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Abstract

With many branch lines in radiant distribution networks, diagnosing faults in
a distribution network is very difficult. It is of great significance to identify
different types of faults quickly and accurately for the stable operation of
the power grid. This research presents a fault identification model for a
distribution network based on artificial neural networks. The principal com-
ponent analysis first extracts features from transitory data in a distribution
network. The resulting low-dimensional data is subsequently used to update
the artificial neural network model. The artificial neural network may also
identify the type of fault. The proposed model’s fault detection accuracy is
improved over the traditional approach by examining distribution network
fault data during the simulation test.
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1 Introduction

Maintaining a steady electrical supply in a power system with prone-to-
failure equipment is difficult. Electronic equipment can be harmed and
disrupted by short circuits. Consequently, it is essential to accurately and
promptly identify the issue. Protection software enhances system recovery
by locating defective components [1]. The estimation of the failure region
made possible by the protection device’s input limits the disruption’s ability
to reach the health network. Dependability indicators typically characterize
power outages. These metrics gauge system performance and show the
general health of a network’s performance and quality of service while it
is under load. The average system outage frequency index and the average
system outage duration index are utilities’ most often utilized indicators. The
average number of outages clients encounter is the average frequency of sys-
tem unavailability [2]. This is measured in one year of downtime/customer.
The average system downtime index refers to the annual average system
downtime per customer [3]. Customer downtime minutes are another name
for this index. An efficient fault identification approach is required to increase
reliability for distribution network failures to maintain good service quality
and restore the power supply promptly [4]. It makes it more difficult to
locate and identify distribution network failures. The distribution network
will also be divided by frequent changes to lateral (branch), distributed load,
and feeder arrangement. Early failure detection and diagnosis can hasten
business recovery and minimize downtime. For the electricity system to
operate steadily, it is crucial to promptly and precisely identify different sorts
of defects.

Switching characteristics are evident when a transmission line fails, and
fault features can be brought on by using high voltage in the cross-section [5].
The following attributes describe the current error detection and distribution
system. (1) The development of the distribution network is wide and complex.
Anomaly electrical data is acquired from fault indicators on adjacent lines
and the fault indicator nearest to the fault spot when a problem arises on
a line. The information on ocean crime is unconnected to past research.
(2) Different sorts of defects exist in the distribution network. Additionally,
the variance in fault kinds is negligible, which makes fault treatment less
effective [4]. (3) The distribution system’s voltage level, grounding mode, and
line parameters vary depending on the region, as do the fault characteristics
of the recorded fault data. The distribution network is also distinct due to
load split-on, lateral/split-on, radial operation, erroneous feeder layout, phase
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imbalance, and fault resistance fluctuation. Therefore, researchers’ interest
has been drawn to distribution network problem diagnosis.

Existing distribution network fault identification methods can be divided
into two categories. The first type is the traditional fault recognition methods,
such as the Petri network [6, 7], expert system [8, 9], and other recognition
methods based on knowledge analysis [10]. Expert systems use various
reasoning techniques to analyze information about the object being diagnosed
that has been gathered by computer using various criteria. In addition, it
can call different programs as necessary and prompt the user for data as
needed during an activity. The user can then immediately confirm the ultimate
or most likely failure. Expert systems are incredibly successful because
they combine a lot of skills with problem-solving techniques that closely
resemble the rules of the human mind. Knowledge bases, inference engines,
databases, knowledge acquisition modules, interpreters, and human-machine
interfaces make up the majority of expert systems [11]. It can utilize human
professionals’ knowledge and problem-solving techniques to solve problems
since it possesses the expertise and experience of specialists in that sector.
Expert systems are quick and real-time because the issues they address
typically lack an algorithmic answer and are frequently inferred from and
drawn conclusions based on insufficient data.

The second is the classification network fault recognition model based
on model recognition and machine learning. Some classical fault signal
processing methods extract features and then use machine learning for fault
detection [12]. For instance, a support vector machine and wavelet transform
are combined to provide a new magnetic assured current and defect detection
system. The wavelet transform theory is used to determine the fault data’s
characteristics. Data are separated and recognized using a multi-stage support
vector machine. The self-learning capability of the neural network’s data
features is employed in this study to extract the features that are illegal based
on the conventional private network. For instance, a deep learning method is
created using multi-stage non-negative autoencoders, and the Softmax clas-
sifier can produce high-speed early detection [13]. Stacked autoencoders are
employed for multi-level concept learning in the transient stability evaluation
of power systems. Support vector machines classify the data after gathering
the main features [14]. Finally, real-time online identification of the transient
stability of the power system is realized.

The use of neural networks in fault detection is a recent study area
that has advanced quickly over the past ten years compared to the error
detection method. The expert approach involves reasoning to resolve the



1662 Z. Chen et al.

issue; however, it is time-consuming and contains numerous regulations [15].
Although Petri nets can parallel data processing, simultaneous processing
becomes a routine task, thus increasing the complexity [3]. The causal
network illustrates the connection between the failure and the protective
device’s operation. Nodes, relays, and circuit breakers are also included for
all faults. Concatenation, memory integration, self-association, sub-learning,
and non-linear feature mapping are all skills that a neural network can
perform [16]. It can process complex data, analyze it, and offer precise
classification. As a result, it can be used to recognize and quantify state
changes brought on by equipment flaws, offering new techniques for fault
detection and state monitoring. The neural network has numerous advantages
in fault detection, including the connection’s structure, its high level of self-
adaptability, its strong ability to learn on its own, its ability to tolerate guilt,
and the integration of knowledge representation, storage, and cognition.

Despite the numerous developed and proposed methods, a comprehen-
sive, trustworthy, and secure diagnostic approach is still required. In order to
segregate problems in distribution networks and identify them, this research
suggests an approach based on artificial neural networks. In order to tackle the
distribution network multiple estimating problems, the suggested fault sec-
tion identification phase is started before the fault finding phase, with multiple
crossing points corresponding to the computed fault points. The following
is a summary of the contributions made by this paper: Create a novel fault
identification technique that can be used with distribution network systems,
and (ii) the suggested technique can quickly and precisely gather the details
of a defect’s characteristics. By using this technique, the challenging and
ineffective process of manually extracting features from voluminous transient
fault data can be avoided.

The remainder of this essay is structured as follows. Section 2 illustrates
the distribution network’s difficulty in identifying faults. The defect recog-
nition model and process of artificial neural networks are then suggested
in Section 3. The results of the defect identification are then presented in
Section 4. Finally, Section 5 presents the conclusions.

2 Problem Description

The service provider must ensure the system is repaired after a breakdown to
deliver efficient customer service. Accurate fault location identification facil-
itates rapid recovery. Predicting fault segments in situations with numerous
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failures, unforeseen circuit breaker tripping, and relay failures is challenging.
This prolongs recovery and lengthens the time it takes to find the problem
segment [17]. These issues have caused electricity shortages in more popu-
lous places. The investigation of this issue becomes extremely laborious when
several sirens are going off at once.

This information is often insufficient to determine which segment has
failed. Most importantly, operators can be freed from analyzing complex
cases [18]. It is possible to gain insight into the state of the power system
by collecting comprehensive data on circuit breaker failures, primary and
standby relay failures, and equipment malfunctions. It is necessary to pre-
sume that all safety measures have achieved their maximum capacity and
will only activate in the case of a malfunction. A device’s switch status can be
secured using binary notation. The relay or circuit breaker will not work if the
system works properly. Rapid identification of fail-safe devices is necessary.

3 Neural Network Model Framework

3.1 Data Processing

A significant amount of fault transient history data can be gathered by placing
fault lights on the tracks [19]. The primary system of the distribution network
receives the fault indicator’s transient voltage and current waveforms during
a failure. Each recording file contains seven channels of three-phase voltage,
three-phase current, and zero sequence current [20]. By selecting waveform
data of each channel, the model training data set of this study is constructed.
The data set contains many ground fault data, fault data and invalid data.
According to the effective fault data set, the fault types are divided into three
types. 1. One-way grounding fault: including A one-way phase grounding
(AO), B phase one-way grounding (BO), C phase one-way grounding (CO).
(2), short circuit fault: AB phase line short circuit (AB) 3, two-phase contact:
A phase, B phase two contact ground (ABO), A phase, C phase two contact
ground (ACO). Other types of failure datasets are insufficient for network
training [21]. Therefore, the training samples used in the experiment are the
defect data of AO, BO, CO, AB, ABO and ACO.

Principle Component Analysis, a popular method for dimensional reduc-
tion, reveals important traits in the initial data. The m-th line of the data set
represented by DM, which represents the attributes of the m-th client, should
be deducted from the average value of these qualities. The formula below can
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be used to calculate the covariance matrix:

Cov =
∑
m

(dm − µ)(dm − µ)T (1)

An :=
∑
m

dmdTm (2)

Bn :=
∑
m

dm (3)

Cov =
∑
n

An −
∑

nBn (
∑

nBn)
T∑

n cn
(4)

The eigenvectors and eigenvalues of the covariance matrix Cov are then
determined using singular value decomposition. The projection matrix is
formed from the subsets of eigenvectors with higher eigenvalues, and the fol-
lowing formulas are used to determine the dimensionality reduction feature
vector for the m-th consumer and the feature matrix for the consumer served
by the retailer:

d1m = dmT (5)

D1
m = DmT (6)

Additional Additive homomorphic encryption can be used to achieve
feature extraction that protects private information. An efficient method for
partial additive homomorphic cryptography is the Paillier algorithm. It sup-
ports multiplying an encrypted integer by an unencrypted integer and adding
two encrypted numbers together. In the actual world, the data that needs to be
encrypted may not always be an integer. Fortunately, floating point numbers
can be used with the Paillier cryptosystem.

3.2 Neural Network

Six types of faults may occur in the distribution network: AO faults, BO
faults, CO faults, AB faults, ABO faults, and ACO faults. Based on the above,
a single neural network model is trained to identify the fault part according
to the fault type detected in the system. Using an artificial neural network
model for each fault type increases the learnability of the artificial neural
network model, decreases the size of hidden layer neurons, and improves
the accuracy of the artificial neural network model [22]. Therefore, the
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Figure 1 Architecture of the artificial neural network model for the fault section
identification.

proposed fault partial recognition algorithm consists of a reverse propagation
neural network model. During the training of the neural network, each neural
network acquires knowledge about the problem from the training data set and
stores the knowledge obtained through synaptic weights between neurons.

The number of layer neurons, hidden layer neurons, learning rate, and
activation function was changed during the discovery experiment. In the
hidden layer and output layer of the defect diagnosis artificial neural network
model, the relu activation function is applied. Other enabling features were
also tested but did not work very well. The topology of an artificial neural
network model intended for fault diagnostics is depicted in Figure 1.

The neural network size (number of neurons in hidden layers), correla-
tion coefficients, error histograms, and testing using untrained data sets are
performance metrics used to choose the best artificial neural network model.
The accuracy of an untrained data set is determined by the artificial neural
network’s accuracy error percentage.

3.3 Proposed Algorithm

Figure 2 depicts the framework for transient defect recognition using a neural
network. The fault signal’s waveform is examined using principal component
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Figure 2 Fault identification flowchart based on artificial neural network.

analysis. The data is used as the neural network model’s input following
dimensional reduction. Utilizing the reference’s fault classification algorithm
suggested by the author, a specific neural network model is chosen. Three
stages make up the majority of the full model architecture. (1) On the
spur of the moment, the fault data preprocessing backend from the main
system power distribution automation fault data set. (2) Principal components
analysis automatically extracts the features of the transient fault data sets.
(3) detect transient fault data after a gender dimension reduction using neural
networks.

The transient record file is first obtained from the master station system
in the fault data processing section. The waveform file’s voltage channel data
is then gathered, and the data fragment at the fault’s moment is blocked.
The data with significant dimensional errors are then normalized. It reduces
the size of extracted defect data and presents them as multidimensional
features using principal component analysis (PCA). All samples are split
into training and test sets for the defect identification phase. The train-
ing of neural networks was done with training sample data. The training
course’s recognition accuracy is calculated. Next, 0.9 is chosen as the training
accuracy threshold. A transient error data test set is utilized for error identi-
fication if the network accuracy satisfies the specifications. If not, change the
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network’s parameters and try again with the training. Through a classifier
layer, the network categorizes fault features and generates results for defect
recognition.

4 Results and Discussion

4.1 Parameter Setting

The 256 three-phase voltage samples taken before and after the problem
spot make up the selected sample data. There are 1800 failure data in total.
As a result, the training sample’s data dimension prior to principal component
analysis is 768. Each training sample entering a neural network has a data
dimension of 20 once the principal component analysis is applied.

Matrices of input, output, synaptic weight, and deviation vector realise
neural networks. Using batch mode to supervise the learning – which updates
network weights and deviations based on mistakes between network outputs
and targets – the training data set is provided to the neural network in order.
The batch mode iteration continues until the resulting training errors are
reduced. To avoid mining the number of hidden layer neurons, the number
of hidden layer neurons in the artificial neural network model is searched.
Additionally, tests have been used to determine the frequency. The range of
the training epoch number is 500 to 3500.

4.2 Result

The neural network can be trained to learn the characteristics of the failure
data. The best training and test set ratios for neural network model training

Table 1 Artificial neural network parameters
Parameter Name Value

Structural parameters Input neurons 20
Hidden layer neurons 50
Hidden layer neurons 50
Output neurons 6

Training parameters Learning rate 0.001
Batch size 32
Training times 80
Training algorithm Scaled conjugate gradient
Active function Relu
Weight update method Batch-mode
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Table 2 The accuracy of the neural network for the optimal proportion of the training and
test datasets

The Proportion of
the Training Dataset
and Test Dataset Value
50%:50% 0.715
60%:40% 0.815
70%:30% 0.932
80%:20% 0.915
90%:10% 0.849

Figure 3 Training process.

are supported by different classifications of fault data attributes. We changed
the experiment’s data set’s percentages to 90%, 80%, 70%, 60%, and 50%.
The accuracy of various training data percentages is displayed in Table 2.
The model’s fault identification effect is at its finest when the training set to
test set ratio is 70%:30%. A neural network model experiment was carried
out according to the ideal learning ratio.

The loss function and accuracy curve for the neural network model’s
learning process is shown in Figure 3. The mean square error and the network
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Table 3 Simulation result of F1 score
Decision Tree Support Vector Machine Proposed

AO 0.815 0.845 0.912
BO 0.821 0.865 0.951
CO 0.715 0.849 0.948
AB 0.615 0.712 0.939
ABO 0.610 0.715 0.915
ACO 0.666 0.610 0.910

structure parameters tend to settle as the learning period hits 2500, and the test
set’s ultimate loss function value converges to 0.106. So, the requirement for
the suspension of training is 2500. The overall accuracy of recognition was
93.2%. On failure data, neural network models have a good fault recognition
impact.

The F1 scores for various models under various faults are shown in
Table 3. The identification model’s accuracy and recall ratio are harmonically
averaged to produce the F1 score. According to Table 3, all models accurately
predict single-phase grounding failures. However, the F1 points for short-
circuit and multiphase grounding faults were decreased. The F1 score of the
neural network is higher than that of the decision tree and support vector
machine for short circuit fault and multiphase grounding fault. This outcome
validates the reliability and accuracy of the suggested neural network-based
error link recognition model.

5 Conclusion

A misidentification model for distribution networks based on artificial neural
networks is proposed. First, the main component analysis method extracts
functions from the distribution network’s transient data. The resulting low-
dimensional data is then imported into the artificial neural network model.
Finally, the artificial neural network is used to identify the type of error. This
method improves the network’s functional extraction capacity and efficiency.
Interference and errors in human factors are reduced. Based on the measured
transient error data, the identification experiment is performed based on the
neural network model. The neural network model is compared to the decision
tree and support vector machine. The results show that the neural network
model has a high recall ratio and accuracy and has advantages in transient
error recognition.
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