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Abstract

Multimodal single/dual stage conversion (BSDC) based on a new solid-
state DC-AC transformer (SDAT) is proposed. The suggested conversion can
perform variable or constant DC voltage operation. A variable DC voltage
is controlled dynamically in response to changes in DC input side voltage,
allowing the DC-DC conversion stage to always operate at its best. New
DC-AC power conversion of 2 port two-way choppers (TBDC) and two-
way rectifier/inverter conversion (BRIC) was planned for the implementation
of the proposed SDAT. SDAT, consisting of a bi-directional step-down-step-
up converter and a bi-directional step-up-step-down converter, has been used
as a prototype model to check the suggestion system. Functional concepts
of this BSDC converter with TBDC are designed and simulated on the
MATLAB/simulink environment network. PWM and control methods have
been applied for SDAT to accomplish a wide variety of voltage and power
loss reduction in the proposed device. Test bench model hardware is designed
and tested to validate the effectiveness and benefits of the proposed approach.

Keywords: Multimodal single/dual stage conversion, solid-state DC-AC
transformer, Two port two-way choppers, Pulse width modulation, DC-AC
conversion.
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1 Introduction

Rapid growth of renewable energy resources, smart grids, modern electric
vehicles, high power and energy system has crucial in shaping the stable and
reliable activity of such conversion system [1, 2]. Multimodal inverter is the
main device used to integrate with utility grid and the energy storage unit,
including the batteries or ultra-capacitor, capable of handle the dynamic and
multi flow of power and to start charging the storage element [3]. The voltage
level of batteries varies greatly depending on the stage of charge. Big problem
during designing and installation of high behaviour multimodal inverter will
be how to obtain higher power transfer and flexible voltage control [4, 5].
Dielectric insulation is typically available for charging and discharging
electric cars and low voltage battery storage systems [6]. For multimodal
core-type DC-AC power transfer, 2 stages expand the existing of an core-
type Multimodal chopper converter and a regular multimodal DC-AC/AC-DC
converter is commonly used in electrical system which is illustrated in
Figures 1 and 2 illustrated proposed system of energy conversion.

The multimodal Chopper regulates the battery’s charge/discharge and
ensures a consistent VHIGH on the DC [7, 8]. The multimodal inverter
governs grid current and connects the DC bus to the Main grid.

In this situation, the multimodal Chopper assumes full responsibility
for the battery’s broad voltage control [9, 10]. An independent multimodal
converter is much more complex and expensive to deploy than unidirec-
tional discrete PWM and evocative chopper [11, 12]. TBDC converter is
appealing solution among numerous multimodal chopper converters owing
to its improved smooth switching efficiency and power control capac-
ity [13, 14]. Even then, the multimodal TBDC converter performs better

Figure 1 Existing cascaded system.

Figure 2 Proposed system of energy conversion.
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when the switching frequency is set to the resonant frequency of all its tank
circuit. When the voltage of the TBDC converter ranges widely, it is hard to
achieve performance across the whole operating range [15, 16]. While several
new topologies, control techniques, and design techniques for multimodal
choppers were proposed, high performance is still tough to accomplish when
a unidirectional voltage is controlled over a wide range [17]. Furthermore,
since the gain of the voltage of normal and reversal mode of TBDC vary,
it’s indeed difficult to obtain a quick and fast response when the converter
energy flowing path is shifted. Multiple input inverters with an active DC
voltage were suggested to address these disadvantages. The primary aim of
this approach is to run the chopper with SDAT in order to maximize per-
formance and optimize regulation of the multimodal chopper. Unidirectional
voltage output, on the other hand, must be adjusted in response to changes
in the battery voltage, resulting in a variable DC voltage [18]. The highest
DC voltage would be more than the traditional two conversion systems
of constant DC voltage [19, 20]. Since the minimum DC voltage must be
higher than the peak amplitude of AC voltage to ensure proper operation
of the multimodal inverter. As just a consequence, even higher voltage con-
trol devices and DC capacitors must be used, resulting in higher switching
losses. Smooth switching methods were used to eliminate switching errors
in the multimodal inverter. Soft-switching techniques were employed for the
multimodal inverter to reduce switching losses. A significant disadvantage
of the smooth inverter, in contrast to the dynamic power, is the additional
load ripple and low resistance. Because of reduced power conversion stage, a
single-stage multimodal Inverter seems appealing. Packet switched T-source
or quasi Z-source inverters are appealing for normal implementations. Even
so, designing a single-stage multimodal Inverter for discrete approaches to
improve effective AC current control and DC voltage/current control over
a large variety is far more complicated. Circuit diagram of the proposed
model is as shown in Figure 3. The main purpose of this work is to sug-
gest a new a double 2 stage design for multimodal independent DC-AC
power transfer, as well as a voltage regulation technique. Revised version
of core-type multimodal chopper and BRIC circuit groups is also planned.
To investigate the structure of the selected approaches, one of the suggested
two input Inverters composed of a TBDC converter and a T-type BRIC is
used as an illustration. The following is a breakdown of the paper’s structure.
For two input independent DC-AC power conversion, a new configuration
and groups of multimodal 3 port DC-DC and DC-AC control schemes are
suggested in Section 1. Section 2 discusses the operation rules, power,
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Figure 3 Proposed converter (SSD).

modulation techniques, and features of one of the suggested multimodal
Inverters. The findings of the experiments are presented in Section 4. Finally,
in Section 5, conclusions would be drawn.

2 DC-AC Power Conversion

2.1 Proposed System

Figure 1 shows the configuration of a 2 stages multimodal integrated inverter,
which consists of a multimodal core-type DC conversion stage and a quasi-
DC-AC level. The voltage gain of the multimodal DC-DC level must be hung
as per the difference of the battery to achieve a steady Bus voltage. As is well
known, achieving a high performance multimodal independent Chopper with
a broad voltage range is nearly impossible. High enhanced performance for
all active power directions can be easily accomplished if the voltage gain of a
multimodal Chopper is still unchanged. For e.g., if the frequency range of
a multimodal TBDC conversion is often the same as frequency response of
its tank circuit, high quality can be obtained. Even then, unless the step-up
of the DC-DC level remains constant, a dynamic battery voltage will result
in a varying DC voltage, which would be inappropriate for the DC-AC level
in the conventional 2 stages configuration seen in Figure 1. To address this
problem, a new a double carriage approach is developed for two input Power
electronic transition. The DC throughout the traditional 2 stages configuration
is separated into two DC, as seen in Figure 3. VHIGH is a DC with a fixed
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voltage, equivalent to the DC in a traditional 2 stages layout. VLOW is yet
another DC which voltage varies in accordance with the voltage supply. And
then when the voltage level ranges widely, a consistent voltage gain for the
multimodal chopper level can be obtained by adjusting the voltage of VLOW.
As a consequence, the multimodal chopper waveform operating state can be
streamlined, the chopper architecture and execution can be reduced, and high
performance can be obtained.

2.2 Solid State DC-AC Transformer

The suggested technique focuses on three multimodal Power converter and 3
port multimodal DC-AC/AC-DC that can communicate with dc Power at the
same time.

2.2.1 DC conversion stages (Single stage AC-DC conversion)
On the basis of a traditional 2 port power converters, a two multimodal
Chopper can indeed be developed. As either an instance, know the entire
multimodal TBDC conversion. To receive two Variable dc interfaces, the
supplementary side huge rectifier could be broken into two independent
shifting legs with a commonality and greater intended interfaces. Single stage
AC-DC conversion is illustrated in Figure 4.

2.2.2 Single stage inversion
To integrate multiple output sources of energy, multiple input Power elec-
tronic converters are being suggested, and comprehensive computational
complexity de-fuzzification systems have been suggested in that include
a strong guide for designing BRIC optimization techniques. A traditional
full-bridge multimodal step-up converter is made up of two multimodal

 
Figure 4 Single stage AC-DC converter.
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Figure 5 Single stage DC-AC converter.

Figure 6 Double stage boost DC-AC converter.

Step-down staircases. A traditional Step-down converter only has one Input
dc port, but using the mentioned methods in it can be converted to a
multi-input Step-down – step-up converter. Figure 5 depicts the single stage
inversion.

2.2.3 Double stage inversion
Figure 6 shows a new 2 stages multimodal DC-AC conversion made up of the
3 port TBDC conversion and current path is shown in red colour line, pink
colour lines indicated freewheeling path.
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Figure 7 Double stage Buck DC-AC converter.

Figure 7 shows a new 2 stages multimodal AC-DC conversion made up of
the 3 port TBDC conversion, blue colour lines indicated charging current path
and main current path is shown in red colour line. This converter can perform
AC-DC and DC-AC operations with boost and buck in opposite direction as
compared to Figures 6 and 7.

2.2.4 Proposed converter analysis
The following equation is solved by the volt-second equilibrium of the
inductors: 

VC1 = 0

VC2 =
VHigh

VLow

(1)

Where, VC1 and VC2 are the DC voltages.
C2 DC bias voltage is (VHIGH–VLOW)/2 that is not the case for a tradi-

tional TBDC converter. The current of the addition of energy is spherical in
the both half cycles, as seen in Figure 10. As a result, the DC typical currents
VHIGH and VLOW satisfy the following equation:

Ib
2Gv

= IHIGH = ILOW (2)

Where Ib, IHIGH and ILOW are the average current of battery

VbIb = VHIGH IHIGH + VLOW ILOW (3)

2GvVb = VHIGH + VLOW (4)
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TRIC duty cycles are calculated and given as LOW voltage port

∆1 =
VAP [sin ωt]

VLOW
(5)

Two port

∆2 =
VAP [sin ωt] − VLOW

VHIGH − VLOW
(6)

High voltage port

∆3 =
VAP [sin ωt]

VHIGH
(7)

The power ratio and the transfer voltage have a relationship.PLOW 1 = PG =
VAP − IAP (1 − Cos2ωt)

2

PLOW = VLOW − IAPCosωt(1 − ∆2)

(8)

PLOW =
VHIGH

2π

∫ 2π

0
(∆1 ∗ IAp) (9)

PLow =
VHIGH

2π

∫ 2π/3

0
(∆1

R ∗ IR + ∆1
γ ∗ Iγ + ∆1

β ∗ Iβ) (10)

3 Control Strategy

Overall control strategy is as shown in Figure 8. The typical multimodal
Inverter control system flow chart. For the BSDC, a current feedback
controller is used, with the relation I∗b of the required to charge current
determined by the condition of the device. To reduce a double paragraph
wave, the BSDC can adjust its duty cycle significantly. The BRIC controls
the AC current IG as well as the voltages VLOW and VHIGH. The voltage
comparisons of VLOW and VHIGH must meet the following conditions, as
per the review in Section 3:

V ∗
HIGH + V ∗

LOW = 2Gv Vb (11)

As the voltage level Vb increases V∗
HIGH remains unchanged whereas

V∗
LOW changes. The BRIC uses a control mechanism close to that of a tradi-

tional multimodal Inverter. VHIGH is controlled by a voltage regulator, whose
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Figure 8 Control strategy.

performance defines the AC grid current reference maximum values I∗AP. The
duty cycle of S2 and S1 in different operation mode can be expressed by:

∆1 = V C1

∆2 = V C2 − 1

∆3 = V C

(12)

The AC voltage should be called stable before and after mode switching
since the switching frequency is much greater than the frequency of the AC
voltage. The relationship between vcl, VC1, and Vc2 can be deduced from
(5), (6), (7), and (12). Furthermore, since S1 overall service period is 1, vc1
highest values should be reduced to one. Likewise, since S1 minimum service
period is zero, VC2 minimum value must be set to one. As a result, in the both
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Figure 9 Experimental setup.

half cycles of utility grid, VC1 and VC2 are expressed as:
VC1 = min

∣∣∣∣1, VCKAP

∣∣∣∣
VC2 = max

∣∣∣∣1, VC −KAP − 1

1 −KAP

∣∣∣∣
(13)

The mode transformation among VLOW level1 and level2 could be done
seamlessly with a dual dependent approach, as shown in Figure 19. However,
by alternating here between level2 and the VHIGH level1, the service period of
S1 will shift abruptly, and the frequency powered switch can switch between
S2 and S1 whenever the BRIC switches here between VLOW-level1 and the
VHIGH-level1. Maybe if one amplified wave VCl is being used, achieving
a seamless transition between both the level2 and the VHIGH-level1, or the
VLOW-Level1 and the VHIGH-level1, is difficult. Smooth switching between
these modes is accomplished by producing its other two modulated waves,
VC1 and VC2, and choosing the related modulated wave in separate operating
modes. Furthermore, the suggested modulation strategy differs from the tra-
ditional one in that it employs various modulated waves in different operating
modes.

4 Experimental Verification

Prototype model of solid state transformer is as shown in Figure 9. For real
time model investigation of the empirical knowledge, a Multimodal inverter
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Figure 10 Boost DC-AC mode.

 
Figure 11 Buck DC-AC mode.

with 3 level converters with 2 DC line is installed. Figure 11 depicts the
configuration. A digital signal processor is used to apply intensity modulation
and adaptive control. To meet the requirements of the away Inverter, the
battery voltage VB is upto 24 V, the AC signal VI = 48 V AC, 50 Hz and
VHIGH is planned to be 48 V DC. The frequency range of BRIC is 15 kHz,
while the frequency response of BSDC is 50 kHz.

The voltages of DC lines are VHIGH and VLOW, VPN is the middle
point voltage, and II is the VPN current. The voltage of VLOW is 24 V in
Figure 10, and the BRIC operates in the VLOW-level1, level2, and VHIGH-
level1. The Electric signal IG is well controlled with the proposed modulation
and control technique, as can be seen. To limit switching errors, five voltage
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Figure 12 Buck AC-DC mode.

Figure 13 Efficiency versus Power.

levels are collected from the middle point of the various control legs.
The VLOW voltage is 24 V, and the BRIC only operates in VLOW-Level1
and VHIGH-level1.

The drive signals are, of course identical to those used in DC-AC mode.
The orientation of the AC grid voltage seems to be the only distinction.
During begin the voltage or current control is understood as seen in Figure 11.
The waveforms of the DC-AC mode and AC-DC mode transformation are
seen in Figure 12, while two DC voltages remain stable while the Grid side
current overturns. Comparisons table are shown in Table 1.
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Owing to the Chopper balanced normal operation and the Inverter inter
characteristic, good conversion quality is obtained. These preliminary find-
ings back up the feasibility of the proper approach. Ac power under various
VHIGH is applied in all modes of operation and efficiency is calculated plotted
in a graph which is as shown in Figure 13.

5 Conclusion

For independent multimodal DC-AC power converters, a modern energy
conversion system is examined. A traditional 2 stages Inverter’s fixed dc
line voltage is broken into a constant voltage dc line and an adjustable
voltage dc line. The voltage of the dc voltage varies in response to changes
in the multimodal Inverter side voltage. As a consequence, the chopper in
the 2 stage system will still run at its most effective configuration. For the
proposed hybrid layout, BRIC topologies were introduced. As an illustration,
one of previously proposed inverters has also been thoroughly examined. The
BRIC regulates the voltage of two DC bus using the suggested modulation,
feature ensures, and an adaptive control approach achieves smooth behavioral
intention. The suggested converter configuration, function, modulation, and
control have all been thoroughly examined. The viability and efficacy of the
suggested Inverter were confirmed by research observations from a model.
The suggested solution tends to be high performance multimodal independent
DC-AC power conversion based on analytical and empirical results.
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