, GWO, DE, and DHS. DHS provides a compara-
tively higher value of LCOE compare to remaining three algorithms to
minimize the LCOE. The statistical analysis verifies that DA offers the
best compromise between robustness, accuracy, and convergence rate.

• The microgrid Configuration-I (PV/WT/BESS) provides energy at the
lowest rate compared to Configuration-II (PV/BESS) and Configuration-
III (WT/BESS). The LCOE from Configuration-I, Case-I is 0.129
$/kWh which is within the range of LCOE obtained in previous studies
available in the literature.

• The GHG emissions are also reduced by 91.2% from Configuration-I
Case-I compared to the base case supply. The emission is due to the
equipment lifecycle.

• Reliability index LOPSP is used for optimal sizing of RES and BESS,
ensuring supply reliability and energy management.

• LCOE and TLCC increase with rising overall system reliability by
decreasing reliability constraints LOPSPmax towards 0. This study also
confirms the feasibility of wind energy generation at low air density
sites.

• Microgrid Configuration-I has the lowest LCOE and least CO2 emission.
Therefore, it is the most suitable choice for economic and environmental
concerns.

The study carried out in the paper is vital for network planning and
management in the far-flung rural/desert areas to meet the load requirements
with hybrid energy sources available where the transporting energy from the
grid is costly.
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Appendix-A

 
a) 

b) 

 
c) 

Figure A1 Convergence characteristics for the optimization algorithms used in
Configuration-II, (a) Case-I, (b) Case-II, and (c) Case-III.
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Figure A2 Variation of SOC for Configuration-II using DA.

a) 

 
b) 

 
c) 

Figure A3 Generation and load profile for Configuration-II, (a) Case-I, (b) Case-II, and (c)
Case-III.
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a) 

b) 

c) 
Figure A4 Convergence characteristics for the optimization algorithms used in
Configuration-III, (a) Case-I, (b) Case-II, and (c) Case-III.
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Figure A5 Variation of SOC for configuration-III using DA.

a) 

b) 

c) 
Figure A6 Generation and load profile for Configuration-III, (a) Case-I, (b) Case-II, and (c)
Case-III.
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Appendix-B

Table B1 Technical parameters of microgrid components
Component Parameters Value Component Parameters Value

Solar
photovoltaic

Model type SHARP
polycrys-

talline

BESS Battery Type Deep cycle
Lead-acid

Rating of PV panel
(P r

PV )

1 kW Nominal capacity
(Cbat)

150 Ah

Loss factor (dLoss) 88% Nominal
voltage (Vn)

24 V

Standard irradiation
(GSTC)

1 kW/m2 Initial hour state of
charge (SOCp)

100%

Wind turbine Model type AEOLOS-
Horizontal

axis

Depth of
discharge (DOD)

80%

Rated power
output (PRW )

10 kW Hourly
self-discharge
rate (λ)

0.0

Swept area
blade (ATb )

50.24 m2 Charging
efficiency (ηbcg)

100%

Generator
efficiency (ηWTG )

85% Discharging
efficiency (ηbdg)

90%

Air density (δar) 0.7 Kg/m3 Inverter Model type Luminous
NXI-310

Power
coefficient (CP)

0.59

Cut-in wind
speed (vCin )

2.5 m/s Rated
Capacity (PR

inv )

10 kW

Rated wind
speed (vRt)

10 m/s

Cut-off wind
speed (vCof )

25 m/s Efficiency (ηinv) 90%

Table B2 Cost fraction details of microgrid components
Capital Operation Replacement Resale

Cost and Maintenance Cost Price Lifetime
Components ($/Unit) Cost ($/Unit-Year) ($/Unit) ($/Unit) (Year)
Solar PV (1 kW) 1200 4 1200 300 20
Wind Turbine (10 kW) 23000 10 23000 6900 20
Battery (150 Ah) 200 2 200 20 5
Inverter (10 kW) 1270 10 1270 127 20
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Table B3 Parameters for the algorithm used
DA GWO DE DHS

Technical Technical Technical Technical
Parameter Value Parameter Value Parameter Value Parameter Value

Maximum no. of
iteration

200 Maximum no. of
iteration

200 Maximum no. of
iteration

200 Maximum no. of
iteration

200

Search agent 50 Search agent 50 Population size 50 Harmony
memory size

5.0

No. of dragonflies 10 Convergence
constant (a)

[2 0] Scaling factor
lower bound

0.2–0.8 Harmony
memory
considering rate

0.9

Separation factor (S) 0.1 Random no. (r1) [0 1] Scaling factor
upper bound

0.8 Pitch adjusting
rate

0.1

Alignment (A) 0.1 Random no. (r2) [0 1] Crossover
frequency

0.2 Pitch adjustment
rate (Maximum)

1.0

Cohesion (C) 0.7 Pitch adjustment
rate (Minimum)

0.1

Food factor (F) 1.0 Maximum value
of bandwidth

1.0

Enemy factor (E) 1.0 Minimum value
of bandwidth

0.1

Inertia weight (w) 0.9-0.2

Table B4 LCOE statistics of the result from the DA, GWO, DE, and DHS

Parameter DA GWO DE DHS

Configuration-I, Max. ($/kWh) 0.1290 0.1290 0.1293 0.1832

Case-I Min. ($/kWh) 0.1290 0.1290 0.1290 0.1358

Mean ($/kWh) 0.1290 0.1290 0.1290 0.1525

Median ($/kWh) 0.1290 0.1290 0.1290 0.1504

STD. 8.14E-06 1.54E-05 7.84E-05 1.24E-02

Configuration-II, Max. ($/kWh) 0.1887 0.1888 0.1895 0.2424

Case-I Min. ($/kWh) 0.1887 0.1887 0.1887 0.1905

Mean ($/kWh) 0.1887 0.1887 0.1888 0.2009

Median ($/kWh) 0.1887 0.1887 0.1887 0.1948

STD. 8.498E-17 3.15E-05 2.188E-04 1.592E-02

Configuration-III, Max. ($/kWh) 0.1819 0.1819 0.1828 0.2385

Case-I Min. ($/kWh) 0.1819 0.1819 0.1819 0.1920

Mean ($/kWh) 0.1819 0.1819 0.1822 0.2110

Median ($/kWh) 0.1819 0.1819 0.1820 0.2094

STD. 2.833E-17 2.83E-17 2.79E-04 1.363E-02
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