Frequency Control in an Autonomous
Microgrid Using GA Based
Optimization Technique

H. R. Sridevi*, Shefali Jagwani, Shreeram V. Kulkarni
and H. M. Ravikumar

Nitte Meenakshi Institute of technology, Bengaluru, Karnataka, India
E-mail: sridevi.hr@nmit.ac.in; shefali.jagwani @nmit.ac.in;
shreeram.kulkarni @ nmit.ac.in;, hmrgama @ gmail.com
*Corresponding Author

Received 30 November 2021; Accepted 09 May 2022;
Publication 03 January 2023

Abstract

In recent times the rapid development of distributed energy sources has trans-
formed the conventional electrical grid to a decentralised system. This has
led to the advancement in research of microgrid. In the conventional grid, the
voltage and frequency regulation depends on the speed control of alternators
connected to the grid. But for an autonomous microgrid, the voltage and
frequency has to be regulated independent of the main grid. Deviation in the
frequency occurs whenever there is change in the load and due to inherent
variability of distributed energy sources. This deviation can be regulated by
optimising the droop coefficients using Genetic algorithm (GA). Simulations
have been carried out in MATLAB/SIMULINK for different types of loads
(linear and non-linear) and results are shown for frequency deviation, and
active power sharing of the DGs. The responses for frequency deviations with
and without GA optimizations are presented.
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1 Introduction

The concept of microgrid is an emerging alternative with the advancement
in Distributed energy sources and power electronic devices. Microgrids can
be described as a collection of loads, Distributed Generation (DG) sources
and energy storage devices operating in harmony to provide reliable supply.
Most of the DG sources are connected to the distribution side via Pulse
Width Modulation (PWM) based Voltage Source Inverter (VSI). The modes
in which the microgrid can operate are (i) grid-connected mode (ii) island-
ing mode. In grid connected mode, the microgrid is connected to a host
power system at one connection point called “Point of Common Coupling”
(PCC). It enables to maintain the microgrid at a constant frequency and
permits exchange of power between the microgrid and host power system.
The microgrid control in the grid connected mode provides the active and
reactive power produced by the DGs in order to meet the load requirement.
whereas in an Islanded microgrid, where local generation of power takes
place, independent control of voltage and frequency is required which is
quite challenging as power balance requires implementation of accurate load
sharing mechanisms [1].

Various control strategies are available to balance the power either by
local controllers or central controllers. The microgrid controllers are mainly
responsible for (i) voltage and frequency regulation under any operating
condition. (ii) To ensure appropriate power sharing in both the modes
(iii) a smooth switch over between the two modes. In the centralised
approach, control systems located at the DG units follow commands from
the microgrid’s central controller which requires extensive communication.
The centralised approach has technical and economic constraints mainly
for isolated microgrids. Some of the centralised control strategies include
concentrated control, master/slave control and distributed control. In a decen-
tralised approach the DG units are controlled by the local information.
The decentralised techniques are based on the droop concept [2—4]. In this
method, the DGs make use of droop controllers. These help in deciding
the frequency and voltage of the microgrid depending on the local power
measurements. It is a desired technique to control many inverters connected
in parallel [5]. This control scheme has originated from the concept of power
balance in alternators as seen in a traditional power system. The alternators
adjust sudden increment in the load by reducing the frequency based on
the droop characteristics. In addition, the reactive power is shared between
the DGs according to the droop characteristic in the voltage. In an islanded
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Figure 1 Block diagram of two inverter interfaced DG sources connected in parallel in the
islanded mode.

mode, the droop control is located at the inverters. Whenever there is a
load variation, the output voltage and frequency of VSI based DG units
will change according to the droop characteristics [6—8]. For maintaining
the frequency within the permissible range, the droop coefficients should
be precisely determined. Optimization techniques based on natural selection
like the Swarm intelligence techniques which provide quick and effective
solutions can be used to determine the same. Swarm Intelligence is a type of
Artificial intelligence technique which prototypes the combined behaviour
of the swarms found in nature [9, 10]. Some of the swarm intelligence
algorithms are Genetic Algorithms (GA), Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO) [11-13], Differential Evolution (DE),
Artificial Bee Colony (ABC), Grey Wolf, Grasshopper, Cuckoo Search
Algorithm (CSA) etc.

GA is an optimization and searching process that imitates the concept
of natural evolution, selection and genetics. It provides optimal and near
optimal solutions out of which the best solution can be selected. In this paper
the active droop coefficients are obtained for the regulation of frequency
using GA.

2 Proposed Control Strategy

In this section the control strategy is implemented for an autonomous micro-
grid consisting of two inverter interfaced DG sources connected in parallel.
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Figure 2 The proposed control strategy for the autonomous microgrid.

The block diagram is presented in Figure 1. It comprises of two three
phase inverters, power controller, voltage controller and current controller.
Generation of switching signals for the inverters is obtained by using SPWM
technique. The power controller decides the active and reactive power based
on the droop characteristics. The optimised values of droop coefficients are
obtained using Genetic algorithm. The implementation of current and voltage
controllers are done through conventional PI controllers. Voltage controller
provides the reference current for the filter inductor. The current controller
generates the command voltage for PWM signal generation.

Figure 2 shows the proposed control strategy for the autonomous micro-
grid. The Instantaneous active and reactive powers are given in Equations (1)
and (2) as:

2.1 Power Controller

P = Vodload + Voqioq (D
q= Vodioq - Voqiod (2)

voq = Inverter voltage in d axis frame
1,4 = Inverter current in d axis frame.
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Active and reactive powers corresponding to fundamental component are
obtained using Equations (3) and (4) as follows [14, 15]:

We -
P= 3
s+wc*p 3)

We N
pr— 4
Q s—l—wc*q “)

w. = Cut-off frequency of low pass filter used in the power controller block.
The frequency w is set according to droop gain my, given by Equation (5)

W= wp — My 5

where w, = Nominal frequency, mp = Af/AP. Afis the change in frequency
and AP is the change in active power. Similarly in order to share reactive
power among DGs, an optimised droop controller can be implemented which
is not in the scope of this paper.

2.2 Voltage Controller and Current Controller

The Voltage and current Controllers are implemented in the outer loop and
uses the standard PI controller. The equations for the voltage controller are
given as:

Iidref = Wncf * Voq + kpv (Vodref - Vod) + kiv (Vodref - Vod)
(6)

quref = wan * Vod + kpv (Voqref - Voq) + kiv (Voqref - Voq)
(7)
In the above equations I;jgref, Vodgres are the inverter output dg-axis
currents and voltages respectively. wy, is the nominal system frequency in
radians, kj, and k;, are the voltage controller proportional and integral

constant of the PI controller.
The equations for the current controller are given as:

Vidref - _Wan * ioq + kpi(iodref - iod) + kii(iodref - iod) (8)
Viqref = Wan * iod + kpi(ioqref - ioq) + kii(ioqref - iOq) (9)

Where, kj; and k;; are the current controller proportional and integral
constant of the PI controller.
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3 Optimization Algorithm

Optimization is the process of searching the best optimal solutions among all
the possible solutions by maximizing or minimizing the objective functions.
Genetic Algorithm is one such technique which gives best possible optimum
values. Genetic Algorithm is an optimization and searching process that
mimics the concept of natural evolution, selection and genetics. The the-
ory of evolution by natural selection is carried out in these processes —
Overproduction, variation, selection and adaptation. After all these steps,
Darwin concept of “Survival of the fittest” and “Select the best, discard the
rest” methods came into picture. In this manner, evolution keeps on taking
place until we find our optimized solution [16]. The Figure 3 below depicts
the basic structure of GA.

In the first step population is initialized, then fittest individuals (parents)
are selected. Crossover and mutation on the parents are applied to pro-
duce new off-springs generation. The ones those survive among the best,
moves further to termination point and then optimization result is obtained.
When best survivor off-springs are not selected, the loop process again and
control moves towards the fitness function calculation step. The termination
and best return values are processed through many iterations and best values
are returned. The parameters considered for GA optimization are listed as:
40 as the population size, crossover percentage is 70%, maximum iterations
are considered as 30 and we have considered the cumulative probability with
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Figure 3 Basic Structure for GA optimization algorithm.
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Roulette wheel method for parent selection. From the literature, it is seen that
GA optimization technique gives good performance for load variations.

For optimising the active power droop coefficients, it is necessary to
minimise the objective function (OF) that is the frequency deviation so that it
is within the nominal range when there is change in the load. The OF is given
in Equation (10).

OF = MIN(Af) (10)
The change of load between the DGs should satisfy Equation (11)
Af  Af
— +— = APload (1D
mq mso

Where Af is the frequency deviation of microgrid during load change in
islanded mode, m; is the active droop coefficient of DG1 and my is the active
droop coefficient of DG2 [17-20].

Therefore, the relation between frequency deviation and active droop
coefficients is given by Equation (12) as follows:

Af = — X A:Pload (12)

Selection of optimised droop coefficients using GA reduces the deviation
of microgrid frequency whenever there is change in the load.

4 Simulation Results

The system parameters which are used for the simulation model are listed in
Table 1.

The MATLAB/SIMULINK model is shown in Figure 4. It consists of
two DGs connected in parallel to the load. Simulation results are obtained for

Table 1 System parameters

Controller Parameter Value
DG1 & DG2 DC link voltage 800 V
DGlratings 10 kVA
DG2 ratings 10 kVA
Inverter Filter Capacitance 500 pH

Voltage controller Kp 0.05

Ki 390

Current controller Ky 10.5
Ki 16000
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various types of loads (linear and non-linear). The load is changed at 0.3 secs.
The active power and frequency of the DGs for different loads are shown.
Active power and frequency of DG1 and DG?2 for resistive load (R load)
are shown in the Figure 5. Load is increased at 0.3 s. The active power is
750 W up to 0.3 s and at 0.3 s the value changes to 2000 W. It is observed
that the frequency deviation is well within the nominal range before and after

the load change.
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Figure 5 Active power and frequency for R load.
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Figure 6 Active power and frequency for RL load.
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Figure 7 Active power and frequency for RC load.

DG1 active power and DG2 active power for resistive-inductive (RL load)
is shown in the Figure 6. The value of active power upto 0.3 s is 2200 W and
after the rise in load the DGs supply a power of around 2900 W. It is obvious
from the figure that the frequency deviation is not very significant and does
not cross the boundaries even after change in the load.

For resistive — capacitive (RC load), the DG1 and DG2 active power
and frequency is presented in the Figure 7. The active power is found to be
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Figure 8 Active power and frequency for Rectifier load.
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Figure 9 Overall system frequency variation for various loads.

1200 W upto 0.3 s and later changes to 2800 W at the point of load change.
Variation in frequency for change in the load is within the permissible limits.

Simulation results are shown in Figure 8 for a non-linear load (rectifier).
The Active power is 2640 W before the load changes and after the increase
in load active power is around 3700 W. It is observed that the frequency
deviation is well within the nominal range when the load changes.

The overall system frequency for R, RL and RC loads are shown in the
Figure 9. It is found that with the GA implementation the frequency deviation
is negligible.
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Figure 11 Frequency deviation of the system with and without GA optimization.

From the Figure 10, it is obvious that the frequency settles to 50 Hz after
a sudden load change at 0.3 s for rectifier load. It is inferred that the system
behaves well even for non-linear loads.

From the simulation results shown in Figure 11, it is clear that frequency
deviates beyond the allowable range when optimised values for the droop
coefficients are not used.
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5 Conclusion

Frequency is an important characteristic that effects the power supply relia-
bility and power quality of microgrid. An Optimization method for a droop
controlled islanded microgrid based on the Genetic algorithm has been
implemented. The droop coefficients are optimised such that the frequency
deviation is in the allowable range for any sudden change in the load.
Simulation results are presented that support validity of this optimization.
It is observed that the frequency deviation is well within the nominal value for
various linear and non-linear loads under test. Thus the control strategy pre-
sented in this work enables the use of autonomous microgrid for continuous
and reliable power supply in remote areas.
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