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Abstract

A Multi Objective based Fitness Function (MOFF) is proposed for
the optimum planning of multiple Solar Distributed Generation (SDG)
and DSTATCOM with radial distribution network (RDN) reconfigura-
tion impact for techno-economic and environmental benefit improvement.
The Adaptive-Particle Swarm Optimization (APSO) and Teaching-Learning
Based Optimization techniques (TLBO) are employed to accomplish this
work. In the proposed MOFF, the Active Power Loss (APLoss), Reac-
tive Power Loss (RPLoss), System Voltage Deviation (SVD), Fault-Current
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Level-of-Line (FCLLine), and System Service Reliability (SSR) are
considered. The economic-benefit measures along with Environmental Emis-
sions Components (EEC) impact have also been considered in light of
various system costs such as Fixed Capital Recovery Cost (FCRCost), Energy
Loss Cost (ELCost) and Energy Not Supplied Cost (ENSCost). The novelty
in the MOFF is the simultaneous consideration of FCLLine with APLoss,
RPLoss, SVD, and SSR along with EEC impact calculation. The IEEE 69
and 118 bus RDN is considered with three case studies to demonstrate
the proposed methodology’s usefulness. The result analysis reveals that
better performances can be obtained based on the considered MOFF in
terms of environment-friendly techno-economic perspective, consistency,
convergence, and computation time using TLBO rather than APSO.

Keywords: Solar-distributed generation, distribution STATic COMpensator,
tie-switch, environmental emission components, adaptive-particle swarm
optimization, teaching-learning based optimization.

List Abbreviations
SDG Solar-Distributed Generation
DSTATCOM Distribution STATic COMpensator
RDN Radial Distribution Network
TS Tie-Switch
APSO Adaptive-Particle Swarm Optimization
TLBO Teaching-Learning Based Optimization
APLoss Active Power Loss
RPLoss Reactive Power Loss
SVD System Voltage Deviation
FCLLine Fault-Current Level-of-Line
SSR System Service Reliability
EEC Environmental Emissions Components
FCRCost Fixed Capital Recovery Cost
ELCost Energy Loss Cost
ENSCost Energy Not-Supplied Cost
IAPLoss Index of Active Power Loss
IRPLoss Index of Reactive Power Loss
ISVD Index of System Voltage Deviation
IFCLLine Index of Fault-Current Level-of-Line
ISSR Index of System Service Reliability
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MOFF Multiple Objective based Fitness Function
PSDG Active Power generated from SDG
QDSTAT Reactive Power generated from DSTATCOM

1 Introduction

The distribution system is one of the vital parts of the power system. But
nowadays, innovations in every area are rapidly increasing worldwide. These
innovations and their mobilization in the society, increases the electricity
demand for the distribution system. It causes severe techno-economic and
environmental issues: power loss, poor voltage profile, lousy service relia-
bility, economic loss and increased environmental emissions owing to many
equipment failures. Hence, to meet the increased electricity demand, the dif-
ferent types of Distributed Generations (DGs) can be integrated by addressing
the techno-economic and environmental issues.

The numerous DGs and their technology are discussed in [1]. The
Backwards-Forward Sweep Load Flow Analysis (BFS-LFA) technique is
explained in the literature [2] and [3]. In [4], Mixed Integer Non-Linear
Programming (MINLP) was utilised in DG allocation for 33-bus and 69-bus
IEEE RDN to reduce APLoss & SVD. The APSO and TLBO are illustrated
in [5] and [6], respectively. Researchers provided several methods for DG
allocation-planning in the distribution system [7–9]. The many technologies
that can be used in DGs to generate renewable energy close to the user side
are listed in [10]. In [11–14], the authors have proposed optimal DG planning
using the PSO, Bat Algorithm (BA) and Genetic Algorithm (GA) and their
comparative analysis. The author of [15] introduces the minimization of loss
and reliability indices as a goal via appropriate RDN reconfiguration. DGs
are characterized in [16] according to how much power they inject. The
different LFA techniques and IEEE test systems data are provided in [17].
The reconfiguration planning for 33-bus and 69-bus IEEE RDN has been
completed in [18, 19] using GA and PSO. The many DG type concepts
and how they are implemented utilising various ways to enhance system
components are covered in [20–23]. The [24–27], provides an explanation
of the planning of grid-connected and standalone hybrid renewable systems,
including SDG and wind systems. In [28], a fuzzy-logic-based Non-dominant
Sorting Genetic Algorithm NSGA-II (ENSGA-II) approach is used to max-
imise the network’s economic, technological, reliable, and environmental
features. In contrast, in [29], using the Immune Algorithm (IA), the best
position and size for DSTATCOM are obtained with less power loss, lower
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installation costs for DSTATCOM, and better bus voltage and current profiles.
The best possible strategic planning for solar, batteries, and FACTS devices
has been provided in [30, 31]. To reduce losses and total harmonic-distortion
in voltage, DG planning has been done using an Evolutionary Algorithm
(EA) [32]. The literature [33] explains reconfiguration planning with DG
of a 33-bus and 69-bus IEEE RDN using the Mixed Integer Linear Pro-
gramming (MILP) considering ZIP load model. In [34], a QPLoss reduction
planning approach for 69-bus IEEE RDN has been presented by optimally
incorporating DGs and capacitors. In the 94-bus Portuguese practical RDN,
the optimum sizing and placement of DGs have been implemented, where the
noted results show that the APLoss and SVD decreased to 77.82%, and 9.68%,
respectively [35]. In [36], by taking into account the seasonal-variation of
load and DGs based on the objective to reduce the SVD, SSR, and economic
benefit with reduction in APLoss and greenhouse gas emission. The DGs have
been implemented in an optimized reconfigured 33-bus and 69-bus IEEE
RDN using hybrid PSO and Dragonfly Algorithm (DA). The [37] aims to
enhance the 33-bus and 69-bus IEEE RDN planning via network reconfigu-
ration and DG integration. This has been done to reduce the loss and improve
the considered system quality of solution through data dispatch using Water
Cycle Algorithm (WCA). The protective devices coordination planning with
reconfiguration and DG integration has been carried out to reduce APLoss

and SVD, using Firefly Algorithm (FA) and EA for 33-bus, 69-bus, and
118-bus IEEE RDN, respectively, in [38]. In [39], 33-bus and 69-bus IEEE
RDN with a real 83 bus system have considered reducing the annual energy
loss by decreasing SVD and APLoss using intelligent search-based TLBO
(IS-TLBO) via reconfiguration with DG planning. The analysis for planning
and operation of DGs, DSTATCOM, capacitor, and renewable resources has
been carried out for various distribution networks using different optimization
techniques [40–44]. In [45], the author has proposed a grid-connected hybrid
micro-grid analysis with the impact of PEF.

The above literature’s state-of-the-art review reveals that the distribution
system experiences significant techno-economic and environmental issues
such as APLoss, RPLoss, SVD, lousy SSR and poor fault current tolerance
capability, i.e., high FCLLine with huge EEC and cost. It causes the distri-
bution system suffers from deprived service quality. Therefore, to improve
the service quality of the distribution system, the APLoss, RPLoss, SVD, EEC
and cost parameters are needs to be minimized with enhanced SSR and
FCLLine. It has also been noticed that none of the work in existing literatures
had considered all these technical issues simultaneously as objectives for
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addressing the service quality of the distribution system. Hence, this is the
motivation factor behind this proposed work with all these issues as novel
MOFF. Therefore, in this work, the optimum planning of multiple SDG and
DSTATCOM with reconfiguration impact for techno-economic and environ-
mental benefit improvement is carried out efficiently using the APSO and
TLBO techniques based on the considered MOFF.

Hence for the analysis, three case studies have been presented, (i) Pro-
posed Study-0 (PS-0): Base case study, it is the case without any modification
in the system, (ii) Proposed Study-1 (PS-1): optimum planning of multiple
SDG & DSTATCOM, and (iii) Proposed Study-2 (PS-2): optimum planning
of multiple SDG & DSTATCOM with RDN reconfiguration impact.

The proposed work of this paper is organized into following five sections:
The Introduction and the Modelling of SDG and DSTATCOM are the first
and second sections, respectively, of this five-section article. The Proposed
Methodology and MOFF is presented in the third part. The fourth and fifth
sections are devoted to Results & Discussion, and Conclusion, respectively,
which conclude the projected work based on the techno-economic parameter
with EEC impact taken into consideration.

The following are the originality and noteworthy contributions reported
in this paper:

(1) This paper proposes an innovative MOFF which is comprised of five key
technical problems such as APLoss, RPLoss, SVD, poor SSR and high
FCLLine, i.e., poor fault current tolerance capability.

(2) In the MOFF, an index for the improvement of tolerance level/capacity
of fault (short circuit) current has been taken into account as an FCLLine.

(3) The system’s economic viewpoint has taken into account based on
different costs: Fixed Capital Recovery Cost (FCRCost), Energy Loss
Cost (ELCost), and Energy Not Supplied Cost (ENSCost).

(4) The impact of Environmental Emission Components (EEC): Carbon
Dioxide (CO2), Sulfur Dioxide (SO2), & Nitrogen Oxide (NOX) have
also been considered as environmental performance parameters.

(5) By using the APSO and TLBO, the MOFF is optimised for the optimum
SDG and DSTATCOM allocation while taking into account the effect of
network reconfiguration.

(6) The comparative result analysis using APSO and TLBO has been
presented to verify the suggested work’s techno-economic with environ-
mental emission impact effectiveness for 69 and 118 bus IEEE RDN.
The outcomes are also compared with more current published research.
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2 Modelling of Solar Distributed Generation and
DSTATCOM

Power generation from renewable SDG (PSDG) can overcome power sector
dependency on fossil-fuels [23, 24]. The formulas for calculating power
output and efficiency are (1) and (2).

PSDG = aHηSDG (1)

ηSDG = ηSTC [1 + ζ(T cell − 25)] (2)

Where PSDG is SDG output power, a is the area of the panel in meter
square (m2), and H is the incident solar-radiation which is measured in watts
per square metre (W/m2). Efficiency is calculated by the ηSDG and ηSTC in
predetermined operating circumstances in established test scenarios (STC).
The temperature of the cell is T cell in degrees Celsius, and the coefficient ζ
is shown as a percentage per degrees Celsius.

The DSTATCOM is considered as a reactive power DG (QDSTAT) for
this work. In (3) and (4), an estimation of the equation for the correction of
angle and voltage by DSTATCOM current injection is given [27–31]. After
installing DSTATCOM on the (y + 1)th bus, the current Ik and IDSTAT flow
over the line simultaneously. The DSTATCOM’s reactive power injection for
the (y + 1)th bus voltage correction is shown in (5):

∠IDSTAT =
π

2
+ ε′y+1 (3)

V ′
y+1∠θ

′
y+1 = V ′

y∠θ
′
y − (Ry + jXy)

{
Iy∠δ + IDSTAT∠

(π
2
+ ε′y+1

)}
(4)

QInjection
DSTAT = (V ′

y+1∠θ
′
y+1)

{
IDSTAT∠

(π
2
+ ε′y+1

)}∗
(5)

The injected current by DSTATCOM (IDSTAT ) and angle change (ε′y+1)
will become zero when the voltage is the same after and before installing
DSTATCOM in the (y + 1)th bus, that is when V ′

(y+1) = V(y+1).

3 Proposed Methodology & Multi-Objective
Fitness-Function

This section includes the formulation of novel MOFF and optimization tech-
niques. The MOFF in (6) comprises significant core technical issues: indices
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for active power loss (IAPLoss), reactive power loss (IRPLoss), system volt-
age deviations (ISVD), system service reliability (ISSR) and Fault-Current
Level-of-Line (IFCLLine), respectively.

MOFF = β1 × IAPLoss + β2 × ISVD + β3 × IRPLoss

+ β4 × IFCLLine + β5 × ISSR (6)

The modelling of indices for the formulation of the novel MOFF are as
follows:

IAPδ
Loss =

APδ
Loss

APρ
Loss

(7)

IRPδ
Loss =

RPδ
Loss

RPρ
Loss

(8)

ISV δ
D = max

(
∆V δ

vref

)
(9)

IFCLδ
Line =

FCLδ
Line

FCLρ
Line

(10)

ISS δ
R =

Total MVA Intrupted Power δ

Total MVA Intrupted Powerρ
(11)

The system cost parameters (FCRCost, ELCost, and ENSCost) are
defined as [11]:

FCRCost = µ

NBR∑
BR=1

CBR (12)

ELCost = 8760× Cl × ϕ×
NBR∑
BR=1

(IBR)2 ×RBR (13)

λ = 0.15× ψ + 0.85× ψ2 (14)

ENSCost = Ci × ENS (15)

Where, ρ = Proposed Study-0 (PS-0), δ = Proposed Study-1 & 2
(PS-1 & PS-2), and V = Voltage at each bus. The branch numbers, current
of respective branch, BRth branch resistance, main feeders BRth branch cost,
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the fixed-cost annual-recovery rate, the factor of load, & factor of loss are
represented by using the variables NBR, IBR, RBR, CBR, µ, λ, & ψ.

Environmental Emission Components (EEC): CO2, SO2, and NOX have
also been considered as environmental performance parameters. It is assumed
the grid utility that supplies power to the consumers has conventional gener-
ation as thermal power generation; hence the EEC are involved in it. These
EEC have a detrimental impact on both the environment and human health.
The CO2, SO2, and NOX each have Pollutant Emission Factors (PEF) of
632.0 g/kWh, 2.74 g/kWh, and 1.34 g/kWh, respectively [45].

EEC ρ or δ = PEF × P ρ or δ
GRID (16)

This work is carried out using APSO and TLBO techniques [5, 6].
The optimal solution of the MOFF can be obtained using APSO and TLBO
by initializing the system parameters as swarm and class, respectively. The
detailed procedure to find the optimal solution for the presented work using
APSO and TLBO based on the MOFF is given in Figure 1.

4 Results and Discussion

The optimum planning of multiple SDG and DSTATCOM with RDN recon-
figuration impact using the APSO and TLBO based on the considered MOFF

is presented in this work. For the result analysis of this work, the BFS-LFA
has been used. The IEEE 69 [17] and 118 [38] bus RDN is considered
with three case studies (PS-0, PS-1 and PS-2) to demonstrate the proposed
methodology’s effectiveness.

4.1 Analysis of 69-Bus IEEE RDN

The obtained results using APSO and TLBO for PS-0, PS-1 and PS-2 are
illustrated in Tables 1–5 and Figures 2–5 in a comparative manner. In PS-0,
the APLoss is 0.225 MW, RPLoss is 0.1022 MVAr, maximum SVD is 0.1908
p.u., FCLLine is 6.6534 kA, and the SSR is 84.36%, as shown in Table 3 and
Figures 3–5. In this case, the CO2 is 2546.96 kg/h, SO2 is 11.0422 kg/h, and
NOX is 5.4002 kg/h, as tabulated in Table 5.

In PS-1 using APSO, the three SDG (PSDG) and three DSTATCOM
(QDSTAT) are optimally allocated at buses 51, 50 and 62 with their respective
optimal sizes as shown in Table 1. For this implementation, the MOFF is
converged and minimized to 0.1094 in 100 trials (Tr) for 100 iterations
with an approximate computation time (tc) of 1083.4572 seconds per Tr.
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Figure 1 Flowchart for APSO & TLBO.

Hence, it’s a global solution of APSO for MOFF optimization, as illustrated
in Table 2 and Figure 2(a). The PS-1 result analysis shows that the APLoss is
0.0168 MW, RPLoss is 0.0081 MVAr, and the maximum SVD is 0.1217 p.u. In
addition, the FCLLine is 0.4234 kA, and the SSR is 95.97%, demonstrated in
Table 3 and Figures 3(a)–5(a). Consequently, the economic benefit character-
istics have improved with a reduced total cost of 25129.2262 $/year, which
was 112876.87 $/year in PS-0. It has been achieved because the FCRCost,
ELCost, and ENSCost are reduced to 18230.3271, 5842.7864 and 1056.1127
$/year, respectively, given in Table 4. The environmental emissions CO2,
SO2, and NOX are decreased to 1219.0648 kg/h, 5.2852 kg/h, and 2.5847
kg/h compared to PS-0, i.e., the PS-0 has more influence of EECs as shown
in Table 5.
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Table 3 APLos, RPLoss, SVD, FCLLine, and SSR of both the systems
Study/
Technique APLoss (MW) RPLoss (MVAr) SVD (p.u.) FCLLine (kA) SSR in % Test
Technique APSO TLBO APSO TLBO APSO TLBO APSO TLBO APSO TLBO System

PS-0 0.225 0.225 0.1022 0.1022 0.1908 0.1908 6.6534 6.6534 84.36 84.36 69-Bus
PS-1 0.0168 0.0128 0.0081 0.0075 0.1217 0.1053 0.4234 0.1914 95.97 96.61
PS-2 0.0109 0.0102 0.0059 0.0040 0.1067 0. 1070 0.4018 0.0006 95.99 98.14
PS-0 1.2981 1.2981 0.9787 0.9787 0.2312 0.2312 22.7339 22.7339 98.33 98.33 188-Bus
PS-1 0.7197 0.4987 0.5039 0.3574 0.1947 0.1445 8.6183 12.0640 99.00 98.81
PS-2 0.4210 0.3468 0.3441 0.2343 0.1429 0.1332 8.0008 8.5201 99.03 99.00

Table 4 The FCRCost, ENSCost, and ELCost

Study/

Technique FCRCost ($/Year) ELCost ($/Year) ENSCost ($/Year) Total Cost ($/Year) Test

Technique APSO TLBO APSO TLBO APSO TLBO APSO TLBO System

PS-0 18230.3271 18230.3271 78051.833 78051.833 16594.715 16594.715 112876.87 112876.87 69-Bus

PS-1 18230.3271 18230.3271 5842.7864 3795.1948 1056.1127 631.8908 25129.2262 22657.4126

PS-2 18247.2055 18247.2055 3322.2765 3677.7492 1002.1959 347.8743 22571.6779 22272.8290

PS-0 33338.9837 33338.9837 450302.7888 450302.7888 56701.8942 56701.8942 540343.6667 540343.6667 188-Bus

PS-1 33338.9837 33338.9837 249649.9576 173002.3069 21495.4521 30089.5192 304484.3934 236430.8097

PS-2 38151.9331 38151.9331 146030.8638 120290.2567 19955.3341 21250.4248 204138.1310 179692.6147

Table 5 Environmental Emission (EE) in PS-0, PS-1, and PS-2 for 69 and 118 bus RDN
EE in PS-0 (kg/h) EE in PS-1 (kg/h) EE in PS-2 (kg/h) Test

EEC APSO TLBO APSO TLBO APSO TLBO System
CO2 2546.96 2546.96 1219.0648 705.4584 473.4312 352.5296 69-Bus
SO2 11.0422 11.0422 5.2852 3.0584 2.0525 1.5283
NOx 5.4002 5.4002 2.5847 1.4957 1.0038 0.7474
CO2 15174.32 15174.32 8930.16 8563.60 8310.80 6408.48 188-Bus
SO2 65.7874 65.7874 38.7162 37.1270 36.0310 27.7836
NOx 32.1734 32.1734 18.9342 18.1570 17.6210 13.5876

      
                            (a)                                                                                         (b) 

Figure 2 MOFF of the 69-bus IEEE RDN using; (a) APSO, (b) TLBO.

In PS-2 using APSO, the three PSDG and three QDSTAT are optimally
allocated at buses 28, 61 and 20 with the impact of five reconfiguration tie-
switches. If any tie-switch (S) is active, then S will be 1; else, 0. The optimal
values of PSDG, QDSTAT and S are given in Table 1. The optimized value
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        (a)                                                                                         (b) 

Figure 3 System voltage profile of 69-bus IEEE RDN using; (a) APSO, (b) TLBO.

      
         (a)                                                                                         (b) 

Figure 4 Active Power Loss of 69-bus IEEE RDN using; (a) APSO, (b) TLBO.

   
                          (a)                                                                                         (b) 

Figure 5 Reactive Power Loss of 69-bus IEEE RDN using; (a) APSO, (b) TLBO.

of MOFF using APSO is converged at 0.0834 in 100 Tr for 100 iterations
with an approximate tc of 1189.8050 seconds per Tr, as illustrated in Table 2
and Figure 2(a). The PS-2 result includes the APLoss of 0.0109 MW, RPLoss

of 0.0059 MVAr, maximum SVD of 0.1067 p.u., FCLLine of 0.4018 kA,
and SSR of 95.99%, are illustrated in Table 3 and Figures 3(a)–5(a) respec-
tively. Afterwards, the total cost is reduced to 22571.6779 $/year, which was
112876.87 $/year in PS-0, which reveals economic benefit improvement.
It has been achieved as the FCRCost, ELCost, and ENSCost are reduced to
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18247.2055, 3322.2765 and 1002.1959 $/year, respectively, given in Table 4.
The production of CO2, SO2, and NOX has also been decreased in PS-2
using APSO with the value of 473.4312 kg/h, 2.0525 kg/h, and 1.0038 kg/h,
respectively compared with PS-0 and PS-1 as seen in Table 5.

Similarly, the implementation of PS-1 and PS-2 using TLBO is per-
formed, and its corresponding optimal values for PSDG, QDSTAT, bus loca-
tions and S are tabulated in Table 1. For PS-1, the MOFF is optimized to
0.0607 in 100 Tr for 100 iterations with an approximate tc of 978.5176
seconds per Tr, as given in Table 2 and Figure 2(b). The PS-1 outcomes
reveal that the APLoss is 0.0128 MW, RPLoss is 0.0075 MVAr, maximum SVD

is 0.1053 p.u., FCLLine is 0.1914 kA, and SSR is 96.61%, shown in Table 3
and Figures 3(b)–5(b). The cost related to FCRCost, ELCost, and ENSCost are
reduced to 18230.3271, 3795.1948 and 631.8908 $/year, respectively, given
in Table 4. Inevitably, the economic benefit has enhanced with a reduced total
cost of 22657.4126 $/year, which was 112876.87 $/year in PS-0. The reduced
EECs such as CO2, SO2, and NOX are 705.4584 kg/h, 3.0584 kg/h, and
1.4957 kg/h, respectively compared to PS-0, which can be seen in Table 5.

Interestingly for PS-2 implementation, the MOFF is optimized to 0.0547
using TLBO in 100 Tr for 100 iterations with an approximate tc of 1077.5111
seconds per Tr which is a global solution, illustrated in Table 2 and Fig-
ure 2(b). The PS-2 results using TLBO include the APLoss of 0.0102 MW,
RPLoss of 0.0040 MVAr, maximum SVD of 0. 1070 p.u., FCLLine of 0.0006
kA, and SSR of 98.14%, shown in Table 3 and Figures 3(b)–5(b). Con-
sequently, the economic benefit characteristics have been increased with
a reduced total cost of 22272.8290 $/year, which was 112876.87 $/year
in PS-0. It has been achieved as the FCRCost, ELCost, and ENSCost are
reduced to 18247.2055, 3677.7492 and 347.8743 $/year, respectively, given
in Table 4. The production of EECs viz CO2, SO2, and NOX are reduced
to 352.5296 kg/h, 1.5283 kg/h, and 0.7474 kg/h, respectively as presented in
Table 5. This is because the most percentage of the demand power is supplied
by the planned renewable SDGs.

4.2 Analysis of 118-Bus IEEE RDN

The comparative result analysis of 118 bus RDN for PS-0, PS-1 and PS-2
using APSO and TLBO is illustrated in Tables 1 to 5 and Figures 6 to 9. For
PS-0, the APLoss is 1.2981 MW, RPLoss is 0.9787 MVAr, maximum SVD is
0.2312 p.u., FCLLine is 22.7339 kA, and the SSR is 98.33%, demonstrated
in Table 3 and Figures 7–9. In this case, the CO2 is 15174.32 kg/h, SO2 is
65.7874 kg/h, and NOX is 32.1734 kg/h, as tabulated in Table 5.
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          (a)                                                                                    (b) 

Figure 6 MOFF of the 118-bus IEEE RDN using; (a) APSO, (b) TLBO.

     
                            (a)                                                                                       (b) 

Figure 7 System voltage profile or system voltage deviation of 118-bus IEEE RDN using;
(a) APSO, (b) TLBO.

     
           (a)                                                                                     (b) 

Figure 8 Active Power Loss of 118-bus IEEE RDN using; (a) APSO, (b) TLBO.

       
  (a)                                                                                                                  (b) 

Figure 9 Reactive Power Loss of 118-bus IEEE RDN using; (a) APSO, (b) TLBO.
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The implementation of three PSDG and three QDSTAT in PS-1 using
APSO are simultaneously allocated at buses 29, 74 and 50 with their optimal
sizes, as shown in Table 1. Hence for PS-1, the MOFF is optimized to
0.4099 using APSO in 100 Tr for 100 iterations with an approximate tc of
2208.7320 seconds per Tr, illustrated in Table 2 and Figure 6(a). With this
PS-1 implementation, the APLoss, RPLoss, maximum SVD, and FCLLine are
reduced to 0.7197 MW, 0.5039 MVAr, 0.1947 p.u., and 8.6183 kA, respec-
tively, mentioned in Table 3 and Figures 7(a)–9(a). In addition, the economic
benefit and SSR have also improved; their related values are given in Table 4.
The environmental emissions CO2, SO2, and NOX are decreased to 8930.16
kg/h, 38.7162 kg/h, and 18.9342 kg/h compared to PS-0, i.e., the PS-0 has
more influence of EECs as shown in Table 5.

In PS-2 using APSO, the simultaneous optimal placement of three PSDG

and three QDSTAT at 7, 118 and 111 buses are carried out with the impact
of nine reconfiguration tie-switches. The optimal values of PSDG, QDSTAT

and S are given in Table 1. The MOFF is optimized to 0.2891 in 100 Tr

for 100 iterations with an approximate tc of 2472.1958 seconds per Tr for
PS-2 using APSO. It is clear that this is a global solution of APSO for
this MOFF optimization, illustrated in Table 2 and Figure 6(a). These DGs
allocations in PS-2 reveal a reduction in APLoss, RPLoss, and maximum SVD,
with enhanced fault current tolerance capability and SSR, as illustrated in
Table 3 and Figures 7(a)–9(a). In the same instance, the total cost is reduced
to 204138.1310 $/year, as it was 540343.6667 $/year in PS-0; hence the
economic benefit has increased. It’s achieved as the FCRCost, ELCost, and
ENSCost are reduced to 38151.9331, 146030.8638 and 19955.3341 $/year,
respectively, given in Table 4. The production of CO2, SO2, and NOX has
also decreased in PS-2 using APSO with the value of 8310.80 kg/h, 36.0310
kg/h, and 17.6210 kg/h, respectively compared with PS-0 and PS-1 as seen
in Table 5.

Similarly, using TLBO, the PS-1 and PS-2 are implemented separately,
and their corresponding optimal values for PSDG, QDSTAT, bus locations and
S are tabulated in Table 1. For PS-1, MOFF is optimized and converged at
0.3504 in 100 Tr for 100 iterations with an approximate tc of 1707.7821
seconds per Tr, illustrated in Table 2 and Figure 6(b). The obtained technical
parameters result includes the APLoss of 0.4987 MW, RPLoss of 0.3574
MVAr, maximum SVD of 0.1445 p.u., FCLLine of 12.0640 kA, and SSR

of 98.81%, given in Table 3 and Figures 5(b)–7(b). Correspondingly, the
economic benefit has increased with the reduction in FCRCost of 33338.9837,
ELCost of 173002.3069, and ENSCost 30089.5192 $/year, respectively, given
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Table 6 Comparison of the proposed work with other already-published works of 69-bus
and 118-bus RDN

Existed/Work Method of 69-Bus RDN Loss (kW) 118-Bus RDN Loss (kW)

Proposed Optimization Magnitude % Reduction Magnitude % Reduction

Rahim, M. N. A., FA 126.8 43.64 659.17 49.22

et al. [38] EA 150.4 33.15 712.29 45.12

Kanwar, Neeraj, TLBO 42.25 81.22 — —

et al. [39] IS-TLBO 39.63 82.38 — —

Proposed APSO 10.9 95.15 421.00 67.57

Work TLBO 10.2 95.47 346.80 73.28

in Table 4. The reduced EECs such as CO2, SO2, and NOX are 8563.60 kg/h,
37.1270 kg/h, and 18.1570 kg/h, respectively compared to PS-0, which can
be seen in Table 5.

Finally, for PS-2, the MOFF is converged and optimized to 0.2522 value
using TLBO in 100 Tr for 100 iterations with an approximate tc of 2181.1785
seconds per Tr, shown in Table 2 and Figure 6(b). The obtained results
include the APLoss of 0.3468 MW, RPLoss of 0.2343 MVAr, maximum
SVD of 0.1332 p.u., FCLLine of 8.5201 kA, and SSR of 99.00%, shown in
Table 3 and Figures 7(b)–9(b). Consequently, the economic benefit char-
acteristics have improved with a reduced total cost of 179692.6147 $/year,
which was 540343.6667 $/year in PS-0. It has been achieved because the
FCRCost, ELCost, and ENSCost are reduced to 38151.9331, 120290.2567 and
21250.4248 $/year, respectively, given in Table 4. The production of EECs
viz CO2, SO2, and NOX are reduced to 6408.48 kg/h, 27.7836 kg/h, and
13.5876 kg/h, respectively as presented in Table 5. This is because the most
percentage of the demand power is supplied by the planned renewable SDGs.

Hence the final proposed work, i.e., PS-2 results using APSO and TLBO,
are compared with existing research from the literature [38, 39] in Table 6 and
evaluated its efficacy. As a result of this analysis, it is noted that the Table 3
results are significantly better than the existing ones.

5 Conclusion

This paper proposes a techno-economic and environmental based approach
for the optimum planning of multiple SDG and DSTATCOM with network
reconfiguration impact. The APSO and TLBO techniques are employed to
accomplish this work. In the MOFF, the APLoss, RPLoss, SVD, FCLLine, and
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SSR of the RDN are simultaneously considered to enhance the service quality
of the distribution system. The economic-benefit measures, along with the
impact of environmental emission components, have also been addressed
in light of various system costs, such as FCRCost, ELCost, and ENSCost.
The IEEE 69 and 118 bus RDN are considered with three case studies
to demonstrate the effectiveness of the proposed methodology. These three
case studies (PS-0, PS-1, and PS-2) results for 69 and 118 bus RDN are
presented in the result and discussion section in a close comparative manner
for analysis using the APSO and TLBO. In this analysis, the value of APLoss

is 0.0096 & 0.0102 MW, RPLoss is 0.0059 & 0.0040 MVAr, SVD is 0.1067
& 0.1070 p.u., and SSR is 95.99% & 98.14%, respectively are achieved
using APSO & TLBO for PS-2 of 69 bus RDN. In contrast, the FCLLine

is reduced to 0.4018 & 0.0006 kA, which was 6.6534 kA in PS-0 using
APSO & TLBO. Consequently, the fault current tolerance capability of the
RDN has improved by 93.96% & 99.99%. Similarly, for 118 bus RDN, in
PS-2 using APSO & TLBO, the APLoss is 0.4210 & 0.3468 MW, RPLoss

is 0.3441 & 0.2343 MVAr, SVD is 0.1429 0.1332 p.u., and SSR is 99.03%
& 99.00%, respectively. In contrast, the FCLLine is 8.0008 & 8.5201 kA,
which was 22.7339 kA in PS-0 using APSO & TLBO. Consequently, the
fault current tolerance capability of the RDN has improved by 64.81% &
62.52%. It has also been noticed that the environmental emissions, total cost,
and total power generation for both 69 and 118 bus RDNs have decreased;
therefore, the system’s environmental and economic benefits have improved.
The comparative result analysis reveals that better performances have been
achieved based on the considered MOFF in terms of techno-economic and
environmental perspective, consistency, convergence, and computation time
using TLBO rather than APSO. Hence, the proposed work based on the
novel MOFF is superior compared to the existing ones, which signifies the
usefulness of this work.
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