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Abstract

Power systems in a deregulated environment have more intense and recurrent
transmission line congestion than conventionally regulated power systems.
With the help of generation rescheduling, this article shows how to effectively
manage congestion in the day-ahead energy market by taking corrective
measures to reduce congestion. The research employs an adaptive restarting
genetic algorithm (ARGA) to provide an effective congestion management
strategy in a deregulated power market (DPM). The study makes two signifi-
cant contributions. First, the generator sensitivity factors (GSF) are calculated
to choose re-dispatched generators. Second, the least congestion cost is
calculated using the adaptive restarting genetic algorithm. Several different
line outage contingency cases on IEEE 30 bus systems are used to examine
the suggested algorithm’s implementation efficacy. The simulation results
demonstrate a significant reduction in net congestion costs, resulting in a
more reliable and secure power system operation. The proposed algorithm
was tested in a python environment, and power flow analysis was done using
the PANDAPOWER tool. The acquired results are contrasted using several
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contemporary optimization approaches to validate the suggested technique’s
validity. The ARGA technique gives a lower congestion cost solution than the
particle swarm optimization (PSO), real coded genetic algorithm (RCGA),
and differential evolution (DE) algorithm.

Keywords: Congestion management, deregulated power system, genetic
algorithm, optimization.

Nomenclature

ARGA Adaptive Restarting Genetic Algorithm
DPM  Deregulated Power Market

PSO Particle Swarm Optimization
RCGA Real Coded Genetic Algorithm
DE Differential Evolution

CM Congestion Management

GA Genetic Algorithm

ISO Independent System Operator

GSF Generator Sensitivity Factors

AP,q  change in the power flow in congested line -/, which
connects buses p and q

APy change in the i*" generator active power generation

Ccy generators incremental bid cost

C’Z-d generators decremental bid cost

APg; adjustment active power of the generator

Npg the number of participating generators

Pgoi the active power produced by the i*"* generator as
determined by the system operator

Py not participated generator active power generation

P total system load

Pr, power loss

P;fSh rescheduled generation of a specific generator

P; active power of the i bus

Qi reactive power of the i** bus

Gij conductance of the line connecting the i and j** buses

Bj; susceptibility of the line connecting the i*” and j*" buses

ST maximum apparent power loading limit of the it" line

Sri the apparent power loading of the i** line
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VLimins VLijmaz ~ minimum and maximum voltage limits of the load bus.

Pijmax maximum active power flow limit of the line
Pgrﬁm&PgT‘” active power generation limits of the i** generator
APZ?”&APZ}M power adjustment limits of the i*" generator
Vimin & Vimax voltage limits of the i" bus

1 Introduction

1.1 General

The restructuring and deregulation of the power industry have led to a
significant shift in the electric power system’s planning, operations, and
management. Since deregulation, electricity generation, transmission, and
distribution companies have become self-governing entities. More traders are
in the electricity market in response to the growing global demand for power.
Transferring energy from one end to the other is required in a transaction.
The network is said to be congested if all of the proposed transactions cannot
be accommodated simultaneously. The congestion of a transmission system
happens when a network’s physical limits, voltage limits, or line’s stability
limits are all exceeded. Congestion is expected in a deregulated power market
because electricity can be bought and sold without regard to the constraints
imposed by the power system. Congestion is also caused by a variety of
factors given as line failure, insufficient reactive power support, equipment
failure, and weather diversity, all of which pose a real threat to the security
of the power system and may increase electricity prices. Congestion manage-
ment (CM) refers to the process of taking actions or putting in place control
measures to relieve congestion in transmission networks. In CM, techniques
like generation rescheduling, load shedding, market splitting, zonal pricing,
line switching, and others are frequently employed [1].

1.2 Literature Survey

The main disadvantage of conventional CM approaches is that they neces-
sitate the system operator’s time and effort in computation. The heuristic
fuzzy adaptive bacterial foraging methodology was utilized to efficiently
reschedule active power generation to reduce congestion [2]. Balaraman
et al. [3] estimated the minimum congestion cost by finding the optimal
generation rescheduling strategy to reduce congestion using a real coded
genetic algorithm. Pandiarajan et al. in [4] have suggested using a hybrid
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DEPSO algorithm to manage transmission congestion. Using a differential
evolution (DE) algorithm to control congestion in a DPM was proposed by
Balaraman [5]. For optimal congested cost calculations, the severity index
was minimized. Hazara and Sinha [6] presented the multi-objective PSO
algorithm-based part optimum solutions to alleviate overloads and reduce
operating costs. Yesuratnam and Thukaram [7] have proposed a generation
rescheduling technique based on relative electric distance (RED). The RED
algorithm has been used to reduce the load on the overloaded lines by
accounting for the generator’s contribution. B.K. Panigrahi et al. [8] have
proposed the Bacterial Foraging (BF) algorithm for CM. For the nonlinear
congestion management cost problem, the authors I. Batra and S. Ghosh [9]
proposed an improved tent map embedded chaotic particle swarm optimiza-
tion (ITM-CPSO) technique. Balaraman and Kamaraj [10] developed an
effective PSO algorithm to reduce line overloads with minimal generational
deviations. Liu et al. [11] used an ant colony technique to solve the congestion
cost problem after transforming it into a nonlinear programming problem.

Sarwar et al. [12] developed an efficient PSO optimizer to ease conges-
tion. Boonyaritdachochai et al. [13] focused on an optimal CM method in
a DPM by applying PSO with time-varying acceleration coefficients. CM
in hybrid electricity markets, combining pool and bilateral transactions, was
demonstrated by Esmaili et al. [14] using a modified Benders decomposition
technique. Bender’s decomposition was used in congestion management, and
an innovative subproblem and convergence criterion was established. Using
the normalized normal constraint method, Hosseini et al. [15] developed
a new effective multi-objective mathematical programming solution strat-
egy. Meta-heuristic-based methodologies proposed by Verma and Mukherjee
[16, 17] have reliable and efficient ways to reduce transmission network
congestion via active generator power rescheduling by using firefly, ant lion
optimizer algorithms.

The Chaotic Darwinian Particle Swarm Optimization (CDPSO) method
proposed by Namilakonda et al. [18] is utilized for establishing the optimal
schedules of demand response loads and the reschedules of conventional
generators to reduce congestion. Sunnah Kim et al. [19] suggested a prob-
abilistic power output model of wind generating resources for network
congestion control. The hybrid PSO-DE and TCR-based method provided
by Divya Asija et al. [20] is suggested for optimum size and position of
the distributed energy storage system (DESS) hence reducing multi-objective
fitness function for managing congestion of each hour in a 24-hour time
frame.
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1.3 Research Gaps

According to previous research, the following flaws in the CM cost evaluation
procedure have been identified, and they are discussed in greater detail here.

* There is a deficiency in a robust algorithm requiring less information
from generator units to determine the number of participating generators
for rescheduling purposes.

* Due to its poor theoretical guarantee, stochastic optimization approaches
provide a probabilistic guarantee of finding the optimal global solution.
It is always preferable to have a GA capable of finding the optimal global
solution with a high success probability.

* Nonexistence capability of immediately restarting search process in GA

* Nonexistence of comparison of the various convergence rate of different
optimization algorithms at one place.

1.4 Contribution of the Current Work
This paper’s objectives can be summarized as follows:

* The suggested ARGA algorithm’s performance is evaluated on IEEE 30
bus standard power system, and the results are reported.

* A comparison was made between the best results obtained by ARGA
and those obtained by various recently reported algorithms such as
RSGA, PSO, and DE. Among the algorithms available for the CM
problem, ARGA is the most efficient.

» Congestion management in a deregulated energy market necessitates the
consideration of a variety of optimization approaches, including con-
vergence rate, optimal rescheduling of generation, minimum congestion
costs, and system losses after and before CM.

In this paper, the primary purpose is to provide a novel optimization
technique for dealing with CM problems in a DPM for various situations
by rescheduling the real power of generators while reducing the cost of
congestion. The ARGA algorithm is being used in this investigation to finish
the task. The primary goal of this study is to assist the ISO in limiting the
overburden of transmission lines in the most efficient manner possible.

The Genetic Algorithm (GA) has been used as one of the most extensively
used global optimization approaches in many works. Although GA can only
provide a probabilistic assurance that the optimal global solution will be
found, it does offer a weak theoretical guarantee like other search approaches.
Finding the optimal global solution with a high probability of success is
always desirable when using a GA. This paper proposes a new GA structure
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that incorporates adaptive restarting and the transfer of chromosomal elites
to improve the algorithm’s success rate in locating the best global solution
to the problem. Several case studies show that the proposed GA structure is
robust when tackling CM problems.

2 Problem Formulation

Congestion control through generator rescheduling is a two-part problem.
Part I of the problem is to determine the sensitivity of the generators for
selecting the participation generators. We’ve managed to create congestion
by employing various contingency tests in this case. Adaptive restarting
genetic algorithm is used for Part II of the problem, which involves optimal
rescheduling generators to reduce congestion. ARGA is used to calculate the
deviation from the preferred schedule of a dispatch.

2.1 Participating Generators Selection

Generator sensitivity factors (GSF) are considered to select participating gen-
erators for the rescheduling process [13]. The GSF represents the variation in
active power flow of a particular congested line due to the produced active
power variation in the i*”* generator. The GSF of the i*" generator is calculated
using Equation (1).

APy,

pq __
GSPY! = A po

()

2.2 Rescheduling of the Sensitive Generators

The GSF values mentioned earlier concern the slack bus as a reference. As a
result, the slack bus generator’s sensitivity to any congested line in the system
is always zero. When a line is congested, the ISO’s job is to identify the
generators with the highest sensitivity values, non-uniform and high in mag-
nitude. The ISO then engages in CM by rescheduling the generator’s active
power outputs as essential to mitigate congestion. The bids obtained from
the participating generators are utilized to compute the cost of congestion.
According to this problem, the objective function is as follows:
Minimize congestion cost (CG).

NPQ
Minimize CG =Y (C} - AP + C{ - APﬁi)}i @)
=1

Subjected to
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1. Equality constraints

(a) Power equilibrium constraint
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(b) Real and reactive power balance equations
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(c) The transmission line’s apparent power flow limits are as follows:
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3 Adaptive Restarting Genetic Algorithm

The essential components of conventional GA are selection, crossover, muta-
tion, and chromosome encoding are shown in Figure 1. In addition to
these, the algorithm structure also impacts the performance of this process.
The ARGA is a framework that aims to improve the efficiency of a genetic
algorithm by developing a structure that can increase its probability of finding
the optimal global solution [21]. As can be seen from Figure 2, there are two
loops in the proposed adaptive restarting GA. The smaller loop is, in essence,
a traditional GA, which involves genetic operators: selection, crossover,
evaluation, and mutation. The second loop contains several novel features
of the ARGA organizational structure; they are given below.

* If the GA becomes trapped in a local optimum, it can restart its search
process based on the adaptive state to escape.
* The GA includes a module for generating local solutions within the GA
loop to maximize the GA’s exploitation.
» Using Taguchi Experimental Design as a foundation, a systematic
approach has been proposed to fine-tune the general algorithm’s param-
eter set so that exploration and exploitation are equally weighted in the
GA’s search for the best global solution. The genetic algorithm has been
restarted in a smaller loop using the obtained high-quality chromosomes.

Each loop is controlled by two termination criteria, one adaptive restarting
condition (s), and one maximum number of generations. If the best solution
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Figure 1 Traditional structure of GA [22].
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Figure 2 Flow chart of adaptive restart genetic algorithm [21].

obtained thus far does not improve after a specified number of consecutive
generations, indicated by parameter s, the GA’s evolutionary process will
be repeated. Consequently, the proposed ARGA would have numerous evo-
lutions, each of which would begin with a different initial population than
the previous evolution. The parameter ‘i’ indicates the number of successive
generations that have passed without improving upon the best solution found
thus far. In contrast, parameters 7 and ¢ reflect the given computing period
and current computing time, respectively. The proposed adaptive restarting
GA can be explored and exploited by appropriate parameters (p,c,m,s,g,r)
selected by users. As depicted in Figure 2, special elite chromosomes (r) will
be updated and transmitted from one evolutionary stage to the next. Finally,
the Taguchi experimental design approach fine-tunes the proposed GA’s
parameters. which include crossover rate (c), population size (p), mutation
rate (m), elite count 2 (r), elite count 1 (g) and adaptive restarting condition
(s). Because of its popularity and robustness, roulette wheel selection is used
in this work. The computing time is used as the termination condition for the
proposed GA.
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4 Implementation of ARGA for CM

Solving the CM problem requires identifying decision variables such as
generator power that must be rescheduled while congestion occurs. Selected
generators are dispatched based on the minimum congestion cost arising
from decision variables (AP,) - AP, stands for adjustable active power and
is the difference in generator output power between the basic case and the
power generation after the ease of congestion. Representation of the decision
variables (AP,) and the construction of the fitness function are two of the
most important aspects to consider when solving any optimization problem.
It is necessary to evaluate the fitness values of each new population. As
part of evaluating the population’s fitness, it is checked to see if any state
variables have been violated. Figure 3 depicts an ARGA-based congestion
management flow chart.

Six factors need to be tuned to maximize the GA performance, as stated
in Section 4. As mentioned in Section 3, Table 1 displays the parameters
and their experimental values. In this article, the crossover and mutation have
given in the number of chromosomes crossed and mutated. Taguchi exper-
imental design approach was used to select the parameters of the proposed
GA, which was designed using the Taguchi Orthogonal Array Design—L25
(55) in MINITAB [23]. Table 2 is a list of the parameters that were selected
for the proposed GA.

5 Results and Discussion

The proposed ARGA was implemented in a python environment to solve the
CM problem given in Equation (2), and its selected parameters are shown in
Table 2. The proposed approach for rescheduling generation is demonstrated
using the IEEE 30 Bus system. Figure A in the appendix section represents
the single line diagram of the IEEE-30 Bus test System. All system data and
power flow analysis have been done using the PANDAPOWER tool [24].
N-1 contingency study is carried out to find severe outages. The different
contingency test cases are listed in Table 3. Table 4 provides the pricing
bids for CM submitted by the generator companies (GENCOS). The N-R
power flow is done in each case, and the overloaded lines are identified.
The anticipated number of power violations on the congested lines and the
characteristics of the congested line are shown in Table 5. Generators’ GSF
values for all test cases are depicted in Figure 4.
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Figure 3 Flow chart of ARGA-based congestion management.
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Table 1 Parameters of the proposed GA and their experimental levels

Level
No Parameter Code 1 2 3 4 5
1 Population size p 20 40 60 80 100
2 Crossover rate c 10 40 70 100 130
3 Mutation rate m 10 20 30 40 50
4 Adaptive restarting condition s 2 5 10 15 20
5 Elite count 1 g 1 3 5 7 9
6 Elite count 2 r 1 5 10 15 20

Table 2 Selected parameter set of the proposed GA
p ¢c m s g r
60 10 50 2 3 10

Table 3 Simulated test cases of the selected test systems
Test System Test Case  Considered Contingency
IEEE 30 bus system Casel Line 2-5 has disconnected, the load on buses 2, 3, 4, and
5 is raised by 35%.
Case2 The load on bus 19 increased by 130% when Line 1-3

disconnected

Case3 Line 3—4 disconnected, and the load at bus 2 increased
by 250%.

Case4 Disconnect line 1-2, and all busloads are raised by 30%.

Table 4 Price bids submitted by GENCOs for IEEE 30 bus system

Bus Incremental Bid Decremental Bid  Bus  Incremental Bid Decremental Bid
Number Cost ($/MWh)  Cost ($/MWh) Number Cost ($/MWh)  Cost ($/MWh)
1 22 18 4 43 37

2 21 19 5 43 35

3 42 38 6 41 39

Test case 1:

Congestion has been caused in test case 1 due to a 2—5-line outage, a 35% rise
in the load on buses 2, 3,4, and 5. From Figure 4, the GSF of the generators G2
and G3 significantly impact the congested line flow. It is possible to entirely
ease this overloading of 58.06 MW by rescheduling generators optimally
using the suggested ARGA. Because the GSF values of generators G2 and
G3 are higher, the adjustment in the generation of these two generators is
considered a control variable (apart from the first generator) for rescheduling.
Initial populations are produced at random within the bounds of the limit.
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Table S Details of congested lines for IEEE 30 bus system

Line Flow (MW)
Test Case  Congested Lines Before CM  After CM  Power Flow Limit (MW)
1 2-6 81.27 64.25 65
4-6 92.76 68.79 90
5-7 102.61 68.5 70
6-7 136.39 95.5 130
1-2 155.66 129.71 130
3 12 196.32 128.05 130
1-3 266.34 128.12 130
4 34 382.84 118.59 130
4-6 134.64 74.62 90

-5 T T T T
case’l case2 casesd cased

Test cases

Figure 4 GSF factors for all test cases.

They are expressed as Ui = {APjg0, APje3; g = 1, 2,...20}. With given
parameters and a maximum of 500 iterations, the best solution was obtained
with the following values: {+5.8817, +31.75}. The solution suggests that
the active power output of generators 2 and 3 has increased (except slack
generator in bus 1). Finally, by executing the N-R power flow, it is possible
to compute slack bus generation. In this case, it is determined that the slack
generator should increase the generation by 13.539. The ARGA approach
yields the lowest possible congestion cost of 1754.874$/MWhr, the lowest
possible cost compared to the RCGA, PSO, and DE methods. The adjusted
active power for congestion management in each test case is listed in Table 6.
As indicated in Table 7, the minimal congestion cost attained by adopting the
proposed ARGA method is the lowest compared to the minimum congestion
costs achieved by previously reported algorithms.
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Table 6 Control variable setting for corrective actions

Generator Adjustment Power for Congestion Net Power
Management (MW) Adjustment
Test Cases APg1 APg2  APgs  APgs  APgs  APgs (MW)
Casel 13.539 5.8817 31.75 0 0 0 51.1707
Case2 —8.607 23.812 0 0 0 0 32.419
Case3 —6.8 60.29 0 0.012 0 0 67.102
Case4 —8.010 83.201 0 10.042  9.52 0 110.5051

Table 7 Congestion cost comparison for various approaches

Congestion Cost ($/MWhr)
Test Case  RCGA PSO DE ARGA
Casel 1837.8 19145 1818.7 1754.874
Case2 671.614 77373 668.41 654978
Case3 17219 21505 14244 1416.206
Case4 2737.2 NR NR 2721.045

*NR — not reported.

40

RCGA
B Pso
DE

B ARGA

N

G3 Ga G5 G6
Generators

Figure 5 Comparison of adjusted generators power about to test case 1.

Comparison of adjusted active power for congestion control in different
evolutionary algorithms is illustrated in Figure 5. Following the application
of CM, the ARGA-based bus voltages have been depicted in Figure 6, which
is a satisfactory result in this case.

Test case 2:

1-2 line has been overloaded in test case 2, causing a power violation
of 25.66 MW, and generators G2 has been used as a control element for
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Figure 7 Comparison of adjusted generators power about to test case 2.

rescheduling. 23.812 MW of power has been increased to generator G2,
and 8.607 MW of power has been reduced from generator G1 to mitigate
congestion. The ARGA method was used to determine the lowest possible
congestion cost of 654.978 $/MWhr. The comparison of adjusted generation
values for different procedures for the test case 2 is depicted in Figure 7.
Figure 8 illustrates the ARGA-based bus voltages for test case 2.

Test case 3:

congestion has been created due to the line 3—4 disconnection, and the load
at bus-2 has grown by 250 percent. The minimal congestion cost calculated
from the ARGA approach is 1416.206 $/MWhr, where one line has over-
loaded, and 70.241 MW power has been violated. As shown in Figure 9,
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Figure 9 Comparison of adjusted generators power about to test case 3.

there is a comparison between the adjusted power of various techniques for
Test Case 3.

Test case 4:

In the final test scenario 4, three lines have been overloaded, and the 280.605
MW power has been violated. The ARGA method has been used to calculate
the minimum congestion cost of 2721.045$/MWhr. Figure 10 illustrates the
comparison of adjusted generation power for different strategies to mitigate
congestion.

The overloads are eased in all scenarios with no load curtailment and
only generation rescheduling. Various heuristic approaches are used to find
solutions, and the results are compared. Compared to DE, RCGA, and PSO,
it is discovered that ARGA provides good solutions.
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Figure 10 Comparison of adjusted generators power about to test case 4.
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Figure 11 Comparison of congestion cost for various approaches for all test cases.

CM has improved social welfare, as evidenced by the reduction in overall
congestion costs indicated in the report. By observing Figure 11, the ARGA
method has minimum congestion cost compared to all approaches. Compar-
ative fitness function convergence characteristics for all test cases are shown
in Figure 12. This graph shows that the suggested ARGA-based approach’s
fitness function has a good convergence profile.

6 Convergence Mobility of ARGA

The convergence rate (CR) is used to conduct the performance evaluation
of ARGA for the suggested CM [25]. Applying this approach will evaluate
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Figure 12 Comparison of convergence characteristics of all test cases.

the CR for each of the algorithms. CR analysis involves the following
steps.

* All algorithms should be the run-up to the maximum number of NFFEs
(Number of objective function evaluation) (NFFEs™?%).

* When solving a minimization problem, determine the minimum objec-
tive function value consistent with the problem’s interest.

* Find the NFFE in which every method has attained minimum fitness
value and set that NFFE as the NFFER,

* Calculate the value of CR for all algorithms by using the Equation (13).

NFFEER

=(1—- ————— 1 1
Ch ( NFFES”““”) 00 (13)
The CR values vary from zero to one (CR € [0, 1]), indicating the
approach evaluation’s best and worst convergence profiles. The best-derived

convergence profiles of the observed test cases are used to calculate the value
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Figure 13 Comparison of average CR of various optimization approaches.

of CR. Figure 13 depicts comparative graphs of the percentage of average CR
for all methods under consideration. Overall, ARGA outperforms the other
evaluated algorithms in this study by a significant margin. It determines that,
among all approaches, ARGA has the lowest fitness cost value and the fastest
convergence characteristics in the vast majority of instances.

7 Conclusion

The proposed adaptive restarting genetic algorithm is highly suitable for the
pool market when congestion develops due to a line failure or a sudden
change in load. To the participating generators, the overall cost of conges-
tion management is regarded as a source of revenue. ISO may bear this
expense or be allocated to individual consumers as uplift costs. The sug-
gested framework has been separated into two primary sections to facilitate
optimization: Generator sensitivity factors pick participating generators in all
test cases. The ARGA algorithm is applied to participating generator outputs
to achieve an optimal congestion cost solution. Compared to PSO, DE, and
RCGA, the ARGA produces the most effective outcomes across all test case
statistical simulations. It is demonstrated by the test results the proposed
method exceeds the standard practice in terms of higher computing precision,
enhanced convergence characteristics, and the ability to search for the most
efficient solution.
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8 Scope of Future Work

* The current research work’s future scope could be expanded to incor-
porate the application of RES or distribution generation (DG). Heuristic
algorithms can discover the best location for the DGs to be deployed to
mitigate congestion by rescheduling the power output.

* Applications of machine learning algorithms (ML) in the power system,
such as a strategy based on reinforcement learning (RL), are expected to
be implemented soon to reduce transmission congestion and blackouts
by acting on the output power of generators in real-time.

Appendix
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Figure A Single line diagram of IEEE-30 bus test system.
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