Techno-Economic and Environmental Based Approach for Planning of SDG and DSTATCOM with Impact of Network Reconfiguration using APSO and TLBO

Bikash Kumar Saw^{1,*}, Aashish Kumar Bohre¹, Jalpa Thakkar² and Mohan Lal Kolhe^{3,*}

¹Department of Electrical Engineering, NIT Durgapur, West Bengal, Durgapur-713209, India ²Department of Electrical Engineering, UPL University of Sustainable Technology, Ankleshwar-393135, India ³Faculty of Engineering and Science, University of Agder, PO Box 422, NO 4604, Kristiansand, Norway E-mail: bks.18ee1105@phd.nitdgp.ac.in; aashishkumar.bohre@ee.nitdgp.ac.in; jalpathakkar001@gmail.com; mohan.l.kolhe@uia.no * Corresponding Author

> Received 26 January 2023; Accepted 24 February 2023; Publication 10 July 2023

Abstract

A Multi Objective based Fitness Function (MO_{FF}) is proposed for the optimum planning of multiple Solar Distributed Generation (SDG) and DSTATCOM with radial distribution network (RDN) reconfiguration impact for techno-economic and environmental benefit improvement. The Adaptive-Particle Swarm Optimization (APSO) and Teaching-Learning Based Optimization techniques (TLBO) are employed to accomplish this work. In the proposed MO_{FF} , the Active Power Loss (AP_{Loss}), Reactive Power Loss (RP_{Loss}), System Voltage Deviation (SV_D), Fault-Current

Distributed Generation & Alternative Energy Journal, Vol. 38_5, 1585–1608. doi: 10.13052/dgaej2156-3306.38510 © 2023 River Publishers

Level-of-Line (FCL_{Line}), and System Service Reliability (SS_R) are considered. The economic-benefit measures along with Environmental Emissions Components (EEC) impact have also been considered in light of various system costs such as Fixed Capital Recovery Cost (FCR_{Cost}), Energy Loss Cost (EL_{Cost}) and Energy Not Supplied Cost (ENS_{Cost}). The novelty in the MO_{FF} is the simultaneous consideration of FCL_{Line} with AP_{Loss}, RP_{Loss}, SV_D, and SS_R along with EEC impact calculation. The IEEE 69 and 118 bus RDN is considered with three case studies to demonstrate the proposed methodology's usefulness. The result analysis reveals that better performances can be obtained based on the considered MO_{FF} in terms of environment-friendly techno-economic perspective, consistency, convergence, and computation time using TLBO rather than APSO.

Keywords: Solar-distributed generation, distribution STATic COMpensator, tie-switch, environmental emission components, adaptive-particle swarm optimization, teaching-learning based optimization.

List Abbreviations

Solar-Distributed Generation
Distribution STATic COMpensator
Radial Distribution Network
Tie-Switch
Adaptive-Particle Swarm Optimization
Teaching-Learning Based Optimization
Active Power Loss
Reactive Power Loss
System Voltage Deviation
Fault-Current Level-of-Line
System Service Reliability
Environmental Emissions Components
Fixed Capital Recovery Cost
Energy Loss Cost
Energy Not-Supplied Cost
Index of Active Power Loss
Index of Reactive Power Loss
Index of System Voltage Deviation
Index of Fault-Current Level-of-Line
Index of System Service Reliability

MO
FFMultiple Objective based Fitness FunctionPSDGActive Power generated from SDGQDSTATReactive Power generated from DSTATCOM

1 Introduction

The distribution system is one of the vital parts of the power system. But nowadays, innovations in every area are rapidly increasing worldwide. These innovations and their mobilization in the society, increases the electricity demand for the distribution system. It causes severe techno-economic and environmental issues: power loss, poor voltage profile, lousy service reliability, economic loss and increased environmental emissions owing to many equipment failures. Hence, to meet the increased electricity demand, the different types of Distributed Generations (DGs) can be integrated by addressing the techno-economic and environmental issues.

The numerous DGs and their technology are discussed in [1]. The Backwards-Forward Sweep Load Flow Analysis (BFS-LFA) technique is explained in the literature [2] and [3]. In [4], Mixed Integer Non-Linear Programming (MINLP) was utilised in DG allocation for 33-bus and 69-bus IEEE RDN to reduce APLoss & SVD. The APSO and TLBO are illustrated in [5] and [6], respectively. Researchers provided several methods for DG allocation-planning in the distribution system [7–9]. The many technologies that can be used in DGs to generate renewable energy close to the user side are listed in [10]. In [11-14], the authors have proposed optimal DG planning using the PSO, Bat Algorithm (BA) and Genetic Algorithm (GA) and their comparative analysis. The author of [15] introduces the minimization of loss and reliability indices as a goal via appropriate RDN reconfiguration. DGs are characterized in [16] according to how much power they inject. The different LFA techniques and IEEE test systems data are provided in [17]. The reconfiguration planning for 33-bus and 69-bus IEEE RDN has been completed in [18, 19] using GA and PSO. The many DG type concepts and how they are implemented utilising various ways to enhance system components are covered in [20–23]. The [24–27], provides an explanation of the planning of grid-connected and standalone hybrid renewable systems, including SDG and wind systems. In [28], a fuzzy-logic-based Non-dominant Sorting Genetic Algorithm NSGA-II (ENSGA-II) approach is used to maximise the network's economic, technological, reliable, and environmental features. In contrast, in [29], using the Immune Algorithm (IA), the best position and size for DSTATCOM are obtained with less power loss, lower

installation costs for DSTATCOM, and better bus voltage and current profiles. The best possible strategic planning for solar, batteries, and FACTS devices has been provided in [30, 31]. To reduce losses and total harmonic-distortion in voltage, DG planning has been done using an Evolutionary Algorithm (EA) [32]. The literature [33] explains reconfiguration planning with DG of a 33-bus and 69-bus IEEE RDN using the Mixed Integer Linear Programming (MILP) considering ZIP load model. In [34], a QP_{Loss} reduction planning approach for 69-bus IEEE RDN has been presented by optimally incorporating DGs and capacitors. In the 94-bus Portuguese practical RDN, the optimum sizing and placement of DGs have been implemented, where the noted results show that the AP_{Loss} and SV_{D} decreased to 77.82%, and 9.68%, respectively [35]. In [36], by taking into account the seasonal-variation of load and DGs based on the objective to reduce the SV_D , SS_R , and economic benefit with reduction in $AP_{\rm Loss}$ and greenhouse gas emission. The DGs have been implemented in an optimized reconfigured 33-bus and 69-bus IEEE RDN using hybrid PSO and Dragonfly Algorithm (DA). The [37] aims to enhance the 33-bus and 69-bus IEEE RDN planning via network reconfiguration and DG integration. This has been done to reduce the loss and improve the considered system quality of solution through data dispatch using Water Cycle Algorithm (WCA). The protective devices coordination planning with reconfiguration and DG integration has been carried out to reduce APLoss and SV_D, using Firefly Algorithm (FA) and EA for 33-bus, 69-bus, and 118-bus IEEE RDN, respectively, in [38]. In [39], 33-bus and 69-bus IEEE RDN with a real 83 bus system have considered reducing the annual energy loss by decreasing SV_D and AP_{Loss} using intelligent search-based TLBO (IS-TLBO) via reconfiguration with DG planning. The analysis for planning and operation of DGs, DSTATCOM, capacitor, and renewable resources has been carried out for various distribution networks using different optimization techniques [40–44]. In [45], the author has proposed a grid-connected hybrid micro-grid analysis with the impact of PE_{F} .

The above literature's state-of-the-art review reveals that the distribution system experiences significant techno-economic and environmental issues such as AP_{Loss} , RP_{Loss} , SV_D , lousy SS_R and poor fault current tolerance capability, i.e., high FCL_{Line} with huge EEC and cost. It causes the distribution system suffers from deprived service quality. Therefore, to improve the service quality of the distribution system, the AP_{Loss} , RP_{Loss} , SV_D , EEC and cost parameters are needs to be minimized with enhanced SS_R and FCL_{Line}. It has also been noticed that none of the work in existing literatures had considered all these technical issues simultaneously as objectives for

addressing the service quality of the distribution system. Hence, this is the motivation factor behind this proposed work with all these issues as novel $MO_{\rm FF}$. Therefore, in this work, the optimum planning of multiple SDG and DSTATCOM with reconfiguration impact for techno-economic and environmental benefit improvement is carried out efficiently using the APSO and TLBO techniques based on the considered $MO_{\rm FF}$.

Hence for the analysis, three case studies have been presented, (i) Proposed Study-0 (PS-0): Base case study, it is the case without any modification in the system, (ii) Proposed Study-1 (PS-1): optimum planning of multiple SDG & DSTATCOM, and (iii) Proposed Study-2 (PS-2): optimum planning of multiple SDG & DSTATCOM with RDN reconfiguration impact.

The proposed work of this paper is organized into following five sections: The Introduction and the Modelling of SDG and DSTATCOM are the first and second sections, respectively, of this five-section article. The Proposed Methodology and $MO_{\rm FF}$ is presented in the third part. The fourth and fifth sections are devoted to Results & Discussion, and Conclusion, respectively, which conclude the projected work based on the techno-economic parameter with EEC impact taken into consideration.

The following are the originality and noteworthy contributions reported in this paper:

- This paper proposes an innovative MO_{FF} which is comprised of five key technical problems such as AP_{Loss}, RP_{Loss}, SV_D, poor SS_R and high FCL_{Line}, i.e., poor fault current tolerance capability.
- (2) In the MO_{FF} , an index for the improvement of tolerance level/capacity of fault (short circuit) current has been taken into account as an FCL_{Line}.
- (3) The system's economic viewpoint has taken into account based on different costs: Fixed Capital Recovery Cost (FCR_{Cost}), Energy Loss Cost (EL_{Cost}), and Energy Not Supplied Cost (ENS_{Cost}).
- (4) The impact of Environmental Emission Components (EEC): Carbon Dioxide (CO₂), Sulfur Dioxide (SO₂), & Nitrogen Oxide (NO_X) have also been considered as environmental performance parameters.
- (5) By using the APSO and TLBO, the MO_{FF} is optimised for the optimum SDG and DSTATCOM allocation while taking into account the effect of network reconfiguration.
- (6) The comparative result analysis using APSO and TLBO has been presented to verify the suggested work's techno-economic with environmental emission impact effectiveness for 69 and 118 bus IEEE RDN. The outcomes are also compared with more current published research.

2 Modelling of Solar Distributed Generation and DSTATCOM

Power generation from renewable SDG (P_{SDG}) can overcome power sector dependency on fossil-fuels [23, 24]. The formulas for calculating power output and efficiency are (1) and (2).

$$P_{SDG} = aH\eta^{SDG} \tag{1}$$

$$\eta^{SDG} = \eta^{STC} [1 + \zeta (T^{cell} - 25)] \tag{2}$$

Where P_{SDG} is SDG output power, *a* is the area of the panel in meter square (m²), and *H* is the incident solar-radiation which is measured in watts per square metre (W/m²). Efficiency is calculated by the η^{SDG} and η^{STC} in predetermined operating circumstances in established test scenarios (STC). The temperature of the cell is T^{cell} in degrees Celsius, and the coefficient ζ is shown as a percentage per degrees Celsius.

The DSTATCOM is considered as a reactive power DG (Q_{DSTAT}) for this work. In (3) and (4), an estimation of the equation for the correction of angle and voltage by DSTATCOM current injection is given [27–31]. After installing DSTATCOM on the $(y + 1)^{th}$ bus, the current I_k and I_{DSTAT} flow over the line simultaneously. The DSTATCOM's reactive power injection for the $(y + 1)^{th}$ bus voltage correction is shown in (5):

$$\angle I_{DSTAT} = \frac{\pi}{2} + \varepsilon'_{y+1} \tag{3}$$

$$V_{y+1}^{\prime} \angle \theta_{y+1}^{\prime} = V_{y}^{\prime} \angle \theta_{y}^{\prime} - (R_{y} + jX_{y}) \left\{ I_{y} \angle \delta + I_{DSTAT} \angle \left(\frac{\pi}{2} + \varepsilon_{y+1}^{\prime}\right) \right\}$$
(4)

$$Q_{DSTAT}^{Injection} = (V'_{y+1} \angle \theta'_{y+1}) \left\{ I_{DSTAT} \angle \left(\frac{\pi}{2} + \varepsilon'_{y+1}\right) \right\}^*$$
(5)

The injected current by DSTATCOM (I_{DSTAT}) and angle change (ε'_{y+1}) will become zero when the voltage is the same after and before installing DSTATCOM in the $(y+1)^{th}$ bus, that is when $V'_{(y+1)} = V_{(y+1)}$.

3 Proposed Methodology & Multi-Objective Fitness-Function

This section includes the formulation of novel $MO_{\rm FF}$ and optimization techniques. The $MO_{\rm FF}$ in (6) comprises significant core technical issues: indices

for active power loss (IAP_{Loss}), reactive power loss (IRP_{Loss}), system voltage deviations (ISV_D), system service reliability (ISS_R) and Fault-Current Level-of-Line (IFCL_{Line}), respectively.

$$MO_{FF} = \beta_1 \times IAP_{Loss} + \beta_2 \times ISV_D + \beta_3 \times IRP_{Loss} + \beta_4 \times IFCL_{Line} + \beta_5 \times ISS_R$$
(6)

The modelling of indices for the formulation of the novel $\mbox{MO}_{\rm FF}$ are as follows:

$$IAP_{Loss}^{\delta} = \frac{AP_{Loss}^{\delta}}{AP_{Loss}^{\rho}} \tag{7}$$

$$IRP_{Loss}^{\delta} = \frac{RP_{Loss}^{\delta}}{RP_{Loss}^{\rho}} \tag{8}$$

$$ISV_D^{\delta} = max\left(\frac{\Delta V^{\delta}}{v_{ref}}\right) \tag{9}$$

$$IFCL_{Line}^{\delta} = \frac{FCL_{Line}^{\delta}}{FCL_{Line}^{\rho}}$$
(10)

$$ISS_{R}^{\delta} = \frac{Total \ MVA \ Intrupted \ Power^{\delta}}{Total \ MVA \ Intrupted \ Power^{\rho}} \tag{11}$$

The system cost parameters (FCR_{Cost}, EL_{Cost}, and ENS_{Cost}) are defined as [11]:

$$FCR_{Cost} = \mu \sum_{BR=1}^{N^{BR}} C^{BR}$$
(12)

$$EL_{Cost} = 8760 \times C_l \times \phi \times \sum_{BR=1}^{N^{BR}} (I^{BR})^2 \times R^{BR}$$
(13)

$$\lambda = 0.15 \times \psi + 0.85 \times \psi^2 \tag{14}$$

$$ENS_{Cost} = C_i \times ENS \tag{15}$$

Where, ρ = Proposed Study-0 (PS-0), δ = Proposed Study-1 & 2 (PS-1 & PS-2), and V = Voltage at each bus. The branch numbers, current of respective branch, BRth branch resistance, main feeders BRth branch cost,

the fixed-cost annual-recovery rate, the factor of load, & factor of loss are represented by using the variables N^{BR}, I^{BR}, R^{BR}, C^{BR}, μ , λ , & ψ .

Environmental Emission Components (EEC): CO_2 , SO_2 , and NO_X have also been considered as environmental performance parameters. It is assumed the grid utility that supplies power to the consumers has conventional generation as thermal power generation; hence the EEC are involved in it. These EEC have a detrimental impact on both the environment and human health. The CO_2 , SO_2 , and NO_X each have Pollutant Emission Factors (PE_F) of 632.0 g/kWh, 2.74 g/kWh, and 1.34 g/kWh, respectively [45].

$$EEC^{\rho \ or \ \delta} = PE_F \times P_{GRID}^{\rho \ or \ \delta} \tag{16}$$

This work is carried out using APSO and TLBO techniques [5, 6]. The optimal solution of the MO_{FF} can be obtained using APSO and TLBO by initializing the system parameters as swarm and class, respectively. The detailed procedure to find the optimal solution for the presented work using APSO and TLBO based on the MO_{FF} is given in Figure 1.

4 Results and Discussion

The optimum planning of multiple SDG and DSTATCOM with RDN reconfiguration impact using the APSO and TLBO based on the considered $MO_{\rm FF}$ is presented in this work. For the result analysis of this work, the BFS-LFA has been used. The IEEE 69 [17] and 118 [38] bus RDN is considered with three case studies (PS-0, PS-1 and PS-2) to demonstrate the proposed methodology's effectiveness.

4.1 Analysis of 69-Bus IEEE RDN

The obtained results using APSO and TLBO for PS-0, PS-1 and PS-2 are illustrated in Tables 1–5 and Figures 2–5 in a comparative manner. In PS-0, the AP_{Loss} is 0.225 MW, RP_{Loss} is 0.1022 MVAr, maximum SV_D is 0.1908 p.u., FCL_{Line} is 6.6534 kA, and the SS_R is 84.36%, as shown in Table 3 and Figures 3–5. In this case, the CO₂ is 2546.96 kg/h, SO₂ is 11.0422 kg/h, and NO_X is 5.4002 kg/h, as tabulated in Table 5.

In PS-1 using APSO, the three SDG ($P_{\rm SDG}$) and three DSTATCOM ($Q_{\rm DSTAT}$) are optimally allocated at buses 51, 50 and 62 with their respective optimal sizes as shown in Table 1. For this implementation, the MO_{FF} is converged and minimized to 0.1094 in 100 trials (T_r) for 100 iterations with an approximate computation time (t_c) of 1083.4572 seconds per T_r .

Techno-Economic and Environmental Based Approach for Planning 1593

Figure 1 Flowchart for APSO & TLBO.

Hence, it's a global solution of APSO for MO_{FF} optimization, as illustrated in Table 2 and Figure 2(a). The PS-1 result analysis shows that the AP_{Loss} is 0.0168 MW, RP_{Loss} is 0.0081 MVAr, and the maximum SV_D is 0.1217 p.u. In addition, the FCL_{Line} is 0.4234 kA, and the SS_R is 95.97%, demonstrated in Table 3 and Figures 3(a)–5(a). Consequently, the economic benefit characteristics have improved with a reduced total cost of 25129.2262 \$/year, which was 112876.87 \$/year in PS-0. It has been achieved because the FCR_{Cost}, EL_{Cost}, and ENS_{Cost} are reduced to 18230.3271, 5842.7864 and 1056.1127 \$/year, respectively, given in Table 4. The environmental emissions CO₂, SO₂, and NO_X are decreased to 1219.0648 kg/h, 5.2852 kg/h, and 2.5847 kg/h compared to PS-0, i.e., the PS-0 has more influence of EECs as shown in Table 5.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								- -	E				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								Uptimal	lie-Swi	tch Status			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		P _{SDG} (M	(M)	-	QDSTAT (1	MVAr)		Location	(S1-S5 fo	r 69-Bus &			Test
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	es P _{SDC}	1 PSDG2	2 P _{SDG3}	QDSTAT1	QDSTA	$T_2 Q_D$	STAT3	(Loc)	S ¹ -S ⁹ fo	r 118-Bus)	Techniqu	e Sy	/stem
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0											69)-Bus
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1.04	1.17	1.63	0.45	0.33		1.24	51, 50, 62		1	APSO		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1.58	3 2.23	0.49	-0.31	1.30	•	0.43	28, 61, 2() 1, 1,	1, 0, 1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1.84	0.40	1.50	1.02	0.49		0.28	61, 24, 49		I	TLBO		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 0.68	1.83	3.40	1.09	1.43	Ĩ	0.88	11, 62, 4	1, 1,	1, 1, 1			
	0								·	1		185	8-Bus
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2.85	3 2.63	4.38	7.72	1.75	J).66	29, 74, 5(1	APSO		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 7.57	0.00	2.41	-0.72	0.61)	06.0	7, 118, 11	1 1, 1, 1, 1, 1,	1, 1, 1, 1, 1, 1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 4.64	1 2.43	2.01	3.79	1.84		3.33	32, 75, 11		1	TLBO		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	2 3.52	2.38	7.01	2.40	1.00		1.75	65, 112, 5	5 1, 1, 1, 1, 1,	1, 1, 1, 1, 1			
Study/ IRPLoss IRPLoss ISV _D IFC Technique IAP. APSO TLBO APSO TLBO APSO APSO				Table 2	2 The MC	$ m O_{FF}$ of 69)-bus and	118-bus II	JEE RDN				
Technique IAP _{Loss} IRP _{Loss} ISV _D IF Technique APSO TLBO APSO TLBO APSO TLBO APSO Fschnique APSO TLBO APSO TLBO APSO TLBO APSO Fs-1 0.0749 0.0571 0.0738 0.1107 0.0092 0.063 Fs-1 0.5544 0.3842 0.5148 0.3651 0.0947 0.0465 0.379 Fs-1 0.5544 0.3842 0.5148 0.3651 0.0947 0.0456 0.379	ly/											Trial	
Technique APSO TLBO APSO	hnique	IAP_{Loss}	IRP _{Lost}	s IS'	$V_{\rm D}$	$\text{IFCL}_{\text{Line}}$		ISS_R	$MO_{\rm FF}$	Computat	ion Time	Run	
Technique APSO TLBO APSO TDSO DSO DSO <thdso< th=""> DSO DSO</thdso<>												For	Test
PS-1 0.0749 0.0571 0.0791 0.0738 0.1107 0.0092 0.063 PS-2 0.0426 0.0486 0.05776 0.0585 0.0970 0.0070 0.060 PS-1 0.5544 0.3842 0.5148 0.3651 0.0947 0.0445 0.379 PS-1 0.5544 0.3842 0.5148 0.3651 0.0947 0.0445 0.379	hnique AP	SO TLBO	APSO TI	BO APSO	TLBO A	PSO TL	BO APS(0 TLBO	APSO TLBO	APSO	TLBO	Both S	ystem
PS-2 0.0426 0.0486 0.0576 0.0585 0.0970 0.0070 0.060 PS-1 0.5544 0.3842 0.5148 0.3651 0.0947 0.0445 0.379	1 0.0	749 0.0571	0.0791 0.0	0738 0.1107	0.0092 0.	0636 0.0	281 0.258	30 0.1987	0.1094 0.0607	1083.4572	978.5176	100 6	9-Bus
PS-1 0.5544 0.3842 0.5148 0.3651 0.0947 0.0445 0.379	2 0.0	426 0.0486	0.0576 0.0	0585 0.0970	0.0070 0.	0604 0.02	210 0.256	64 0.1224	0.0834 0.0547	1189.8050	1077.5111	100	
	1 0.5;	544 0.3842	0.5148 0.3	3651 0.0947	0.0445 0.	3791 0.5.	307 0.600	0.7140	0.4099 0.3504	2208.7320	1707.7821	100 11	18-Bus
PS-2 0.3243 0.2671 0.3516 0.2394 0.0429 0.0332 0.351	2 0.32	243 0.2671	0.3516 0.2	2394 0.0429	0.0332 0.	3519 0.3'	748 0.580	0 0.5971	0.2891 0.2522	2472.1958	2181.1785	100	

Techno-Economic and Environmental Based Approach for Planning 1595

			,	,							
Study/											
Technique	$AP_{\rm Loss}$	5 (MW)	$RP_{\rm Loss}$	(MVAr)	SV_D	(p.u.)	FCL _{Li}	ne (kA)	SS_{R}	in %	Test
Technique	APSO	TLBO	APSO	TLBO	APSO	TLBO	APSO	TLBO	APSO	TLBO	System
PS-0	0.225	0.225	0.1022	0.1022	0.1908	0.1908	6.6534	6.6534	84.36	84.36	69-Bus
PS-1	0.0168	0.0128	0.0081	0.0075	0.1217	0.1053	0.4234	0.1914	95.97	96.61	
PS-2	0.0109	0.0102	0.0059	0.0040	0.1067	0.1070	0.4018	0.0006	95.99	98.14	
PS-0	1.2981	1.2981	0.9787	0.9787	0.2312	0.2312	22.7339	22.7339	98.33	98.33	188-Bus
PS-1	0.7197	0.4987	0.5039	0.3574	0.1947	0.1445	8.6183	12.0640	99.00	98.81	
PS-2	0.4210	0.3468	0.3441	0.2343	0.1429	0.1332	8.0008	8.5201	99.03	99.00	

Table 3 $\ \ AP_{\rm Los}, RP_{\rm Loss}, SV_{\rm D}, FCL_{\rm Line},$ and $SS_{\rm R}$ of both the systems

Table 4 ~ The FCR $_{\rm Cost}, ENS _{\rm Cost},$ and $EL_{\rm Cost}$

Study/									
Technique	FCR _{Cos}	t (\$/Year)	EL_{Cost}	(\$/Year)	ENS_{Cos}	t (\$/Year)	Total Cos	t (\$/Year)	Test
Technique	APSO	TLBO	APSO	TLBO	APSO	TLBO	APSO	TLBO	System
PS-0	18230.3271	18230.3271	78051.833	78051.833	16594.715	16594.715	112876.87	112876.87	69-Bus
PS-1	18230.3271	18230.3271	5842.7864	3795.1948	1056.1127	631.8908	25129.2262	22657.4126	
PS-2	18247.2055	18247.2055	3322.2765	3677.7492	1002.1959	347.8743	22571.6779	22272.8290	
PS-0	33338.9837	33338.9837	450302.7888	450302.7888	56701.8942	56701.8942	540343.6667	540343.6667	188-Bus
PS-1	33338.9837	33338.9837	249649.9576	173002.3069	21495.4521	30089.5192	304484.3934	236430.8097	
PS-2	38151.9331	38151.9331	146030.8638	120290.2567	19955.3341	21250.4248	204138.1310	179692.6147	
PS-0 PS-1 PS-2	33338.9837 33338.9837 38151.9331	33338.9837 33338.9837 38151.9331	450302.7888 249649.9576 146030.8638	450302.7888 173002.3069 120290.2567	56701.8942 21495.4521 19955.3341	56701.8942 30089.5192 21250.4248	22371.6779 540343.6667 304484.3934 204138.1310	22272.8290 540343.6667 236430.8097 179692.6147	188-Bus

Table 5 Environmental Emission (E_E) in PS-0, PS-1, and PS-2 for 69 and 118 bus RDN

	$E_{\rm E}$ in PS	-0 (kg/h)	E _E in PS-	-1 (kg/h)	$E_{\rm E}$ in PS	Test	
EEC	APSO	TLBO	APSO	TLBO	APSO	TLBO	System
$\overline{\text{CO}_2}$	2546.96	2546.96	1219.0648	705.4584	473.4312	352.5296	69-Bus
SO_2	11.0422	11.0422	5.2852	3.0584	2.0525	1.5283	
NO_{x}	5.4002	5.4002	2.5847	1.4957	1.0038	0.7474	
CO_2	15174.32	15174.32	8930.16	8563.60	8310.80	6408.48	188-Bus
SO_2	65.7874	65.7874	38.7162	37.1270	36.0310	27.7836	
NO_{x}	32.1734	32.1734	18.9342	18.1570	17.6210	13.5876	

Figure 2 MO_{FF} of the 69-bus IEEE RDN using; (a) APSO, (b) TLBO.

In PS-2 using APSO, the three $P_{\rm SDG}$ and three $Q_{\rm DSTAT}$ are optimally allocated at buses 28, 61 and 20 with the impact of five reconfiguration tieswitches. If any tie-switch (S) is active, then S will be 1; else, 0. The optimal values of $P_{\rm SDG}$, $Q_{\rm DSTAT}$ and S are given in Table 1. The optimized value

Figure 3 System voltage profile of 69-bus IEEE RDN using; (a) APSO, (b) TLBO.

Figure 4 Active Power Loss of 69-bus IEEE RDN using; (a) APSO, (b) TLBO.

Figure 5 Reactive Power Loss of 69-bus IEEE RDN using; (a) APSO, (b) TLBO.

of $MO_{\rm FF}$ using APSO is converged at 0.0834 in 100 T_r for 100 iterations with an approximate t_c of 1189.8050 seconds per T_r, as illustrated in Table 2 and Figure 2(a). The PS-2 result includes the AP_{Loss} of 0.0109 MW, RP_{Loss} of 0.0059 MVAr, maximum SV_D of 0.1067 p.u., FCL_{Line} of 0.4018 kA, and SS_R of 95.99%, are illustrated in Table 3 and Figures 3(a)–5(a) respectively. Afterwards, the total cost is reduced to 22571.6779 \$/year, which was 112876.87 \$/year in PS-0, which reveals economic benefit improvement. It has been achieved as the FCR_{Cost}, EL_{Cost}, and ENS_{Cost} are reduced to

18247.2055, 3322.2765 and 1002.1959 \$/year, respectively, given in Table 4. The production of CO_2 , SO_2 , and NO_X has also been decreased in PS-2 using APSO with the value of 473.4312 kg/h, 2.0525 kg/h, and 1.0038 kg/h, respectively compared with PS-0 and PS-1 as seen in Table 5.

Similarly, the implementation of PS-1 and PS-2 using TLBO is performed, and its corresponding optimal values for P_{SDG} , Q_{DSTAT} , bus locations and S are tabulated in Table 1. For PS-1, the MO_{FF} is optimized to 0.0607 in 100 T_r for 100 iterations with an approximate t_c of 978.5176 seconds per T_r, as given in Table 2 and Figure 2(b). The PS-1 outcomes reveal that the AP_{Loss} is 0.0128 MW, RP_{Loss} is 0.0075 MVAr, maximum SV_D is 0.1053 p.u., FCL_{Line} is 0.1914 kA, and SS_R is 96.61%, shown in Table 3 and Figures 3(b)–5(b). The cost related to FCR_{Cost}, EL_{Cost}, and ENS_{Cost} are reduced to 18230.3271, 3795.1948 and 631.8908 \$/year, respectively, given in Table 4. Inevitably, the economic benefit has enhanced with a reduced total cost of 22657.4126 \$/year, which was 112876.87 \$/year in PS-0. The reduced EECs such as CO₂, SO₂, and NO_X are 705.4584 kg/h, 3.0584 kg/h, and 1.4957 kg/h, respectively compared to PS-0, which can be seen in Table 5.

Interestingly for PS-2 implementation, the MO_{FF} is optimized to 0.0547 using TLBO in 100 T_r for 100 iterations with an approximate t_c of 1077.5111 seconds per T_r which is a global solution, illustrated in Table 2 and Figure 2(b). The PS-2 results using TLBO include the AP_{Loss} of 0.0102 MW, RP_{Loss} of 0.0040 MVAr, maximum SV_D of 0. 1070 p.u., FCL_{Line} of 0.0006 kA, and SS_R of 98.14%, shown in Table 3 and Figures 3(b)–5(b). Consequently, the economic benefit characteristics have been increased with a reduced total cost of 22272.8290 \$/year, which was 112876.87 \$/year in PS-0. It has been achieved as the FCR_{Cost}, EL_{Cost}, and ENS_{Cost} are reduced to 18247.2055, 3677.7492 and 347.8743 \$/year, respectively, given in Table 4. The production of EECs viz CO₂, SO₂, and NO_X are reduced to 352.5296 kg/h, 1.5283 kg/h, and 0.7474 kg/h, respectively as presented in Table 5. This is because the most percentage of the demand power is supplied by the planned renewable SDGs.

4.2 Analysis of 118-Bus IEEE RDN

The comparative result analysis of 118 bus RDN for PS-0, PS-1 and PS-2 using APSO and TLBO is illustrated in Tables 1 to 5 and Figures 6 to 9. For PS-0, the AP_{Loss} is 1.2981 MW, RP_{Loss} is 0.9787 MVAr, maximum SV_D is 0.2312 p.u., FCL_{Line} is 22.7339 kA, and the SS_R is 98.33%, demonstrated in Table 3 and Figures 7–9. In this case, the CO₂ is 15174.32 kg/h, SO₂ is 65.7874 kg/h, and NO_X is 32.1734 kg/h, as tabulated in Table 5.

Figure 6 $MO_{\rm FF}$ of the 118-bus IEEE RDN using; (a) APSO, (b) TLBO.

Figure 7 System voltage profile or system voltage deviation of 118-bus IEEE RDN using; (a) APSO, (b) TLBO.

Figure 8 Active Power Loss of 118-bus IEEE RDN using; (a) APSO, (b) TLBO.

Figure 9 Reactive Power Loss of 118-bus IEEE RDN using; (a) APSO, (b) TLBO.

The implementation of three P_{SDG} and three Q_{DSTAT} in PS-1 using APSO are simultaneously allocated at buses 29, 74 and 50 with their optimal sizes, as shown in Table 1. Hence for PS-1, the MO_{FF} is optimized to 0.4099 using APSO in 100 T_r for 100 iterations with an approximate t_c of 2208.7320 seconds per T_r, illustrated in Table 2 and Figure 6(a). With this PS-1 implementation, the AP_{Loss}, RP_{Loss}, maximum SV_D, and FCL_{Line} are reduced to 0.7197 MW, 0.5039 MVAr, 0.1947 p.u., and 8.6183 kA, respectively, mentioned in Table 3 and Figures 7(a)–9(a). In addition, the economic benefit and SS_R have also improved; their related values are given in Table 4. The environmental emissions CO₂, SO₂, and NO_X are decreased to 8930.16 kg/h, 38.7162 kg/h, and 18.9342 kg/h compared to PS-0, i.e., the PS-0 has more influence of EECs as shown in Table 5.

In PS-2 using APSO, the simultaneous optimal placement of three P_{SDG} and three Q_{DSTAT} at 7, 118 and 111 buses are carried out with the impact of nine reconfiguration tie-switches. The optimal values of P_{SDG} , Q_{DSTAT} and S are given in Table 1. The $MO_{\rm FF}$ is optimized to 0.2891 in 100 T_r for 100 iterations with an approximate t_c of 2472.1958 seconds per T_r for PS-2 using APSO. It is clear that this is a global solution of APSO for this MO_{FF} optimization, illustrated in Table 2 and Figure 6(a). These DGs allocations in PS-2 reveal a reduction in AP_{Loss}, RP_{Loss}, and maximum SV_D, with enhanced fault current tolerance capability and SS_R, as illustrated in Table 3 and Figures 7(a)-9(a). In the same instance, the total cost is reduced to 204138.1310 \$/year, as it was 540343.6667 \$/year in PS-0; hence the economic benefit has increased. It's achieved as the FCR_{Cost}, EL_{Cost}, and ENS_{Cost} are reduced to 38151.9331, 146030.8638 and 19955.3341 \$/year, respectively, given in Table 4. The production of CO₂, SO₂, and NO_X has also decreased in PS-2 using APSO with the value of 8310.80 kg/h, 36.0310 kg/h, and 17.6210 kg/h, respectively compared with PS-0 and PS-1 as seen in Table 5.

Similarly, using TLBO, the PS-1 and PS-2 are implemented separately, and their corresponding optimal values for P_{SDG} , Q_{DSTAT} , bus locations and S are tabulated in Table 1. For PS-1, MO_{FF} is optimized and converged at 0.3504 in 100 T_r for 100 iterations with an approximate t_c of 1707.7821 seconds per T_r, illustrated in Table 2 and Figure 6(b). The obtained technical parameters result includes the AP_{Loss} of 0.4987 MW, RP_{Loss} of 0.3574 MVAr, maximum SV_D of 0.1445 p.u., FCL_{Line} of 12.0640 kA, and SS_R of 98.81%, given in Table 3 and Figures 5(b)–7(b). Correspondingly, the economic benefit has increased with the reduction in FCR_{Cost} of 33338.9837, EL_{Cost} of 173002.3069, and ENS_{Cost} 30089.5192 \$/year, respectively, given

Table 6Comparison of the proposed work with other already-published works of 69-busand 118-bus RDN

Existed/Work	Method of	69-Bus RD	N Loss (kW)	118-Bus RD	N Loss (kW)
Proposed	Optimization	Magnitude	% Reduction	Magnitude	% Reduction
Rahim, M. N. A.,	FA	126.8	43.64	659.17	49.22
et al. [38]	EA	150.4	33.15	712.29	45.12
Kanwar, Neeraj,	TLBO	42.25	81.22	—	—
et al. [39]	IS-TLBO	39.63	82.38	—	—
Proposed	APSO	10.9	95.15	421.00	67.57
Work	TLBO	10.2	95.47	346.80	73.28

in Table 4. The reduced EECs such as CO_2 , SO_2 , and NO_X are 8563.60 kg/h, 37.1270 kg/h, and 18.1570 kg/h, respectively compared to PS-0, which can be seen in Table 5.

Finally, for PS-2, the MO_{FF} is converged and optimized to 0.2522 value using TLBO in 100 T_r for 100 iterations with an approximate t_c of 2181.1785 seconds per T_r, shown in Table 2 and Figure 6(b). The obtained results include the AP_{Loss} of 0.3468 MW, RP_{Loss} of 0.2343 MVAr, maximum SV_D of 0.1332 p.u., FCL_{Line} of 8.5201 kA, and SS_R of 99.00%, shown in Table 3 and Figures 7(b)–9(b). Consequently, the economic benefit characteristics have improved with a reduced total cost of 179692.6147 \$/year, which was 540343.6667 \$/year in PS-0. It has been achieved because the FCR_{Cost}, EL_{Cost}, and ENS_{Cost} are reduced to 38151.9331, 120290.2567 and 21250.4248 \$/year, respectively, given in Table 4. The production of EECs viz CO₂, SO₂, and NO_X are reduced to 6408.48 kg/h, 27.7836 kg/h, and 13.5876 kg/h, respectively as presented in Table 5. This is because the most percentage of the demand power is supplied by the planned renewable SDGs.

Hence the final proposed work, i.e., PS-2 results using APSO and TLBO, are compared with existing research from the literature [38, 39] in Table 6 and evaluated its efficacy. As a result of this analysis, it is noted that the Table 3 results are significantly better than the existing ones.

5 Conclusion

This paper proposes a techno-economic and environmental based approach for the optimum planning of multiple SDG and DSTATCOM with network reconfiguration impact. The APSO and TLBO techniques are employed to accomplish this work. In the MO_{FF} , the AP_{Loss} , RP_{Loss} , SV_D , FCL_{Line} , and

SS_R of the RDN are simultaneously considered to enhance the service quality of the distribution system. The economic-benefit measures, along with the impact of environmental emission components, have also been addressed in light of various system costs, such as FCR_{Cost}, EL_{Cost}, and ENS_{Cost}. The IEEE 69 and 118 bus RDN are considered with three case studies to demonstrate the effectiveness of the proposed methodology. These three case studies (PS-0, PS-1, and PS-2) results for 69 and 118 bus RDN are presented in the result and discussion section in a close comparative manner for analysis using the APSO and TLBO. In this analysis, the value of AP_{Loss} is 0.0096 & 0.0102 MW, $RP_{\rm Loss}$ is 0.0059 & 0.0040 MVAr, $SV_{\rm D}$ is 0.1067 & 0.1070 p.u., and SS $_{\rm R}$ is 95.99% & 98.14%, respectively are achieved using APSO & TLBO for PS-2 of 69 bus RDN. In contrast, the FCL_{Line} is reduced to 0.4018 & 0.0006 kA, which was 6.6534 kA in PS-0 using APSO & TLBO. Consequently, the fault current tolerance capability of the RDN has improved by 93.96% & 99.99%. Similarly, for 118 bus RDN, in PS-2 using APSO & TLBO, the AP_{Loss} is 0.4210 & 0.3468 MW, RP_{Loss} is 0.3441 & 0.2343 MVAr, $SV_{\rm D}$ is 0.1429 0.1332 p.u., and $SS_{\rm R}$ is 99.03% & 99.00%, respectively. In contrast, the FCL_{Line} is 8.0008 & 8.5201 kA, which was 22.7339 kA in PS-0 using APSO & TLBO. Consequently, the fault current tolerance capability of the RDN has improved by 64.81% & 62.52%. It has also been noticed that the environmental emissions, total cost, and total power generation for both 69 and 118 bus RDNs have decreased; therefore, the system's environmental and economic benefits have improved. The comparative result analysis reveals that better performances have been achieved based on the considered MO_{FF} in terms of techno-economic and environmental perspective, consistency, convergence, and computation time using TLBO rather than APSO. Hence, the proposed work based on the novel MO_{FF} is superior compared to the existing ones, which signifies the usefulness of this work.

References

- Ackermann, Thomas, Göran Andersson, and Lennart Söder. "Distributed generation: a definition." Electric power systems research 57.3 (2001): 195–204.
- [2] Teng, Jen-Hao. "A direct approach for distribution system load flow solutions." IEEE Transactions on power delivery 18.3 (2003): 882–887.
- [3] Díaz, Guzmán, Javier Gómez-Aleixandre, and José Coto. "Direct backward/forward sweep algorithm for solving load power flows in AC

droop-regulated microgrids." IEEE Transactions on Smart Grid 7.5 (2015): 2208–2217.

- [4] Alam, Afroz, et al. "Power loss minimization in a radial distribution system with distributed generation." 2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). IEEE, 2018.
- [5] Zhan, Zhi-Hui, et al. "Adaptive particle swarm optimization." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39.6 (2009): 1362–1381.
- [6] Kumar, Sumit, et al. "Multi-objective teaching-learning-based optimization for structure optimization." Smart Science 10.1 (2022): 56–67.
- [7] Kennedy, James, and Russell Eberhart. "Particle swarm optimization." Proceedings of ICNN'95-international conference on neural networks. Vol. 4. IEEE, 1995.
- [8] Eberhart, Russell, and James Kennedy. "A new optimizer using particle swarm theory." MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, 1995.
- [9] Haddow, B. P., and G. Tufte. "Goldberg DE Genetic Algorithms in Search, Optimization and Machine Learning." Addison-Wesley Longman Publishing Co. In Proceedings of the 2000 Congress on, 2010.
- [10] Dulãu, Lucian Ioan, Mihail Abrudean, and Dorin Bicã. "Distributed generation technologies and optimization." Procedia Technology 12 (2014): 687–692.
- [11] Bohre, Aashish Kumar, Ganga Agnihotri, and Manisha Dubey. "Optimal sizing and sitting of DG with load models using soft computing techniques in practical distribution system." IET generation, transmission & distribution 10.11 (2016): 2606–2621.
- [12] El-Zonkoly, A. M. "Optimal placement of multi-distributed generation units including different load models using particle swarm optimization." IET generation, transmission & distribution 5.7 (2011): 760–771.
- [13] Ochoa, Luis F., Antonio Padilha-Feltrin, and Gareth P. Harrison. "Evaluating distributed time-varying generation through a multi-objective index." IEEE Transactions on Power Delivery 23.2 (2008): 1132–1138.
- [14] Prakash, Ram, and B. C. Sujatha. "Optimal placement and sizing of DG for power loss minimization and VSI improvement using bat algorithm." 2016 National Power Systems Conference (NPSC). IEEE, 2016.
- [15] Sedighizadeh, M., M. Esmaili, and M. M. Mahmoodi. "Reconfiguration of distribution systems to improve reliability and reduce power losses

using imperialist competitive algorithm." Iranian Journal of Electrical and Electronic Engineering 13.3 (2017): 287–302.

- [16] Prakash, D. B., and C. Lakshminarayana. "Multiple DG placements in distribution system for power loss reduction using PSO algorithm." Procedia technology 25 (2016): 785–792.
- [17] R. D. Zimmerman, C. E. Murillo-S´anchez (2020). Matpower (Version 7.1) [Software]. Available: https://matpower.orgdoi:10.5281/zenodo.4 074135.
- [18] Swarnkar, Anil, Nikhil Gupta, and K. R. Niazi. "A novel codification for meta-heuristic techniques used in distribution network reconfiguration." Electric Power Systems Research 81.7 (2011): 1619–1626.
- [19] Reddy, AV Sudhakara, and M. Damodar Reddy. "Optimization of network reconfiguration by using particle swarm optimization." 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). IEEE, 2016.
- [20] Hien, Nguyen Cong, Nadarajah Mithulananthan, and Ramesh C. Bansal. "Location and sizing of distributed generation units for loadability enhancement in primary feeder." IEEE systems journal 7.4 (2013): 797–806.
- [21] Hung, Duong Quoc, and Nadarajah Mithulananthan. "Multiple distributed generator placement in primary distribution networks for loss reduction." IEEE Transactions on industrial electronics 60.4 (2011): 1700–1708.
- [22] Hung, Duong Quoc, Nadarajah Mithulananthan, and R. C. Bansal. "Analytical expressions for DG allocation in primary distribution networks." IEEE Transactions on energy conversion 25.3 (2010): 814–820.
- [23] Georgilakis, Pavlos S., and Nikos D. Hatziargyriou. "Optimal distributed generation placement in power distribution networks: models, methods, and future research." IEEE Transactions on power systems 28.3 (2013): 3420–3428.
- [24] Sawle, Yashwant, S. C. Gupta, and Aashish Kumar Bohre. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system." Renewable and Sustainable Energy Reviews 81 (2018): 2217–2235.
- [25] Lujano-Rojas, Juan M., Rodolfo Dufo-Lopez, and José L. Bernal-Agustín. "Technical and economic effects of charge controller operation and coulombic efficiency on stand-alone hybrid power systems." Energy Conversion and management 86 (2014): 709–716.

- [26] Olatomiwa, Lanre, et al. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria." Renewable Energy 83 (2015): 435–446.
- [27] Giraud, Francois, and Zyiad M. Salameh. "Steady-state performance of a grid-connected rooftop hybrid wind-photovoltaic power system with battery storage." IEEE transactions on energy conversion 16.1 (2001): 1–7.
- [28] Ghatak, Sriparna Roy, Surajit Sannigrahi, and Parimal Acharjee. "Multiobjective approach for strategic incorporation of solar energy source, battery storage system, and DSTATCOM in a smart grid environment." IEEE Systems Journal 13.3 (2018): 3038–3049.
- [29] Taher, Seyed Abbas, and Seyed Ahmadreza Afsari. "Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm." International Journal of Electrical Power & Energy Systems 60 (2014): 34–44.
- [30] Hosseini, Mehdi, and Heidar Ali Shayanfar. "Regular paper modeling of series and shunt distribution FACTS devices in distribution systems load flow." J. Electrical Systems 4.4 (2008): 1–12.
- [31] Acha, Enrique, et al. FACTS: modelling and simulation in power networks. John Wiley & Sons, 2004.
- [32] Kadir, Aida Fazliana Abdul, et al. "Optimal placement and sizing of distributed generations in distribution systems for minimizing losses and THD_v using evolutionary programming." Turkish Journal of Electrical Engineering & Computer Sciences 21. Sup. 2 (2013): 2269–2282.
- [33] Gupta, Yusuf, et al. "Volt–Var Optimization and Reconfiguration: Reducing Power Demand and Losses in a Droop-Based Microgrid." IEEE Transactions on Industry Applications 57.3 (2021): 2769–2781.
- [34] Mahmoud, Karar, and Matti Lehtonen. "Simultaneous allocation of multi-type distributed generations and capacitors using generic analytical expressions." IEEE Access 7 (2019): 182701–182710.
- [35] Malik, Muhammad Zeeshan, et al. "Strategic planning of renewable distributed generation in radial distribution system using advanced MOPSO method." Energy Reports 6 (2020): 2872–2886.
- [36] Vempalle, Rafi, and P. K. Dhal. "Optimal Placement of Distributed Generators in Optimized Reconfigure. Radial Distribution Network using PSO-DA Optimization Algorithm." 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM). IEEE, 2020.

- [37] Muhammad, Munir Azam, et al. "Distribution network planning enhancement via network reconfiguration and DG integration using dataset approach and water cycle algorithm." Journal of Modern Power Systems and Clean Energy 8.1 (2019): 86–93.
- [38] Rahim, Mohamad Norshahrani Abdul, et al. "Protection coordination toward optimal network reconfiguration and DG sizing." IEEE Access 7 (2019): 163700–163718.
- [39] Kanwar, Neeraj, et al. "Optimal allocation of DGs and reconfiguration of radial distribution systems using an intelligent search-based TLBO." Electric Power Components and Systems 45.5 (2017): 476–490.
- [40] Singh, Bharat, and Ashwani Kumar Sharma. "Impact of D-STATCOM and OLTC with Integrated Volt/var Control in Distribution System for Power Loss Minimization and Voltage Control." Smart Science (2022): 1–21.
- [41] Hemmatpour, Mohammad Hasan. "Optimum interconnected islanded microgrids operation with high levels of renewable energy." Smart Science 7.1 (2019): 47–58.
- [42] Mahdad, Belkacem. "Novel Adaptive Sine Cosine Arithmetic Optimization Algorithm For Optimal Automation Control of DG Units and STATCOM Devices." Smart Science (2022): 1–22.
- [43] Rajendran, Arulraj, and Kumarappan Narayanan. "Multi-Objective Hybrid WIPSO–GSA Algorithm-Based DG and Capacitor Planning for Reduction of Power Loss and Voltage Deviation in Distribution System." Smart Science 6.4 (2018): 295–307.
- [44] Srinivasarathnam, C., Chandrasekhar Yammani, and Sydulu Maheswarapu. "Multi-objective jaya algorithm for optimal scheduling of DGs in distribution system sectionalized into multi-microgrids." Smart Science 7.1 (2019): 59–78.
- [45] Bohre, Aashish Kumar, Parimal Acharjee, and Yashwant Sawle. "Analysis of grid connected hybrid micro-grid with different utility tariffs." 2021 1st International Conference on Power Electronics and Energy (ICPEE). IEEE, 2021.

Biographies

Bikash Kumar Saw received the B.E. degree in Electrical & Electronics Engineering from the Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India, in 2012, the M.Tech. degree in Electrical Engineering from the Indian Institute of Technology (Indian School on Mines) Dhanbad, India, in 2016. Presently he is working toward Ph.D. degree from the National Institute of Technology Durgapur, India, in Electrical Engineering. He has four and half years of teaching experience. His current research interests include distributed generation, FACTS devices, plug-in electric vehicles, optimization technique applications in distribution system planning, and smart grid.

Aashish Kumar Bohre (MEMIEEE500) received M.Tech. and Ph.D. from Maulana Azad National Institute of Technology Bhopal, India in 2011 and 2016, respectively. Presently he is an Assistant Professor in the Department of Electrical Engineering, National Institute of Technology Durgapur, India. His research interests include distribution system planning, distributed generation, power system optimization & control, renewable generation, voltage security and stability analysis, electric vehicle, and application of optimization techniques for power system problems.

Jalpa Thakkar is working as an Associate Professor in Electrical Engineering Department at UPL University of Sustainable Technology in India. She has done Masters in Electrical Power System Engineering with Gold Medal from Gujarat Technological University and PhD in Electrical Power Transmission Management. She has more than a decade of Experience in Academics and Research in the Field of Electrical Engineering.

Mohan Lal Kolhe is currently a Full Professor of smart grid and renewable energy at the Faculty of Engineering and Science, University of Agder, Norway. He is a leading renewable energy technologist with three decades of the academic experience at an international level. He has held various academic positions at prestigious universities. He has successfully won competitive research funding from the prestigious research councils (e.g., Norwegian Research Council, EU, EPSRC, BBSRC, NRP, etc.) for his work on sustainable energy systems. His research work in energy system have been recognized within the top 2% of scientists globally by Stanford University's 2020, 2021 matrices.