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Abstract

Aiming at the problems of serious overfitting and poor training results caused
by too small a data set of solar cell defect images in the process of deep
learning training, an improved DCGAN generation countermeasure network
model is proposed. Firstly, CLAHE preprocessing is used to enhance the
defect image features, which can improve the defect contrast and avoid
excessive noise enhancement at the same time; Secondly, the NAM attention
module is introduced into DCGAN to improve the quality of the defect image;
Finally, S-RELU is used to replace Leaky Relu in DCGAN discriminator
to avoid the influence of too much negative information with gradient on
the decision of discriminator. The experimental results of classification and
detection show that the data enhancement effect of the improved model is
better. Compared with the original model, its accuracy is improved by 2.51%,
and the mapped value is improved by 1.92%, which proves the effectiveness
of the proposed algorithm.
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enhancement.
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1 Introduction

In recent years, with the increasing demand for energy, solar energy as a
renewable energy source has received more and more social attention, and
the application of solar panels has become more and more widespread [1-3].
Solar panels may have a variety of defect types in the production process,
such as broken grids, cracks, black sheets, solid black, etc. These defects
may reduce the efficiency of use in light cases, or cause more serious safety
accidents in heavy cases [4]. Therefore, defect detection of solar panels in the
production process is crucial [5].

Deep learning is widely used in defect detection as a pixel-level detec-
tion method to achieve high-precision classification and detection tasks
through complex models and large amounts of data [6]. However, the dif-
ficult data acquisition of solar cell electroluminescence (EL) defect images
can cause severe overfitting of the detection model and limit the detection
effect. Traditional data enhancement expands the dataset by inversion, mir-
roring, and tilting, but the data enhancement obtained by the coordinate
transformation-based approach is limited, and difficult to generate new data
volumes [7]. GOODFELLOW [8] et al. proposed Generative Adversarial
Networks (GAN), which generate data by The network is trained to generate
realistic images by the feature distribution of the sample, which provides a
new idea for the expansion of the dataset.

With the introduction of generative adversarial networks, a large number
of variants of them have appeared in domestic and international research.
mirza [9] et al. solved the defect of the unsupervised model to the supervised
model by introducing conditional variables in the GAN model to guide the
model to generate specific image data. Tarkovsky et al. [10] proposed adding
Wasserstein distance to the GAN model by adding Wasserstein distance
instead of JS scatter to solve the problem of training instability, but the
processing of weight cropping will lead to a difficult model training process.
Ishaan Gulrajani et al. [11] based on the original WGAN (Wasserstein Gen-
erative Adversarial Networks) reintroduced the gradient penalty and forced
a constraint on the Lipschitz function, which improved the training speed of
the model as well as the quality of the generated images. Jinli Yang et al. [12]
combined the improved Deep Convolutional Generative Adversarial Net-
works (DCGAN) with deep neural networks to solve the data set imbalance
problem in the field of cyber security situational awareness. Zunxiong Liu
et al. [13] proposed a multi-scale parallel learning generative adversarial
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network structure, by performing multi-scale learning on low-resolution
images by two sub-networks, and then fusing the information by a fusion
network to generate high-resolution images.

For the solar cell defect enhancement method, the literature [14] achieves
the data enhancement effect by traditional operations such as brightness con-
version and flipping for some defective samples. The literature [15] proposed
a true-false data fusion algorithm using DCGAN and image random stitching
to fuse the generated images with the original images again randomly to
form a new training set and alleviate the overfitting phenomenon. The liter-
ature [16] proposed a defective sample data enhancement approach through
the normal sample-guided generative adversarial network to solve the solar
cell defective sample imbalance problem and balanced the performance of the
network model by introducing adaptive weight constraints in the weights of
the discriminator. In the literature [17], a fully connected auxiliary classifier
generative adversarial network is proposed to achieve solar cell EL image
data enhancement by deepening the overall network structure and introducing
multiple fully connected layers in the discriminator.

For the limited effect of traditional data enhancement with the orig-
inal DCGAN, to improve the quality of the generated samples of solar
cell EL defect images, this experiment adds a layer of network struc-
ture to the generator as well as the discriminator of the original DCGAN
network by improving the original DCGAN, and introduces a normalization-
based Attention Module (NAM) in the discriminator, and propose an
improved Normalization-based Attention Module-Deep Convolutional Gen-
erative Adversarial Networks (NAM-DCGAN) enhance the discriminator’s
ability to discriminate the samples generated by the generator and avoid
the network model from generating low-quality defective samples. In the
generator, NAM-DCGAN introduces residual units before each layer of
deconvolution to enhance the ability of the generator to learn deep features
of images by deepening the number of network layers, adding a NAM mod-
ule between each layer of convolution in the discriminator, and combining
the Softsign activation function with Rectified Linear Units (RELU). The
S-Relu activation function is proposed to replace the Leaky Relu activation
function in the discriminator [18], which solves the defect that Leaky Relu
cannot converge when the input signal is negative and thus introduces too
much negative information and further improves the quality of the generated
samples.



1386 D. Hao and Y. Yaermaimaiti

2 Introduction of Related Algorithms
2.1 DCGAN

GAN is composed of two independent structures, the generator, and the
discriminator. The generator is trained iteratively to transform Gaussian
distributed random noise into image data, while the discriminator is used to
determine the authenticity of the generated images, and the Nash equilibrium
is achieved through the game training between the two. Convolutional neural
networks are powerful in feature extraction as well as the generalization
of images and reduce the complexity of the model and the risk of model
overfitting through local perception as well as weight sharing of features.

DCGAN retains the powerful capability of GAN image generation, but
also combines the advantages of CNN for sample feature extraction, which
improves the quality of generated samples, accelerates model convergence,
and effectively avoids model collapse in the image generation phase.

2.2 Residual Unit

The residual unit, first proposed in the literature [19], is composed of a
convolutional layer, a BN layer, and a Relu activation function, and its
structure is shown in Figure 1. is the input data, is the transform function
after convolutional processing, and performs the addition operation on and to
obtain the desired output. The shallow network model has difficulty in fully
learning the image in the feature learning process due to insufficient feature
extraction capability, and purely increasing the number of convolutional
layers will produce degradation problems. To address the above problems,
the residual unit ensures that the image feature information is not lost after
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Figure 1 Residual cell structure.
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transformation by jumping connection, and replaces the traditional feature
learning by using residual learning, which ensures the network layers are
sufficient and avoids the network degradation problem at the same time.

Demands without considering the data volume. Taking into consideration
this ratio, green IT technologies have important benefits in terms of:

* Reduce electricity costs and OPEX;

* Improve corporate image;

* Provide sustainability;

» Extend useful life of hardware;

¢ Reduce IT maintenance activities;

* Reduce carbon emissions and prevent climate change;

*» Provide foundations for the penetration of renewable energy sources in
IT systems.

2.3 NAM Attention Module

To avoid the interference of background noise and bus to the discriminator,
this experiment introduces the NAM attention mechanism in the discrimina-
tor, which is a normalization-based attention module proposed by Liu [20]
et al. The weights corresponding to the feature maps are computed only by
the scaling factors in the BN layer, omitting additional parameters such as
fully connected layers and convolution. For channel attention, as shown in
Equation (1).

Bin — UB

\/U%’—I-E

Where o3 denote the mean and variance of small batch data, respectively.
~v and [ are the affine transformation parameters obtained by backpropa-
gation, where + is the scaling factor and [ is the translational parameter.
The scaling factor can reflect the trend of all channels. When the channel
changes drastically, it indicates that the current channel contains a large
amount of valid information and will be assigned a larger weight, and when
the channel changes slowly, it indicates that the current channel information
is relatively single and will be assigned a smaller weight. Figure 2 and Equa-
tion (2) represent the specific process and equation of the channel attention
module, respectively.

Bout — BN(Bm) =7 + B (1)
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Figure 2 Channel attention mechanism.

My in the figure represents the input feature map of the current module,
v = {v0,71,72,--.,7i} represents the scale factor of ¢ channels, corre-
sponding to the weight w = {wp,w1,ws,...,w;}. Finally, the results are
normalized by the Sigmoid activation function to obtain the output feature
map M7, as shown in Equation (3).

M1 = Sz’gmz’od(Wi(BN(Mo))) (3)

3 Algorithm Improvement

3.1 S-Relu Activation Function

In the development of convolutional neural networks, the activation function
can provide nonlinear functions to the network and enhance the expres-
siveness of the network model [21]. In the iterative process, to ensure that
the parameters can be updated quickly to achieve optimality, the activation
function needs to have a large enough derivative in the first half; to realize the
fine-tuning function of the network, the derivative of the second half needs
to converge to zero gradually; to avoid the neuron “necrosis to avoid the
phenomenon of neuron “necrosis”, it is necessary to ensure that the activation
function has enough negative information and there is a small gradient. The
discriminator of the original DCGAN model adopts the Leaky Relu activation
function except for the last layer, and the function expression is shown in

Equation (4).
NS x>0 4
J(@) = ar, <0 @

The function graph is shown in Figure 3.
The positive half-axis of the Leaky Relu activation function is a linear
activation function, which is simple to calculate and fast to train, improving
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Figure 3 Leaky Relu function curve.
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Figure 4 S-Relu function curve.

the convergence speed of the model and effectively preventing the possibility
of gradient disappearance, and the negative half-axis introduces the hyperpa-
rameter « to solve the negative value truncation problem, where the value of
a is usually 0.01. However, Leaky Relu cannot converge by keeping the same
gradient for the input negative value information, and the hyperparameter.
The selection of hyperparameters will have different effects depending on the
data set. To address the above problems, the S-Relu activation function is
proposed in this experiment. The expression of the function is shown in
Equation (5).

x, x>0

f(z) = T <o (5)
1+ |z

The function graph is shown in Figure 4.
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The Relu activation function, as a linear activation function, is simple
to compute and fast to train, which helps to speed up the convergence of
the model and prevent the gradient from disappearing, but the constant zero
gradients of the negative half-axis will cause the learning to stop when the
neuron input is negative, which has a certain impact on the feature informa-
tion transfer in the model. the Softsign activation function has a relatively
smooth learning curve, and the negative half-axis has a gradual convergence
to zero gradients. Although the function as a whole has a good nonlinear
fitting ability. When the value of X is too large or too small, the output of
the Softsign activation function will be close to flat, and there is obvious
saturation, resulting in a small update magnitude of the weights and the
disappearance of the gradient, which is not conducive to the training of the
model. In this experiment, the right half of the Relu activation function and
the left half of the Softsign activation function are combined and defined as
the S-Relu activation function, which not only makes up for the defects of the
two activation functions but also ensures the effectiveness of the functions of
both activation functions.

The combined derivative image of the S-Relu activation function and the
Leaky Relu activation function is shown in Figure 5.

From Figure 5, we can see that when the input signal is at the right end
of the zero point, both derivative images are consistent, and when the input
signal is at the left end of the zero point, the derivative of the S-Relu activation
function gradually decreases to zero, giving different gradients to the signals
near and far from the zero point in the input data, which is more conducive to
the model’s learning of the input data.
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Figure S Derivative curves of S-Relu and Leaky Relu functions.
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Figure 6 Improved DCGAN network model structure.

3.2 NAM-DCGAN Structure

In response to the low resolution of the original DCGAN generated images,
which leads to insufficient detail generation and affects the classification and
detection effects, this experiment expands one layer of deconvolution and
convolution network structure on the generator and discriminator of the origi-
nal DCGAN network, respectively, so that the generated image resolution can
reach 128 x 128, and introduces the residual structure before each layer of
deconvolution in the generator, and embeds in each layer of the discriminator
The NAM attention mechanism module is embedded in each layer of the
discriminator, and the S-Relu activation function is used to replace the Leaky
Relu activation function in the generator and discriminator, and the Sigmoid
activation function in the last layer remains unchanged. The structure of the
improved DCGAN network model is shown in Figure 6.

4 Experiment and Analysis

4.1 Data Sets and Pre-processing

The solar cell EL image dataset used in this study contains four types of defect
data: Finger interruptions, Microcrack, Damage Sheet, and Black spot, some
of which contain only a single type of defect and some of which contain
multiple mixed defects.

To enhance the defect features of some images and not to over-enhance
the noise interference of the images, this study adopts Contrast Limited
Adaptive Histogram Equalization (CLAHE) preprocessing for the image
data [20].

The CLAHE algorithm first trims the part of the histogram that is larger
than the threshold parameter by adjusting the size of the threshold parameter,
and then redistributes the trimmed part evenly in the histogram, after several
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A

Figure 7 Schematic diagram of CLAHE algorithm.

trimming and redistribution operations, and finally until the exceeding part
can be ignored, to achieve the restriction of the histogram distribution. The
image after the redistribution process can effectively suppress the exces-
sive enhancement of noise while improving the image contrast. CLAHE
processing is shown in Figure 7.

The image after processing by the CLAHE algorithm is shown in
Figure 8.

4.2 Experimental Parameters

The pre-processed images are used as the input of the improved network
model and the improved network model respectively, and the parameters of
both models are set according to Table 1.

4.3 Experimental Results and Analysis

In this study, four mainstream generative adversarial models of GAN,
WGAN, auxiliary classifier generative adversarial network (ACGAN),
DCGAN and the improved DCGAN were used to enhance the defective sam-
ples for the experiments respectively, and the results are shown in Figure 8.
The model generates 16 images in each cycle, and one image is randomly
selected as the representative after stitching according to different defect
features in the corresponding cycle, where the top left, bottom left, top right
and bottom right correspond to the generated black spot, damage sheet finger
interruptions, and microcrack, respectively.

The image analysis shows that at the training times of 200,
NAM-DCGAN generates fewer defect contours on this basis compared to
the other four models, but the generated defect parts are very limited. At 400
training times, the defect profiles of the four models except GAN can be
roughly distinguished, but the defect profiles of WGAN, ACGAN, and
DCGAN are not very clear and are accompanied by distortion and noise, and
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(a) Microcrack

(b) Black spot

(c) Finger interruptions

T

(d) Damage sheet

Figure 8 Comparison images before and after processing by CLAHE algorithm.

Table 1 Network model parameters before and after improvement

Parameters Meaning Value
batch_size  Single batch sample value 16
nz Potential vectors 100
betal Optimization index decay 0.5
Ir Rate Learning Rate 0.0002
ngf Transposed convolutional output Number of output channels 64

ndf Convolution Output Number of channels 64
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Figure 9 Comparison of images generated before and after model improvement.

the images generated by NAM-DCGAN also have slight distortion and noise,
but the clarity is significantly better than the results of the remaining four
models. The images generated by NAM-DCGAN also have slight distortion
and noise, but the clarity is significantly better than the results of the other
four models. At 600 training cycles, the images generated by GAN, WGAN,
ACGAN, and DCGAN were clearer in the background and defects of solar
panels, but some of the defects were not of high quality and had deformation,
and NAM-DCGAN could generate more realistic images. The images gener-
ated by WGAN, ACGAN, DCGAN, and NAM-DCGAN are close to the real
images.

4.4 Evaluation Indicators and Analysis

Compared with the improved model, the images generated by the improved
model outperformed the former model in terms of quality in multiple training
cycles. To further verify the effectiveness of the improved model in data
enhancement, this study uses mirror enhancement, GAN, ACGAN, DCGAN,
and NAM-DCGAN for data enhancement, and the generated images are
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passed through MobileNet-V3 and EfficientNet-Yolov3 pairs for classifi-
cation and detection experiments, respectively. MobileNet-V3 has a small
number of parameters and strong classification ability, which can effectively
avoid overfitting and has a fast training speed. EfficientNet-Yolov3 utilizes
EfficientNet to replace the backbone network of Yolov3, which greatly
reduces the number of parameters and reduces the effect of overfitting.
The same model has the same classification ability and detection ability, and
when the generated images are closer to the style of the original images, the
higher the classification rate and accuracy rate of the model, thus serving as
a criterion for the quality of the image generation.

In the classification experiments, the original data were firstly enhanced
by the above six ways in the ratio of 1:3, and then mixed with the original
samples, and the final obtained samples were randomly divided into a training
set, validation set, and test set in the ratio of 8:1:1 respectively as shown in
Table 2.

The divided dataset is fed into the MobileNet-V3 network for classifica-
tion experiments. The accuracy of the model classification results is used as
the merit of the enhanced results. To guarantee the validity of the experiments,
the 10 times classification accuracy was averaged as the final experimental
results. The experimental results are shown in Table 3.

The data in Table 3 shows that the accuracy rate of NAM-DCGAN is
higher than the remaining five approaches in the classification experiment,
which indicates that the data enhancement method implemented in this

Table 2 Sample quantity setting of classification experiment

Dataset Finger Interruptions ~ Microcrack Damage Sheet  Black Spot  Total
Training set 467 467 333 387 1654
Validation set 59 59 41 48 207
Test set 58 58 42 49 207

Table 3 Classification experiment verification

Enhancement Method  Accuracy %

GAN 87.91
Mirroring 89.04
WGAN 90.72
ACGAN 91.63
DCGAN 92.16

NAM-DCGAN 94.67
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Table 4 Set the number of test samples

Finger Damage Black Mixed
Dataset Interruptions  Microcrack Sheet Spot  Defects Total
Training set 467 467 333 387 189 1843
Validation set 59 59 41 48 23 230
Test set 58 58 42 49 24 231

Table S Sample verification of detection experiment
Enhancement Method mAP%

GAN 87.41
Mirroring 88.59
WGAN 89.58
ACGAN 90.73
DCGAN 91.05
NAM-DCGAN 92.97

experiment can meet the requirements of the classification experiment and
the enhancement effect is better than the remaining six approaches.

In the detection experiments, mixed defect images are added to the
original samples and the images are enhanced in the above six ways, and
the six samples are randomly divided into a training set, validation set, and
test set in the ratio of 8:1:1, respectively, and the data of the six samples are
shown in Table 4.

The divided dataset is sent into the EfficientNet-Yolov3 network for
detection experiments after defect labeling, and the mAP value of the model
detection results is used as the merit of the enhancement results by the high
or low mAP value. To ensure the validity of the experiments, the mAP
values of the detection results were averaged as the final experimental results.
The results of the detection experiments are shown in Table 5.

The data in Table 5 shows that the mAP value of NAM-DCGAN is higher
than the remaining five methods in the detection experiment, which indicates
that the data enhancement method implemented in this experiment can meet
the needs of the detection experiment and the enhancement effect is better
than the remaining five methods.

Compared with the traditional mirror image enhancement, NAM-DCGAN
will make subtle changes to the original defects and will generate some defect
styles that are not in the original image, expanding the diversity of samples.
By mixing different kinds of defects and training them, multiple defects can
be obtained on a single generated image after fusion, further enhancing the
diversity of samples.
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Table 6 Ablation experiment

Models Classification Accuracy % mAP%

DCGAN 92.16 91.05
+S 92.29 91.11
+R 92.53 91.60
+N 92.93 92.09
+R+S 93.15 92.24
+N-+S 93.74 92.65
+R+N 94.41 92.82
NAM-DCGAN 94.67 92.97

Compared with the original model, the improved model structure
enhances the generator’s ability to extract image features, improves the
quality of the generated images, improves the discriminator’s ability to dis-
criminate, and effectively avoids making correct decisions for low-quality
images. The new activation function can effectively eliminate the impact of
the model on the generated data by learning too much negative information.

4.5 Ablation Experiments

NAM-DCGAN improves the DCGAN model by fusing three strategies: the
residual structure, the NAM attention mechanism, and the improved S-Relu
activation function. To verify the effectiveness of the improved method, the
generated images were subjected to classification and detection experiments
on MobileNet-V3 and EfficientNet-Yolov3, respectively. The experimental
parameters in the ablation experiments are consistent with those in the
classification and detection experiments. The experimental parameters in
the ablation experiments are consistent with those in the classification and
detection experiments, as explained in the text. The experimental results are
shown in Table 6.

Where S stands for S-Relu activation function, R stands for residual struc-
ture, and N stands for NAM attention module. From Table 6, we can see that
the classification accuracy and mAP values are improved after introducing
S-Relu activation function, residual module, and NAM attention module into
DCGAN, which indicates that too much negative information with a gradient
will affects the learning of the model, the residual module can improve the
ability of solar panel defect image generation and the attention mechanism
can make the model better target the defect part for After combining the
three algorithms two by two, the classification accuracy and mAP values are
improved, indicating the effectiveness of the algorithm fusion; after fusing
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the three algorithms, the accuracy and mAP values reach the highest. It can
be concluded that all three proposed improvements are beneficial to improve
the quality of solar cell defect image generation.

5 Concluding Remarks

In this experiment, we propose a generative adversarial network
NAM-DCGAN combined with normalized attention to expand the defect
image data for the difficult image acquisition of solar cell EL defect image
data to meet the needs of classification and detection tasks, and make the
following improvements.

(1) Introducing a residual module in the generator to enhance the image
feature extraction capability.

(2) Introducing the NAM attention mechanism in the discriminator to
enhance the model discriminative ability.

(3) The S-Relu activation function is used to replace the Leaky Relu activa-
tion function in the discriminator to avoid the interference of too much
negative information with a gradient to the discriminator.

Compared with the traditional data augmentation and the original
DCGAN, the training effect of the model obtained by augmentation is optimal
in the case of the same amount of augmented data, and it can be used for
augmenting the solar cell EL defect image dataset when the dataset samples
are small.
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