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Abstract

The increase in penetration of renewable energy sources has transformed
the existing grid into a multisource and multipath energy network. For real-
time energy transactions in the new microgrid, it is essential to realize an
energy router interface, which is the core of the energy internet. The energy
router controls the bidirectional energy and data flow and achieves end-
to-end energy transmission efficiently. With this consideration, this article
proposes a new energy routing algorithm based on the knapsack optimization
technique. The proposed work aims to minimize the net energy from the main
grid and efficiently utilize solar photovoltaic (SPV) energy through metic-
ulous energy routing. The effectiveness of the proposed work is validated
for case studies with various types of loads viz residential, non-residential,
and electric vehicle loads. In this work, the best set of loads for optimal
energy routing with minimum energy costs are determined. The results show
a substantial reduction ranging from 16 to 28% in the peak energy drawn
from the grid and at the same time, the cost of electricity to be paid to the
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utility is noticeably reduced in the range of 39% to 50% for various load
types. Further, a sensitivity analysis is carried out to evaluate the effect of
variations in input parameters such as PV output, and load demand on the
cost of electricity.

Keywords: Demand side management, microgrid, direct load control,
knapsack algorithm, energy routing.

Nomenclature
M Metabolic rate
W External work
pa Partial vapour pressure
ta Ambient air temperature
fcl Clothing area factor
tcl Clothing surface temperature
tr Radiant temperature
hc Heat transfer coefficient
Icl Clothing insulation in clothes
var Air velocity

1 Introduction

Microgrids allow the integration of various renewable energy resources
into the distribution systems to manage the increasing electrical energy
demand [1]. Increasing the power generation capacity, adding energy storage
systems, and applying demand-side management (DSM) techniques are the
widely used solutions to address the mismatch in generation and demand.
Implementing DSM techniques is cost-effective compared to other solutions.
The DSM objective is to reshape the load curve by employing suitable
techniques like peak levelling, valley filling, loads shifting, strategic load
growth, strategic conservation, and flexibility in load curve [2–5].

Recently, the concept of internet of energy, wherein energy is exchanged
between consumer and utility or between the consumers, has gained promi-
nence [6]. Energy internet combines smart grid features and the internet of
things (IoT) supporting bidirectional energy flow and peer-to-peer energy
trading [7].

Energy routing algorithms play vital role in energy internet since they
dynamically regulate the energy and exchange real-time information [8–10].
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An energy router with switching functionality is developed for a home energy
management system, which switches between different loads and energy
sources depending on the power rating of the loads and the availability of the
power from renewable energy resources in literature [11, 12]. Authors in [13]
proposed an energy sharing algorithm which shares excess energy between
microgrids An experiential algorithm based on a generic result is presented
in [14], which analyses the route for energy from source to stations to charge
EVs in an energy internet network.

To manage peak energy demand, direct load control of a group of air
conditioners is an economic strategy of demand side management. Effective
design of air conditioner management has the potential to cut the peak load
and electricity cost [15]. Authors in [16] proposed an intelligent algorithm
to decide which air conditioners to turn on/off so that the energy consumed
reaches the target and keeps the customer’s comfort zone. Another control
strategy for air conditioners is proposed in [17], where thermostat set points
are adjusted so that the energy consumption follows desired trajectory using
clustering technique while maintaining customer comfort. In [18], PMV
based fuzzy control algorithm is proposed to balance energy consumption
and occupant’s thermal comfort.

Demand side management strategies are applied for educational insti-
tutions to reduce consumption and achieve savings in literature [19, 20].
A green awareness project is executed to achieve energy savings in schools
using an IoT infrastructure that accomplishes 20% energy savings [21].
In a university campus of Saudi Arabia, supervision of load power demand
and controlling the lighting and thermostats of air condition units is done
using a building energy management system to reduce the electrical energy
consumption [22].

The authors in [23] proposed an optimized home energy management
system for demand-side management where the load scheduling problem was
formulated as a multiple knapsack problem. Direct Load Control (DLC) using
knapsack method is employed in literature [24] for peak levelling of loads
along with backup load management. A priority based day ahead load shifting
technique mapped to multiple knapsack algorithm to mitigate rebound peaks
is proposed in literature [25]. Literature [26] proposed an algorithm based
on knapsack technique to normalize the consumption peaks and manage
residential appliances to keep the overall energy within a specific limit.
Additionally, knapsack technique is used widely for energy efficient rout-
ing in Wireless multimedia Sensor Networks [27] and energy conservation
practices [28].
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In light of the literature survey, a combination of DLC and energy routing
approach has not been implemented so far to the best of the author’s knowl-
edge. With this context, a novel algorithm for thermal comfort model based
DLC and efficient energy routing from the SPV energy source using the knap-
sack method has been attempted in this paper. The versatility and robustness
of the proposed methodology are validated for a Lecture Hall Complex (LHC)
of an academic institution, a residential building, and a community electric
vehicle (EV) charging station. Specifically, the contribution of the paper is
listed as follows:

• Machine Learning models are used for weather forecasting and to
predict load curves.

• DLC is employed for air conditioning loads depending upon the ther-
mal comfort parameters: predicted mean vote (PMV) and predicted
percentage of dissatisfied (PPD).

• Furthermore, the knapsack optimization method is used to route energy
from the SPV source to different loads.

• The proposed methodology is validated through cost-benefit analysis for
various loads and case studies.

The rest of the paper is organized as follows: Section 2 describes the
proposed approach, workflow diagram, and the methodologies adopted. Sec-
tion 3 presents the results and discussions, and Section 4 concludes the
paper.

2 Proposed Methodology

The workflow of the algorithm is represented by a flowchart, as shown in
Figure 1. The time granularity considered is one hour. The inputs to the
algorithm are historical weather information, load energy required, SPV
source output, types of occupants, and their activities. Weather information is
required for two reasons in this proposed work. First is to calculate PMV
and PPD index values which are used for DLC of air conditioners and
second is to calculate the SPV output. The energy requirement for loads
is another input for the proposed algorithm which is used to ascertain the
load selection for routing from alternate source. Additionally, the PMV value
along with depending on the prevailing weather conditions it also depends on
the occupant type and the activity.

The proposed work is divided into three parts which are executed sequen-
tially. In the first fragment, the machine learning technique forecasts the day
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Figure 1 Flowchart for the proposed work.

ahead weather and loads. These are the inputs for the second fragment, which
employs the thermal comfort model. Here, the decision on controlling the air
conditioning loads is taken based on the PMV and PPD values. The knapsack
algorithm then selects the loads to route from the SPV source.

The predicted weather data is used for calculating the PMV and PPD
indexes. If the PMV index is less than −1, air conditioners are strictly
switched OFF. On the other hand, if PMV is more than +1, air conditioners
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are kept ON. Once the air conditioner switching conditions are decided, the
load database is updated accordingly. Then the algorithm checks for the
available energy from the SPV source. Following this the knapsack algo-
rithm selects the loads for routing the SPV energy based on the priority
assigned. The methods used and the implementation of the proposed work are
explained in the subsequent sections.

2.1 Prediction Using Machine Learning Algorithms

Short-term forecasting is carried out in this work using regression tree
models, a popular machine learning algorithm. Short-term forecasts have
an immediate impact on the operation of the building in terms of power
consumption. Hence, they are key components for the operation of energy
management systems of a building. In this proposed work, the decision
on energy routing is taken based on the availability of SPV energy and
the predicted load demand. Therefore, forecasting is an essential tool in
this proposed algorithm. The inputs fed the algorithm are historical load
consumption for eight weeks. The load details for institutional load are
obtained from the class time tables, while, the residential load details are
taken from the reference [29]. On the other hand, the EV data are referred
from literature [30]. Machine learning toolbox of MATLAB is used for
forecasting the data in this proposed work. The model incorporates train and
test method where it uses training dataset to train the model and validation
dataset to test the accuracy of the model. Various machine learning methods,
such as linear regression, regression trees, support vector machines (SVM),
and gaussian process regression (GPR) models, are used to train the given set
of inputs. The accuracy of the model is evaluated in terms of the root mean
square error of the respective models (RMSE) which is as shown in Table 1.
The regression tree model has been selected for forecasting since the model’s
RMSE was the least compared to other models.

Regression techniques predict continuous responses and provide efficient
solutions to complex non-linear problems by employing a divide and rule

Table 1 RMSE comparison
Model RMSE for Classroom Load RMSE for Residential Load
Linear regression 3.7 0.6
Regression trees 0.89 0.040
SVM 3.9 0.66
GPR 1.6 0.043
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strategy. Regression trees have a tree-like structure, starting from the root
node and ending at a leaf node. The root node comprises the entire input sam-
ple called predictors. Children nodes correspond to the sub-divisions obtained
with the best split. The leaf node is the end of the structure, representing the
output called the response [31].

2.2 Thermal Comfort Model

The adapted model describes the level of thermal comfort for a crowd
of people dwelling in a specific location. Environmental factors, physical
activity of the people, and clothing impact the thermal balance. The model
helps in controlling the temperature of a place in such a way as to establish
the wellbeing of the people. The predicted mean vote model is one of the
most widely used thermal comfort models.

‘American society of heating refrigeration and air conditioning engineer
(ASHRAE) standard 55-2004’ uses Fanger’s heat balance equation [32] to
determine the range of thermal comfort. The values used for different cloth-
ing and metabolism in Equations (1)–(4), are summarized in Table 2 [33].
PMV gives the mean value of the ASHRAEs seven-point thermal sensation
rule [34], shown in Table 3. PPD predicts the percentage of individuals
feeling too cool or too hot. Figure 2 shows the variation of PPD with respect
to PMV.

Table 2 Clothing insulation and Metabolism values
Clothing Icl Activity Metabolic Rate
Long sleeve shirt 0.25 Reading, seated 1.0
Short sleeve shirt 0.19 Writing, seated 1.0
Trousers 0.24 Sleeping 0.7
Sandals 0.02 Walking 1.7

Table 3 Seven-point thermal sensation scale [16]
+3 Too hot
+2 Hot
+1 Little Warm
0 Neutral
−1 Little Cool
−2 Cool
−3 Too cool
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The equations to calculate PMV and PPD are adapted from [22] as given
below:

PMV = [0.303 ∗ exp(−0.036 ∗M) + 0.028]

∗ (M−W)− 3.05 ∗ 10−3

∗ [5733− 6.99 ∗ (M−W)− pa]− 0.42

∗ [(M−W)− 58.15]− 1.7 ∗ 10−5 ∗M
∗ (5.867− pa)− 0.0014 ∗M
∗ (34− ta)− 3.96 ∗ 10−8 ∗ fcl
∗ [(tcl + 273)4 − (tr + 273)4]− fcl ∗ hc ∗ (tcl − ta) (1)

tcl = 35.7− 0.028 ∗ (M−W)− Icl ∗ {3.96 ∗ 10−8

∗ fcl ∗ [(tcl + 273)4 − (tr + 273)4] + fcl ∗ hc ∗ (tcl − ta)} (2)

hc =

{
2.38 ∗ |tcl − ta|0.25 for 2.38 ∗ |tcl − ta|0.25 > 12.1 ∗ √var
12.1 ∗ √var for 2.38 ∗ |tcl − ta|0.25 < 12.1 ∗ √var

(3)

fcl =

{
1 + 1290lcl for lcl = 0.078 m2∗K/W
1.05 + 0.645lcl for lcl > 0.078 m2∗K/W

(4)

PPD = 100− 95 ∗ e(−0.03353∗PMV4−0.2179∗PMV2) (5)

As observed from Figure 2, whenever the PMV value deviates from
zero, the number of people feeling discomfort increases correspondingly.
ASHRAE 55 states that thermal comfort can be achieved by achieving an
occupant satisfaction rate of at least 80% using both indices. The PPD ranges

Figure 2 PMV vs. PPD.
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from 5% to 100%, depending on the calculated PMV. In order for comfort
ranges to comply with standards, PPD should not be above 20%. In the
proposed algorithm, the threshold for PMV considered is ±1 which is range
pertaining to the comfort zone of the occupant, beyond which the algorithm
takes action to switch ON/OFF the air conditioner load hence maintaining the
comfort of the dwellers.

2.3 Knapsack Optimization Technique

The knapsack method is a combinatorial optimization problem used for
resource allocation solutions. Because of its resemblance to real-life problem-
solving approach, the Knapsack algorithm is a popular algorithm that has
been the subject of extensive research for decades. Knapsack methods are
used in a wide range of real-world decision-making processes, such as
asset allocations, budget decisions, investment decisions, industrial loading,
economy, and finance etc.

In a conventional knapsack problem, a set of N items, each having a
value of vi and weight wi, are filled into a knapsack of size W while the
net worth of the items inside the knapsack is maximum [35]. Mathematically
it is represented as follows:

Maximize

N∑
i=1

vixi subject to:

N∑
i=1

wixi ≤W, 0 ≤ xi ≤ 1 (6)

The mapping for applying the knapsack method for the routing applica-
tion in the presented algorithm is as follows:

• Lecture halls, residential appliances, and electric vehicles are considered
unique loads.

• The weight of each object is the energy drawn by each load.
• The object’s value is the cost of electrical energy drawn in each time

slot.
• The total SPV energy availability in the considered time slot is the

knapsack size.

At this juncture, the block diagram representation of the proposed work
is shown in Figure 3. The proposed framework consists of an energy router,
grid-interactive rooftop SPV source, loads and data logger. The algorithm first
collects the data from the data logger based on which forecasting is done.

Consequently, the updated load database and available electrical energy
are fed into the energy router. The energy router directs the energy from
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Figure 3 Block diagram representation of the proposed system.

the SPV plant to the loads following the priority assigned by the knapsack
algorithm based on the prevailing conditions. A value to weight ratio is, i.e.,
energy drawn to the cost of electrical energy is calculated and prioritized. The
algorithm directs the energy from SPV to the load starting from the load with
the highest priority. This procedure is carried out until a load energy require-
ment exceeds the SPV energy. The remaining loads are directed towards the
main grid.

3 Results and Discussions

The proposed work is implemented in the MATLAB platform and validated
for three types of loads: institution building, residential building, and com-
munity electric vehicle charging station. The location considered for the work
receives abundant solar energy with 5.8 kWh/m2/day average insolation and
is shown in Figure 4. The ambient temperature at the considered place for
a day is shown in Figure 5 which is a vital factor for analysing the thermal
comfort of the occupants while carrying out DLC for air conditioners.

Load type 1: This is a complex of lecture halls at the National Institute
of Technology Tiruchirapalli, Tamilnadu, India. The lecture hall complex
consists of 18 lecture halls, a waiting room, toilets, etc. The algorithm is
executed for working days of the institute, i.e., from Monday to Friday and
between 8 AM and 5 PM. The details of loads in a lecture hall are given in
Table 4. The capacity of the SPV plant installed is 100 kWp located over the
rooftop of the lecture hall complex. The energy requirement of each load of
LHC is shown in Figure 6.
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Figure 4 Average irradiation at the selected location.
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Figure 5 Ambient temperature at the selected location.

Table 4 Loads of the lecture hall
Type of Load Air Conditioner Tube Lights Projector
Rating (kW) 1815 55 250
No. of loads 2 8 1

Load type 2: In this type of load, a residential building is investigated. The
algorithm is executed throughout the day. The loads considered are household
appliances, and their corresponding ratings are given in Table 5. All the loads
are assumed to consume constant energy throughout the connection period.
The capacity of the rooftop SPV plant is 2 kWp in this case. The total energy
consumed for the LHC, and residential loads is given in Table 6. The energy
consumed by residential loads is shown in Figure 7.
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Table 5 Loads of the residential building
Type Washing Air
of Load Machine Lights Fan Television Fridge Conditioner Heater
Rating (kW) 500 200 240 55 200 1200 1000

Table 6 Energy drawn per day
Total Energy Consumed (kWh)

Day LHC Residential
Monday 816.95 20.24
Tuesday 963.81 20.095
Wednesday 943.94 19.54
Thursday 983.41 20.54
Friday 709.45 19.04
Saturday – 23.14
Sunday – 28.64

Load type 3: A community charging station for electric vehicles is contem-
plated in this type. EV arrival and departure time are modeled as a Gaussian
distribution method, a widely adopted method. The EV arrival and departure
time data are taken from reference [30] and are shown in Figure 8. The mean
value for the arrival time is 19.62, and the standard deviation value of 3.62.
The departure time has a 10.53 mean value and a 3.26 standard deviation
value. A total of 50 EVs with different power ratings are considered for this
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Table 7 Electric vehicle details
Capacity Maximum Usable Min Full Charging

Model [kWh] Capacity [kWh] Capacity [kWh] Time [h]
Tesla Roadster 53 47.7 5.3 3.5
Audi Q4 82 73.8 8.2 1.05
Mercedes eqc 80 72 8 0.5
Volkswagen 36.8 33.12 3.68 3.2
Renault twingo 22 19.8 2.2 2.03
Fiat 500e 24 21.6 2.4 3.39
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654 S. Nethravathi and V. Murali

study since each consumer will have different EVs in a community. The
details of EVs considered are given in Table 7 which were taken from the
manufacturer datasheets.

Figures 9(a), 9(b), and 9(c) show the energy drawn for one day by
the LHC, residential building, and electric vehicles in a community and
the corresponding SPV energy available on the same day. In Figure 9(a),
classroom load is constant and hence the energy consumed is also constant
in a day. In Figure 9(b), the energy drawn varies hourly because of the
switching ON/OFF the residential appliances. Whereas in Figure 9(c), EVs
are charged as and when they arrive, and therefore energy drawn from the
grid is concentrated from 11th to 23rd hour.
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Table 8 Selected LHs for energy routing in LHC
Case 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Case 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Case 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Lecture Halls

The algorithm checks the SPV energy availability at a particular time slot
and, following the knapsack method, selects the loads to cater for from SPV
source. For LHC load, eight lecture hours are planned in a day, each of fifty
minutes duration. As for residential loads, the loads are operated at a specific
time based on the user behavior. The EV load depends on the arrival and
departure times. The algorithm is executed at every hour to decide the energy
flow route at the beginning of each hour. Energy routing selects the LHs,
residential loads, and electric vehicles that will receive the SPV energy.

For LHC load, three case studies are executed in the proposed work.
Case 1 is when no DLC is applied, and only the routing algorithm is executed.
In Case 2, DLC is applied to one of two air conditioners in each lecture hall,
while the other is left ON throughout the day. In case 3, both air conditioners
of the lecture halls are controlled based on the DLC approach. Table 8 shows
one such routing strategy for the first lecture hour of the Thursday schedule.
The shaded cells in the table represent the selected LHs for the routing.
Because DLC is not used for the air conditioner loads in Case 1, the energy
required is higher, and thus SPV energy only serves a few classrooms, i.e.,
only five LHs (3, 4, 9, 10, 16). Case 2 includes a few more LHs for routing
from the SPV source, namely seven LHs (8, 11, 12, 13, 14, 16, 18). Because
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Table 9 Selected loads for energy routing in residential building
Case 1 1 2 3 4 5 6 7
Case 2 1 2 3 4 5 6 7

Residential Loads

Table 10 Selected EVs for energy routing in EV routing
12th hour 1 2 3 4 5 6 7 8 9 10 11 12 13
13th hour 1 2 3 4 5 6 7 8 9 10 11 12 13
14th hour 1 2 3 4 5 6 7 8 9 10 11 12 13

Electric Vehicles

of the use of DLC for air conditioners, the total energy required by loads of
LHs is now slightly less than in case 1. For case 3, the number of LHs chosen
for energy routing from the SPV source increases to ten (1, 7, 11–18) because
of control of two air conditioners.

Two case studies are performed for a residential load: one where only
energy routing is executed without DLC for air conditioners, and another
where both DLC and energy routing are executed. Table 9 shows one such
routing application for the residential load on Saturday at 8 AM. Only two
loads (4, 7) are selected for routing from SPV energy in Case 1. In case 2,
the loads for routing from the SPV source increase to three (1, 3, 4) since air
conditioner is appropriately controlled based on thermal comfort model.

For the third type of load, each EV is assigned an identification number
and treated as an individual load. For a given EV arrival time, the router
directs energy from SPV to EV based on the priority assigned, which is
determined by the SoC of the EV’s battery. The remaining EVs are charged
from the main grid. Table 10 shows few instances of energy routing for
the EVs selected. It is observed that, at 12th hour of the day, only one EV
is selected for routing. In the following hour, two EVs are selected and in
the subsequent hour, three EVs are selected. This process repeats until SPV
energy is exhausted in a day.

The load curves for the LHC and residential building in a week for all the
case studies conducted are shown in Figures 10(a) and 10(b), respectively.
As observed, the energy consumed by loads is less with DLC application for
air conditioners. Energy consumed further reduces with the knapsack based
energy routing.

Figure 10(c) shows the load curve for an electric vehicle charging station.
Since most EVs arrive in the evening, direct energy routing from SPV source
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to EV charging is for a smaller duration. Nevertheless, the SPV energy is
stored in batteries and utilized later.

Figures 11(a) and 11(b) depict the cost of electricity each day for one
week for the three cases discussed in this work. For LHC considered, the cost
incurred in case 2 is reduced by 26% compared to case 1 for each working
day of the week considered. Similarly, the cost of electricity for case 3 is
lessened by an average of 31% compared to case 1 and decreased by an
average value of 13% compared to case 2. With residential load, the cost
of electricity is reduced by 19% for case 1 and with case 2 implementation,
the cost is reduced by 40% against base case when no control is applied.

Figure 11(c) shows the reduction in cost for EV charging from grid and
SPV source. It is observed from the graph that the cost is zero for a few
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hours of a day since all EVs are charged with the SPV source. The EVs
are charged from the grid during the rest of the time. As observed, there is
approximately an 50% reduction in the charges incurred with implementing
the proposed work.

Even after energy routing, some SPV energy remains above the load
energy requirement. After routing to the loads, the remaining SPV energy
is pumped to the grid which is shown in Figures 12(a), 12(b) and 12(c) for
institution building, residential building, and EV loads, respectively. Accord-
ing to the regulations of Tamilnadu Electricity Board, a consumer must pay
for the variance between import and export of energy with solar net-meter
installation. The difference in import and export of energy is more in case 3
among all the three cases and hence the billing amount is also reduced.
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Figure 12(b) Percentage of power sent to the grid for residential load.
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Figure 12(c) Percentage of power sent to the grid for EV load.

Furthermore, sensitivity analysis is performed to assess the effects of
changing input parameters on daily electricity charges. For sensitivity eval-
uation, the effects of ±10% change in input parameters such as PV output
variations and load demand are considered in this study. The change in the
cost with input parameter variation is compared against the cost incurred with
predicted values of the input parameters.

In this context, the effects of varying the load are evaluated and are
given in Figures 13(a), 13(b), and 13(c). It is observed that for every ±10%
change in the input parameter, the cost variation is 9.7%, 15% and 11% for
institution, residential and EVCS loads respectively.

Similarly, the output of the SPV source varies relative to partial shading or
a cloudy atmosphere. To assess this condition, the effect of variation of SPV
source output on the electricity charges variation was analysed and are shown
in Figures 14(a), 14(b), and 14(c). It is observed that the cost of electricity
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Figure 13(a) Sensitivity analysis for varying institution load.
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Figure 13(b) Sensitivity analysis for varying residential load.
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Figure 14(a) Sensitivity analysis for varying SPV output-institution load.
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Figure 14(b) Sensitivity analysis for varying SPV output-residential load.
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variation for every 10 % change in SPV output is 11%, 5% and 13% for
institution, residential and EV charging station loads respectively.

In India, electrical energy is majorly generated through coal-based ther-
mal energy plants, releasing a substantial amount of carbon dioxide (CO2).
An average of 980 g of CO2 is released to the atmosphere by thermal
energy plants for one unit (kWh) of electricity generation [36, 37]. With the
installation of SPV power plant, on average, there is a reduction of 65% in
CO2 emissions over a week for LHC load, 33% reduction in CO2 emissions
for residential loads, and 70% reduction for EV charging through SPV.

4 Conclusions and Future Scope

There are numerous DSM techniques currently available for both residen-
tial and non-residential loads. This paper has presented a novel algorithm
employing a thermal comfort model and knapsack algorithm for DLC of
air conditioners followed by energy routing from SPV source. The proposed
work is applicable to any other type of load with a variable number of loads.
For the proposed work, three types of loads were validated: an institution’s
lecture hall complex, a residential building, and a community EV charging
station. Various case studies were examined for each type of load, and a
comparison among the case studies w.r.t. energy reduction and the cost
reduction has been done. The major conclusions of the proposed work are:

• On an average there is a peak load reduction of 26% for institutional
load, 28% for residential load and 16% for EV charging stations per day.

• When electricity charges are considered, the cost is reduced by 31% for
institutional loads, 49 % for residential loads, and 50% for EV charging
stations.

• Furthermore, the user earns additional revenue by pumping excess
energy from the SPV source to the grid.

• In addition, sensitivity analysis was performed to assess the impact of
variations PV output and load demand on the cost of electricity. It is
observed that a variation of 5%–15% in the cost incurred is observed
with variations of the input parameters.

• The user’s comfort is not jeopardized since the proposed algorithm
continuously assesses the thermal comfort of the occupants.

The proposed methodology will be extended to the Internet of Things
in the future to create an Internet of Energy for a group of consumers.
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Additionally, the sizing of renewable energy sources to convert an existing
building into a net-zero energy building will be evaluated.
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