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Abstract

With the growing proportion of clean energy in integrated energy systems
(IES), energy supply uncertainty and spatial-temporal dispersion are becom-
ing increasingly prevalent. System modeling and optimal scheduling are
facing greater challenges. In this paper, we improve the non-dominated
sorting genetic algorithm (NSGA-II) to address the above problems and
propose a two-stage multi-objective benefit-equilibrium optimization coordi-
nation of the electric-thermal coupled integrated energy system. Firstly, this
paper carries out the thermodynamic characteristics analysis of the equipment
components of the electro-thermal coupled energy system, which reflects
the structural features of the system, the performance of each equipment
under different task conditions, and the mechanism of the system; based on
the above characteristic analysis, a two-stage multi-objective optimization
of electro-thermal coupled system optimization coordination is proposed
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to establish the objective function and carry out each objective balance
constraint; the NSGA-II algorithm is as well as improved. According to
the operation stage, operation generation and the NSGA-II algorithm are
improved by dynamically adjusting the operating parameters of evolving
individuals of the operation stage, operational generation, and the number
of undominated individuals in the current temporary population. By making
the algorithm adaptation to improve the adaptive capacity of the evolution
operator, we solve the two-step model and obtain the Pareto optimal front for
each energy device. In summary, the results of the analysis of the IES under
the coupling of power system and thermal system show that the constructed
model and the proposed algorithm can effectively improve the accuracy of
the renewable energy system and the optimization decision. The results of
the research further reflect the benefits of the proposed multi-objective opti-
mization scheme in accounting for economic, renewable energy, and complex
operating constraints which ensure the economical and stable operation of the
system, as well as the robustness of optimal scheduling.

Keywords: Integrated energy system, electric-thermal coupling, multi-
objective optimization, benefit equilibrium, NSGA-II algorithm.

1 Introduction

As an effective means to coordinate the planning and optimal dispatch
of multiple forms of energy supply, integrated energy systems (IES) can
use controllable power supply units within the system to smooth out the
uncertainty of clean energy, thus energy efficiency can be improved. We also
reduce the wastage of resources caused by wind and stray light to meet user
demand for an eco-friendly energy system. By 2030, China plans to reach
peak carbon emissions, and by 2060, it plans to achieve carbon neutrality [1].
The ambitious carbon neutrality targets of 2030 and 2060 have been met.
Currently, there has been a great deal of research into integrated energy
use by academics at home and abroad, which can be broadly divided into
two aspects: modeling and optimal scheduling. The first focuses on applica-
tion scenarios, hardware structures, and energy supply uncertainty analysis.
The second focuses on optimization algorithms and scheduling on multiple
timescales. Unfortunately, these studies tend to ignore the equipment’s vary-
ing operating characteristics, but the energy conversion efficiency by default
is still the nominal value. While this simplification may reduce the difficulty
of modeling, it can lead to a shift in the energy conversion relationship
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of the system and the accuracy of optimal scheduling results, especially
under low-load conditions [2]. Furthermore, IES also implies coordinated
complementarity of multiple energy sources. Deviations caused by neglecting
the varying operating condition characteristics of individual multi-energy
cogeneration equipment can be transferred to the overall system with the
energy coupling relation. For this reason, it is essential to set up a machine
mannequin that can mirror the traits of various running prerequisites in order
to make the sure protected operation of the machine and meet the necessities
of sensible functions [3].

Currently, Bayu A et al. used solar PV combined with wind turbines to
generate electricity and the developed hybrid system was connected to the
grid to supply the load, by modeling the components of the power network
and hybrid power network using MATLAB software [4]; Huang Zonghong
et al. proposed an energy management method for integrated energy systems
considering the reliability of energy supply for the poor coordination and
economic energy management in existing industrial parks [5]; Gireesh V.
Puthusserry et al. proposes an improved genetic algorithm (GA) for maxi-
mum power point tracking (MPPT) in shaded photovoltaic power generation
systems, where healthier chromosomes are retained for the next generation
and poorly performing chromosomes are sequentially removed from the
population [6]; Zhang T et al. used a typical scenario set to consider the uncer-
tainty of wind power output and established a regionally integrated energy
system optimal dispatch model, which utilized a non-dominated ranking
genetic algorithm (NSGA-II) to solve and output the Pareto optimal frontier
solution set [7]; Prakash S N et al. achieve optimal dispatch of the proposed
generating units by economic/environmental power dispatch to reduce the
total operating cost and net emissions of the system while considering the
effects of grid-connected and autonomous operation modes and satisfying
operational constraints [8].

Embedded energy systems are becoming cleaner and energy-orientated,
and energy supply uncertainty, and spatial and temporal dispersion are
becoming increasingly prevalent. System modeling and optimal scheduling
are facing greater challenges. In this paper, we improve on the undominated
sorting genetic algorithm to address the above problems and propose a
two-stage multi-objective coordination of benefit-balanced optimization for
embedded energy systems. First, this paper performs the analysis of the ther-
modynamic characteristics of the equipment components of the integrated
power system, which reflects the structural features of the system, the oper-
ating performance of each equipment under different working conditions,
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and the operating mechanism of the system; based totally on the above
function analysis, coordination of the electricity device optimization built-
in with two-stage multi-objective optimization is proposed to set the goal
characteristic and understand the stability constraint of every objective; the
NSGA-II algorithm is improved, and in accordance to the operation stage,
operation technology and The NSGA-II algorithm is multiplied by way of
dynamically adjusting the running parameters of evolving men and women
in accordance to the operation stage, the technology of operations and the
quantity of undominated men and women in the modern-day brief population,
via making the algorithm adaptive via enhancing the adaptive capability of
the evolutionary operator, fixing the two stage model, and acquiring the
Pareto ideal the front for every power device. In summary, the effects of
the algorithm evaluation exhibit that the built mannequin and the proposed
algorithm can efficiently enhance the accuracy of the renewable electricity
machine and the optimization decision. The consequences of the lookup in
addition mirror the advantages of the proposed multi-objective optimization
scheme in accounting for economic, renewable strength and complicated
working constraints to make certain within your budget and steady operation
of the system, as nicely as the robustness of gold standard scheduling.

2 Thermodynamic Characterization of Integrated Energy
System Equipment Components

2.1 Thermodynamic Characteristics of a Typical Natural Gas
Combined Cooling, Heating, and Power System

(a) Engine
Natural gas Combined Cooling, Heating and Power (CCHP) systems usu-
ally use gas turbines, the role of internal combustion engines and micro
combustion engines in transportation. Among all types of prime movers,
gas turbine and internal combustion engine technologies are more mature,
and these are the most widely used technologies in distributed electricity
systems. The gas turbine is the primary research focus of this paper, and
the capacity of gas turbines common in CCHP systems varies from several
hundred kilowatts to as much as 50 MW, which mainly has the following
characteristics: waste heat recovery in the form of steam; low vibration, no
need for special anti-vibration facilities [9]; can select gas or liquid fuel and
can use water injection, steam injection, and other low NOx burning technolo-
gies; output power is subject to environmental conditions The output power
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is influenced by environmental conditions (temperature, pressure, etc.); it has
low power generation efficiency but high waste heat, and waste heat can
easily be recovered without the need for cooling water; equipment operation
and maintenance costs are low.

According to the structure and operation principle of the compressor, its
thermodynamic characteristics are modeled as follows.

Compressor outlet air pressure:

P2 = πc ∗ P1 (1)

Compressor outlet temperature:

T2 = T1

[
1 +

(
π

ka−1
kn − 1

)/
ηc

]
(2)

Compressor power consumption:

Nc = GcCpctT1

(
π

ktu−1
kat

c − 1

)/
ηc (3)

The compressor efficiency can be obtained:

ηc = w1/w2 (4)

Where w1 is the effective work obtained by air:

w1 =
ka

ka − 1
RgTa

(
π

ka−1
ka

c − 1

)
(5)

w2 is the effective work delivered to the air by the impeller:

w2 = T 2
20(µ+ f0 − cT0/T

2
20) (6)

πc = π̇c ∗ πc0 (7)

π̇c = C1(ṅ)Ġ
2
c + C2(ṅ)Ġ

2
c + C3(ṅ) (8)

ṅ = n/
√

T1 (9)

Ġc = Gc

√
T1/P1 (10)

To model the thermodynamics of the combustion chamber, we first
assume that the losses of air resistance and gas flow are not considered [10],
i.e. Ga,in = Ga,owu , Gomt = Ga,out + Gr, where Gr is the natural gas
consumption.
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Combustion chamber outlet temperature:

T3 =
CpuGa,outT2 +Gr(qrηB + hr)

CpgGout
(11)

In order for a turbine to operate correctly, it has to have low turbine outlet
temperatures and high turbine drive powers.

Turbine outlet temperature:

T4 = T3

[
1−

(
1− 1

π
kx−1
kx

)
η1

]
(12)

Turbine drive power:

N1 = G1CpgT3

(
1− 1

πl
kx−1
kx

)
η1 (13)

Assuming no mechanical loss of power, the mathematical model of the
rotor is as follows:

J
dω

dt
= Mt −Mc −Mm −Ml (14)

Since ω = 2πn
60 , N = M

ω , and thus

dn

dt
=

900

Jπ2n
(N1 −Nc −Nm −Nl) (15)

As shown in the following diagram, the generator has the following
thermodynamic model:

Mf =
9555Nout

n
(16)

Then the efficiency of the whole gas turbine generator set is:

η =
Nout

Qgt
nk

=
Nout

Gr(qrηB + hr)
(17)

So that it accurately reflects the actual operating characteristics of differ-
ent equipment sizes under varying operating conditions, in order to obtain the
thermal value of the gas turbine exhaust available, test data from equipment
manufacturers are fitted [11].

Qfg,t = pgtQ
gt
ng + qgt (18)
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The full-load generation capacity with respect to the temperature correc-
tion model is as follows:

CAPgt ,r = CAPgt ,r0[1− cgt((tgt − tgt ,0) + |tgt − tgt ,0|)/2] (19)

where, pgt , qgt , cgt is the fitting coefficient

(b) Boiler
A boiler’s heating efficiency is primarily determined by its partial load rate,
which has the following relationship with its thermal efficiency:

ηb,1 = ηb,r(0.0951 + 1.525PLRb,t − 0.6249PLR2
b,t) (20)

For waste heat and gas boilers, the relationship between part load flow
and thermal efficiency is usually the best performance when the boiler is
maintaining an operating load of 85%–100% of the full load. And when its
load is less than 80% or greater than 100% the thermal efficiency of the boiler
tends to decrease quickly.

(c) Absorption chillers
In this study, a lithium bromide dual-effect absorption chiller is used, which
directly uses the heat allocated to the absorption chiller by the gas turbine and
the solar collector as the driving heat source [12].

The thermodynamic modeling of absorption chillers used in this study is
based on the DOE-2 chiller model in ASHRAE Standard 90.1. The factors
that affect the time-by-time cooling efficiency of absorption chillers are the
time-by-time chilled water outlet temperature, the time-by-time cooling water
inlet temperature, and the time-by-time part-load rate.

The following three equations are used to express the capacity correc-
tion factor and absorption refrigerator cooling power correction factor as a
function of temperature and part load rate at different operating conditions.

Temperature-to-capacity correction factor:

CAPCFac,t = a1 + b1 × Tac·wo,t + c1 × T 2
ac,wo,t + d1 × Tac,cr ,t

+ e1 × T 2
ac,cr ,t + f1 × Tac,wo,t × Tac,ci,t (21)

Temperature to cooling power correction factor:

EIRCFac,t = a2 + b2 × Tac,wo,t + c2 × T 2
ac,wo,t + d2 × Tac,cr ,t

+ e2 × T 2
ac,cr ,t + f2 × Tac,wo,t × Tac,ci ,t (22)
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Partial load rate to cooling power correction factor:

PLRCF ac,t = a3 + b3 × PLRac,t + c3 × PLR2
ac,l + d3 × PLR3

ac,t (23)

The modified hour-by-hour capacity of the absorption chiller is as
follows:

CAPac,t = CAPac,0 × CAPCF ac,t (24)

Among them, the hour-by-hour load rate of absorption chillers:

PLRac,t =
Qload

ac,t

CAPac,t
(25)

Where, Qload
ac,t is the hour-by-hour load of the absorption chiller, gas

turbines, and solar thermal systems contribute approximately equal amounts
of heat to the absorption chiller.

Then the hour-by-hour cooling capacity of the absorption refrigerator is:

Qac,t = Qac,r × CAPCF ac,t × EIRCF ac,t × PLRCF ac,t (26)

Qac,r = CAPac,0 × COPac,0 (27)

Where a∼f are the correlation coefficients derived from the DOE-2 model
fitted with actual data.

(d) Electric refrigeration
Electric compression refrigerators (hereinafter referred to as cr) and lithium
bromide absorption chillers belong to the same chiller, so the DOE-2 chiller
model can still be used for the simulation of capacity, energy efficiency, and
load performance, as follows:

CAPCFF cr ,t = a4 + b4 × Tcr ,wo,t + c4 × T 2
cr ,wo,t + d4 × Tcr ,ci ,t

+ e3 × T 2
cr ,ci ,t + f3 × Tcr ,wo,t × Tcr ,ci ,t

COPCFF cr ,t = a5 + b5 × Tcr ,wo,t + c5 × T 2
cr ,wo,t + d5 × Tcr ,ci ,t

+e4 × T 2
cr ,ci ,t + f4 × Tcr ,wo,t × Tcr ,ci ,t

PLRCFcr ,t = a6 + b6 × PLRcr ,t + c6 × PLR2
cr ,t + d6 × PLR3

cr ,t

(28)

Then there are.
CAPcr ,t = CAPcr ,0 × CAPCF cr ,t

PLRcr ,t = Qload
cr ,t /CAPcr ,t

Qcr ,r = CAPcr ,0 × COPcr ,0

(29)
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Where, Qload
cr ,t is the hourly load of the electric chiller, which is approxi-

mately equal to the hourly power consumption of the electric chiller Ecr ,t.
So here is the actual operating power of the electric chiller:

Qcr ,t = Qcr ,r × CAPCF cr ,t × EIRCF cr ,t × PLRCF cr ,t (30)

In this study case, we take the electric chiller not to run in winter in our
decision due to the small cold and hot compress in winter.

2.2 Thermodynamic Characteristics of a Typical Solar System

Solar power resources are widely used in embedded energy systems due to
their cleanliness, prevalence, abundance, and low cost of operation and main-
tenance [13]. Solar power systems primarily consist of solar photovoltaics
(PV) (hereafter referred to as PV systems) and solar thermal power systems
(hereafter referred to as ST systems).

(a) Photovoltaic power generation system
The hour-by-hour electricity era of PV strength machines is on the whole
affected by the parameters such as photo voltaic radiation depth and PV tele-
phone set temperature. The thermodynamic mannequin of the PV electricity
era gadget is as follows.

The hour-by-hour power generation capacity of the solar photovoltaic
system is:

Epv ,t = Apv × ηpv ,t × SRI t (31)

The hour-by-hour power generation efficiency of the photovoltaic cell
system is:

ηpv ,t = ηTref
[1− βref (Tc,t − Tref )] (32)

βref =
1

T0 − Tref
(33)

Where, To is the temperature when the electrical efficiency of the PV cell
set is 0, and 270◦C for crystalline silicon cells. Tc is the operating temperature
of the PV cell, i.e.:

Tc,t = Ta,t + (Tnor − 20)
SRI t
800

(34)

where, refers to the rated running cellphone temperature, described as the
mobile temperature measured underneath open-circuit stipulations at an
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ambient temperature of 20◦C, radiation depth of 800 W/m2, and wind
velocity of 1 m/s.

(b) Solar Thermal Systems
In a typical solar thermal system, the basic structure consists primarily of
solar collectors, absorber refrigeration units, and other ancillary equipment
such as heat exchangers [14]. One of these is the absorption refrigeration unit
which is responsible for converting the heat generated in the solar collector
into an effective cooling load in order to provide cooling to the user; it
is the responsibility of the heat exchanger to convert the heat in the solar
collector into an effective heat load to provide heat to the user. Here is the
thermodynamic model around the solar collector.

Qst ,t = Ast × ηst ,t × SRI t (35)

Where, ηst ,t is the time-by-time solar collector heating efficiency, its size
depends on the average temperature Tf.t of the fluid in the collector tube,
time-by-time ambient temperature Ta,t and tilted surface time-by-time solar
radiation SRI t, that is:

ηst ,t = ηoptKθ,t − a1 ×
Tf,t − Ta,t

SRI t
− a2 ×

(Tf,t − Ta,t)
2

SRI t
(36)

where, temperature and global heat loss coefficient are correlated by a1, a2,
taking a1 = 1.26, a2 = 0.004; Kθ,t are the correction coefficients of time-
by-time solar incidence angle, i.e.:

θl,t = | tan−1(tan θz cos(γ − γs))− β| (37)

θtr,t =

∣∣∣∣tan−1

(
sin θz sin(γ − γs)

cos θ

)∣∣∣∣ (38)

2.3 Air Source Heat Pump

Air source heat pumps are responsible for converting heat from the air that
cannot be directly utilized (low level heat source) into high level heat energy
for indoor heating. The air source heat pump unit mainly consists of a
compressor, condensing heat exchanger, expansion valve, evaporating heat
exchanger and compressor.

Since the heat pump operates under partial load conditions most of the
time, the focus of the simulation study of the heat pump system in this paper is
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the performance of the heat pump unit working under partial load conditions,
and the variable operating mechanism of the heat pump is the same as that
of the refrigeration unit, so the same DOE-2 model is used for the simulation
analysis of the air source heat pump. The mathematical model is as follows:

CAPCF ashp,t = a7 + b7 × Tashp,wo,t + c7 × T 2
ashp,wo,t + d7 × Tashp,ci,t

+ e5 × T 2
ashp,ci,t + f5 × Tashp,wo,t × Tashp,ci,t

COPCF askp,t = a8 + b8 × Tashp,wo,t + c8 × T 2
ashp,wo,t + d8 × Tashp,ci,t

+ e6 × T 2
ashp,ci,t + f6 × Tashp,wo,t × Tashp,ci,t

PLRCF ashp,t = a9 + b9 × PLRashp,t + c9 × PLR2
ashp,t

+ d9 × PLR3
ashp,t

(39)
From the above, it follows that

CAPashp,t = CAPashp,0 × CAPCF ashp,t

PLRashp,t = Qload
ashp,t/CAPashp,t

Qashp,r = CAPashp,0 × COPashp,0

(40)

Then the hour-by-hour heat production efficiency of the air source heat
pump is

Qashp,t = Qashp,r × CAPCF ashp,t × EIRCF ashp,t × PLRCF ashp,t

(41)

3 Two-Stage Multi-objective Optimization Model

The block logic diagram for the two-stage multi-objective optimal allocation
approach is shown in Figure 1. In the first stage planning model, the optimal
economic cost and the lowest CO2 emissions in the life cycle are taken as
objective functions, economic parameters for all equipment, machine running
parameters and outcomes from the 2d stage optimization mannequin as input,
and most beneficial gear kind and functionality as output [15]. In the 2d stage
optimization model, the lowest working fee of the gadget is taken as the
optimization goal, technical parameters for all equipment, energy prices, and
results from the first stage optimization model as inputs. Using this strategy,
the system’s computation efficiency can be improved and the operating costs
can be reduced. For improving the system’s efficiency and reducing the
system’s running time, we choose the typical daily data instead of annual
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Figure 1 Two-stage optimization method.

data for the optimal design of the embedded energy system during the second
stage optimization run [16].

3.1 Phase I Optimization Model

Minimizing the objective function involves minimizing the total present value
of the system components during its life cycle, which is expressed as follows:

CRF (l, r) =
r · (1 + r)l

(1 + r)l − 1
(42)

Total annualized cost includes investment cost and operating cost per unit

CTAAN = ZIC + ZOC (43)

where, ZIC and ZOC are the initial construction investment cost and operating
cost, respectively, ¥. The calculation method is

ZIC =
∑

m∈CHP

ICCHP
m +

∑
n∈W

ICWhnd
n +

∑
i∈B

ICBdieer
i +

∑
j∈E

ICES
j

+
∑
h∈T

ICTS
h +

∑
v∈A

ICAC
v (44)

Where, m, n, i, j, h, v are the serial numbers of CHP units, pho-
tovoltaic units, boiler units, electric storage equipment, thermal storage
tanks, and absorption chillers, ICCHP

m , ICWind
n , ICBolier

i , ICES
j , ICTS

h are
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the installation costs of CHP units, wind turbine installation costs, boiler
unit installation costs, electric storage installation costs, and thermal storage
installation costs, respectively, ¥.

ZOC =
∑
t∈NT

OCCHP
m,s,t +

∑
t∈NT

OCBolier
i,s,t +

∑
t∈NT

OCrid
s,t (45)

where, OCCHP
m,s,t,OCBolier

i,s,t ,OCGid
s,t are the operating costs of CHP units,

boiler unit operating costs, and network operating costs, respectively, ¥.

ICCHP
m = CCCHP

m · PCHP,Max
i × Im (46)

ICWind
n = CCWind

n · In (47)

ICBolier
i = CCBolier

i ·HBolier,Max
i · Ii (48)

ICAC
v = CCAC

v · CAC,Max
v · Iv (49)

ICES
j = CCES

j · EMax · Ij (50)

ICTS
h = CCTS

h · EMax · Ih (51)

where, CCCHP
m ,CCWind

n ,CCBolier
i ,CCAC

v ,CCES
j ,CCTS

h are the capital
construction cost of CHP unit, wind turbine, gas boiler, absorption
chiller, electric energy storage, and thermal energy storage, respectively, ¥ ;
Im, In, Ii, Iv, Ij , Ih are the binary variables of whether CHP unit, photo-
voltaic unit, gas boiler, absorption chiller, electric energy storage and thermal
energy storage are invested in construction or not, with 1 for investment in
construction and 0 otherwise; PCHP,Max

i is the upper limit of CHP generation
capacity, kW; HBolier,Max

i is the upper limit of heat production of gas boiler,
kW; CAC,Max

v is the upper limit of the cooling capacity of an absorption
chiller, kW. EMax is the upper limit of energy storage, kW•h.

OCCHP
m,t = FCCHP

m,t + PCHP
m,t · CMCHP

m (52)

OCBoiler
i,t = FCBoiler

j,t +HBoiler
j,t · CMBoiler

j (53)

OCGrid
t = GB t −GS t (54)

Where, FCCHP
m,t ,FCBoiler

j,t are the fuel cost of cogeneration units and
gas boilers, respectively, ¥/m3; PCHP

m,t , HBoiler
j,t are the capacity of cogen-

eration units and gas boilers, respectively, kW; CMCHP
m ,CMBoiler

j are the
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maintenance factor of cogeneration units and gas boilers, respectively. GB t

and GS t are the cost of electricity purchased from the grid and the revenue
from the sale of electricity to the grid, respectively, ¥.

Global warming is mainly caused by CO2 emissions from the system. The
life-cycle CO2 emissions are used as the minimum objective function [17].

Following are the emission conversion factors that can be used to
calculate CO2 emissions

minTCD = (ECHPβCHP
CD + EBβB

CD + Egididβgid
CD) · l

P (55)

Where, TCD is CO2 emissions, kg; ECHP and EB are the annual natural
gas demand for CHP units and boilers, m3; Egnd is the annual electricity
purchase for the grid, kWh; βCHP

CD , βB
CD, β

grid
CD are the conversion factor for

CO2 emissions from hot spot CHP units, gas boilers, and the grid; lp is the
total number of years in the planning cycle.

Taking the number and capacity of CHP units, gas boilers, absorption
chillers, wind power, storage units, and thermal storage ponds as optimization
variables [18], they can be expressed as

V = [CHPcapacity , Bcapacity ,AC capacity ,Windcapacity ,ES capacity ,

TS capacity ,CHPnumber , Bnumber ,AC number ,Windnumber ,

ESnumber ,TSnumber ]

(56)

Where, CHPcapacity, Bcapacity,AC capacity,Windcapacity are the capac-
ity of cogeneration units, gas boilers, absorption chillers, and wind power
generation, respectively, kW; TS capacity,HS capacity are the capacity of stor-
age devices and thermal pools, respectively, kW•h; CHPnumber , Bnumber ,
ACnumber ,Windnumber ,ESnumber ,TSnumber are the number of cogenera-
tion units, gas boilers, absorption chillers, wind power generation, thermal
pools, and storage devices, respectively.

3.2 Phase II Optimization Model

In the second-stage optimization model, the ultimate working fee of the
device in 24 h is taken as the goal function, taking into account the price
of buying electrical energy from the gadget and herbal gasoline in the course
of operation, which can be expressed as

minC◦ =

24∑
T=1

(P grid
t Ce

t + P gas
t Cgas)∆t (57)
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Where, C◦ is the daily operating cost, ¥ ; P grid
t and P gas

t are the demand
of the grid and natural gas network at time t, kW•h, respectively; Ce

t is the
purchased electricity cost at time t, ¥ ; Cgas is the purchased energy cost of
natural gas, ¥ ; ∆t is the simulation interval, s.

(a) Power balance constraint
The hourly power balance of the system can be expressed as

PCHP
t + P grid

t − PES,c
t /ηES,c + PWind

t − PAC,cool,in
t = PEL

t (58)

Where, PCHP
t , PWind

t are the output power of CHP units and wind
power, kW; P grid

t is the power purchased from the grid at time t, kW•h;
PES,c
t , PES,d

t are the charging and discharging power of electric energy
storage at time t, kW; ηES,c, ηES,d are the charging and discharging efficiency
of ES; PAC,cool,in

t is the input power of absorption chiller at time t, kW; PEL
t

is the electrical load demand at time t, kW•h.
The hourly thermal power balance of the system can be expressed as [19]

QCHP
t +QB

t −QTS,in
t /ηTS,in + ηTS,outQTS,out

t = QHL
t (59)

where, QCHP
t , QB

t are the output power of the CHP unit and boiler at time
t, kW, respectively; QTS,in

t , QTS,out
t are the input and output power of the

thermal storage tank at time t, kW, respectively; ηTS,in, ηTS,out are the input
and output efficiency of the thermal storage tank, QHL

t is the heat load
demand at time t, kW•h.

The hourly cooling power balance of the system can be expressed as

QAC,out
t = QCL

t (60)

Where, QAC,out
t is the output power of the absorption chiller at time t,

kW; QCL
t is the cooling load demand at time t, W•h.

(b) Component Performance Constraints
The CHP constraint can be expressed as

PCHP,Min
m ×ACHP

m,t ≤ PCHP
m,t ≤ PCHP,Max

m ×ACHP
m,t (61)

HCHP
m,t ≤ PCHP

m,t ≤ HPRm × ηHE (62)

Where, PCHP ,Min
i , PCHP ,Max

i are the minimum and maximum output
power of the CHP unit, kW; ACHP

m,t is the availability of the CHP unit,
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available as 1, otherwise 0; HPRm is the heat production power of the CHP
unit, kW; ηHEis the heat production efficiency of the CHP unit.

The gas boiler constraint can be expressed as

HBoiler,Min
i,t ×ABoiler

i,t ≤ HBoiler
i,t ≤ HBoile,Max

i ×ABoiler
i,t (63)

Where, HBoiler,Min
i,t , HBoiler,Max

i are the minimum and maximum output

power of the gas boiler, kW; ABoiler
i,t is the availability of the gas boiler,

available as 1, otherwise, it is 0.
The wind power constraint can be expressed as

P (v)


0, if v ≤ vcin or v ≥ vcout

v − vcin
vr − vcin

P r
w, if vcin ≤ v ≤ vr

P r
w, if vr ≤ v ≤ vcout

(64)

Where, vcin, vr, v
c
out are the cut-in wind speed, rated wind speed, and cut-

out wind speed respectively, m/s. Pw
i is the rated output power W rate of the

installed wind turbine, kW.
The absorption chiller can be expressed as follows:

QAC ,out
t = COPACQAC ,in

t (65)

where COPAC is the absorption chiller coefficient of performance.
The boiler constraint can be expressed as:

FB
t = QB

t /ηB (66)

Where, ηp is the boiler efficiency.

4 Improved NSGA-II Algorithm

4.1 Optimization Objectives

(a) Economical
In thinking about the economics of IES, it is vital to think about the supply
side and the demand side. On the grant side, the electricity provides value
including the buy price of the enter strength as properly as the operation
and upkeep price of a number of sorts of equipment, whereas demand-side
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economics is chiefly mirrored in users’ strength buy price [20].
fCG =

m∑
[CF(Pin(t)) +M(P (t), |S(t)|,T(t))]

fCD =
m∑
t=1

CL(L(t))

(67)

Where: fCG, fCD is the economics of the supply side and demand side
respectively; CF (•) is the external energy cost calculation function; M(•)
is the operation and maintenance cost calculation function; CL(•) is the
customer energy purchase cost calculation function.

(b) Environmentality
Controlling the emission of greenhouse gases and harmful substances has
always been an important issue for the energy industry and a matter of social
responsibility for the operators and users of IES. It is therefore necessary
to take into account the emission of pollutant gases in the energy supply
process [21]. At the same time, a clean energy subsidy function is introduced
to incentivize clean energy consumption.

fEF =
m∑
t=1

sum(EFP (t))

fCS =
m∑
t=1

CSUB(p
w
in,t, p

s
in,t)

(68)

Where: fEF is gas emissions; fCS is clean energy allowance; EF is gas
emission factor matrix; CSUB (•) is the allowance calculation function.

(c) Renewable energy share target

maxFrec = max

( ∑
t PPV,t∑
t PCHP,t

)
(69)

(d) Grid Friendliness
Time-of-use pricing can use price leverage to cut peaks and fill valleys and
smooth out the load curve, thereby relaxing power constraints and reducing
new capital costs [22], and this paper uses the load factor to characterize the
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friendliness of the rate strategy with respect to the network.

fLR = max

(
mean

(
m∑
t=1

lt

)/
max
t∈[1,m]

lt

)
(70)

The objective function of the two-stage optimization model is:

Stage 1


Upper Level :

{
min fgrid = fCG −max fCS

min fenvironment = fEF

Lower level : max fCS

Stage 2


min fuser = fCD −max fCS

max fcomfort = fUC

max fgridfriendly = fLR

(71)

4.2 Crossover Rate and Variance Adjustment Model

The model presented here for tuning the crossover rate and rate of variation
of undominated individuals is an adaptive strategy based on evolutionary
phases. First, the mannequin divides the evolutionary method into stages,
and the beginning crossover fee and the charge of version of special tiers
are constant in accordance with the adaptive approach based totally on the
evolutionary stage, and the crossover price and variant fee of people in the
identical evolutionary stage limit linearly with the enlarge of evolutionary
generations till they are equal to the beginning crossover charge and variant
price of the subsequent stage [23]; second, in order to ensure that non-
dominant individuals could still participate in the late run-in phase with
some Second, so that non-dominated individuals could still participate in the
evolution with some probability in the latter stages of the evolution, in this
model, with more evolutionary generations, both crossover rate and variation
rate converge to non-zero values.

The evolutionary algorithm has a maximum crossover rate of 1 and a
maximum variable rate of no more than 0.1. So that the algorithm’s search
process does not become a random search because of the high rate of
variation, in this model, the international most crossover charge is 1.0 and
the world most charge of alternate is 0.1. Searching for the choicest answer
set for the hassle is a hard problem. Therefore, the variant price adjustment
mannequin of non-dominated persons in the algorithm in this paper makes
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use of the quantity of non-dominated men and women in the brief populace as
a contrast index to measure the populace variety of the algorithm and adopts
an excessive variant charge to enhance the populace diversity. This portion of
a model is split into two subparts as follows.

(a) Temporary populations have fewer non-dominant individuals
than permanent populations
In this case, individuals in the parent population of the next generation are
dominant, and the number of non-dominance stratification is greater than 1.
Therefore, population diversity enhancement is not required in this case.

Since the NSGA-II using real-number coding can have short individual
gene lengths, it is straightforwardly improved by using an adaptive strategy
based on evolutionary stages, this leads to the problem that the rate of varia-
tion adjustment model has an individual variation rate that is larger than the
global maximum variation rate [24], for which the non-dominated individual
variation rate model is divided into two cases discussed in this paper: the
number of variables is not less than 10 and the number of variables is less
than 10. For this subpart, the individual non-dominated cross-rate adjustment
model is: In this subpart.

Pc



0.25(T1 − t)

T1
+ 0.75, t ∈ [0, T1]

0.25(T2 − t)

T2 − T1
+ 0.5, t ∈ (T1, T2]

0.5(T − t)

(T − T2)(1− β)
+ 0.5β, t ∈ (T2, T ]

(72)

Variance adjustment model when the number of variables is not less
than 10,

Pm =



(
min

{
0.1, 10L

}
− 1

L

)
(T1 − t)

T1
+

1

L
, t ∈ [0, T1](

1
L − 0.1

L

)
(T2 − t)

T2 − T1
+

0.1

L
, t ∈ (T1, T2]

0.1
L (T − t)

(T − T2)(1− β)
+

0.1

L
β, t ∈ (T2, T ]

(73)
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If the number of variables is less than 10, there are

Pm =



0.1, t ∈ [0, T1]

0.1, t ∈ (T1, T2](
0.1− 0.1

L

)
(T − t)

(T − T2)(1− β)
+

0.1

L
β, t ∈ (T2, T ]

(74)

where: L is the coding length of individuals; T is the maximum number of
evolutionary generations, [0, T1] for the early stage of evolution, (T1, T2]
for the middle stage of evolution, and (T2, T] for the late stage of evolution;
Pc is the crossover rate of non-dominated individuals, Pm is the variation
rate of non-dominated individuals; T1 = aT, T2 = (1 − a)T , usually
taking a = 0.382 or taking a = 0.258; β(β ∈ (0, 1]) is the adjustment
coefficient of the crossover charge and variant charge in the late evolutionary
stage [25], which is set to make sure that the crossover price and variant price
of non-dominated men and women are asymptotically non-zero in the late
evolutionary stage and is advocated to be set to 0.4 in this paper.

(b) Among the temporary population, there are more
non-dominant individuals than dominant individuals
In this case, the individuals in the parent population of the next generation
are non-dominant and their stratification number of non-dominant ranks is 1.
If the population diversity is increased by a high rate of variation for indi-
viduals in the population and the cross-rate adjustment model is unchanged.
The rate of change adjustment model for non-dominated individuals isP ′

m =
Pm + PmMax

2
, N ≤ r < αN

P ′
m = Pmmax, αN ≤ r ≤ 2N

(75)

Where: N is the population size, the temporary population size is 2N;
r is the number of non-dominated individuals in the temporary popula-
tion; PmMax = 0.1 is the global predetermined maximum variation rate,
Pm is the variation rate of non-dominated individuals before population
diversity enhancement, determined by Equations (73) or (74), and P ′

m is
the variation rate of non-dominated individuals after population diversity
enhancement; a∈ (1, 2] is the population diversity The recommended setting
in this paper is 1.5.
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In this algorithm, the pattern of adjustment of the crossover rate and
variability of dominant individuals is improved by the individual-based adap-
tive strategy. In the improved algorithm, firstly, the cross-rate and version
charge adjustment mannequin of dominant persons is set as the world’s most
cross-rate and version rate, and this is used as the parameter cost to run the
worst-performing folks in every era of the populace [26]; then the cross-rate
and variation rate is linearly assigned to dominant individuals according to
the relationship between the individual stratification ordinal number and the
minimum stratification ordinal number and maximum stratification ordinal
number after non-dominance sorting in NSGA-II. Each individual in the
dominant set linearly adjusts its own crossover rate and rate of change
according to the relationship between its sorted undominated stratification
ordinal number and the maximal stratification ordinal number, and the rate of
crossover and rate of change of individuals in the population is modeled as
follows.

P ′
c =

(PcMax − Pc)(irank − 1)

R− 1
+ Pc (76)

P ′
m =

(PmMax − Pm)(irank − 1)

R− 1
+ Pm (77)

where: P ′
c is the crossover rate of dominant individuals, P ′

m is the variation
rate of dominant individuals, PcMax is cthe rossover rate at the global level,
PmMax is the global maximum variation rate, rank is the stratification number
of non-dominant sort of dominant individuals, R is the maximum stratifica-
tion number of non-dominant sort of current population, Pc is the crossover
rate of non-dominant individuals determined by Equation (72), Pm is the
variation rate of non-dominated individuals determined by Equation (73) or
Equation (74). In general, PcMax = 1.0, PmMax = 0.1.

4.3 Cross-distribution Index and Variance Distribution Index
Adjustment Model

In the NSGA-II simulated binary crossover operation, the spacing of children
is proportional to the spacing of parents, which is a decreasing function of
the crossover distribution index ηc. The higher the value ηc, the lower the
probability that the generated children are far away from the parent, and
vice versa. In the polynomial variation operation, the higher the value of
the variance distribution index ηm, the lower the probability of generating
offspring individuals far from their parents and vice versa [27]. Therefore,
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in the initial stage of NSGA-II operation, smaller ηc and ηm, should be used
to make the algorithm have a greater probability of searching a more distant
space and improve the algorithm’s ability to explore the unknown space; with
the increasing evolutionary algebra, the algorithm shifts from global search to
local search and the solution individuals tend to converge, at this time, ηc and
ηm, should be gradually increased to achieve a smaller range of centralized
search and improve the algorithm’s local search ability. Therefore, in this
paper, the pass distribution index and variance distribution index of non-
dominated men and women in the algorithm are adjusted by using putting the
values of non-dominated people at the commencing and quit of the algorithm,
and the non-dominated individuals adjust their ηc values linearly according
to the evolutionary algebra during the operation of the algorithm. The model
for the non-dominated individuals ηc and ηm the population is given as

ηc = ηcMin +
(ηcMax − ηcMin)t

T
(78)

ηm = ηmMin +
(ηmMax − ηmMin)t

T
(79)

Where: ηcMin is the cross-distribution index at the beginning of the
algorithm, ηcMax is the across distribution index at the end of the algorithm,
ηmMin is the variation distribution index at the beginning of the algorithm,
ηmMax is the variation distribution index at the end of the algorithm, t is
the current evolutionary generation of the population, and T is the maximum
evolutionary generation. In order to make the algorithm have a large search
space at the beginning of the operation and a small search space at the end of
the operation, it is generally recommended ηcMin = ηmMin = 1, ηcMax =
ηmMax = 30.

The NSGA-II algorithm flow used in this paper is shown in Figure 2
for the previously proposed mixed-integer planning problem that contains
multiple objectives such as economic and environmental protection.

5 Example Analysis

5.1 System Description

In this paper, the IES composed of a 6-Bus power system and a 6-Node ther-
mal system is the experimental object, and the standardized value parameter
benchmark is 100MVA. Its system structure is shown in Figure 3. The system
structure is shown in Figure 3, where: Bus 1 and Bus 2 nodes of the grid
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Figure 2 Flowchart of the NSGA-II algorithm.

are each connected to a DG generator set; two CHP units provide electric
and thermal energy to the Bus 6 node of the grid and N 1 node of the heat
network; Bus 3∼Bus 5 of the grid and N 4∼N 6 of the heat network are load
nodes, and more detailed data required to describe the system are described
in the literature. The system demand for electrical and thermal energy and
the ambient temperature during a typical winter day 24 hours are used as
experimental data sources.

According to the IES multi-objective optimal scheduling model con-
structed above, the effects of single-objective economic scheduling, single-
objective technical dissatisfaction, economic and technical dissatisfaction,
and multi-objective optimal scheduling on the optimization decision during
the coordinated operation of the IES system can be compared and analyzed.
Therefore, the following three cases are designed.

Case 1: Traditional single-objective economic scheduling minimizes only
the economic objective Fr, without considering the system’s technical
dissatisfaction optimization objective.
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Figure 3 IES consisting of a 6-Bus electrical system and 6-Node thermal system.

Case 2: Minimizing only the system technical dissatisfaction objective Fr

without considering the system economic objective.

Case 3: The Pareto the front of the multi-objective optimization hassle is
solved precisely through the increased NSGA-II algorithm thinking about the
device’s financial and technical dissatisfaction multi-objective optimization
scheduling at the identical time.

This section illustrates the effectiveness of the multi-objective optimiza-
tion scheme by analyzing the optimization results of three cases.

5.2 Optimized Coordination Analysis

The NSGA-II algorithm is used to solve the two-stage multi-objective model
to obtain the Pareto solution set of optimal scheduling containing 112 solu-
tions, and the results are shown in Figures 4 and 5 shows the Pareto solution
set for the economic and environmental objectives that are of most concern
to the actual engineering decision makers.

As seen in Figures 4∼5, there does not exist a dispatching scheme that
results in the lowest economic cost and the highest environmental friendliness
of the system and the highest renewable energy share of the system. The eco-
nomic and environmental objectives generally show a negative correlation,
i.e., the economic cost decreases while the pollutant emissions increase.

Thus, in order to find the optimal solution further under the existing set of
Pareto solutions. In this paper, we adopt the optimal solution distance method
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Figure 4 Three-dimensional Pareto solution set for optimal scheduling.

based on an expert evaluation to select the optimal solution based on how
close a finite number of evaluation objects are to the idealized objective. One
of these is the weight vector w = (0.6, 0.3, 0.1) from the expert evaluation
method for the three goals of economics, the share of environmental protec-
tion, and renewable energy, which comes from the decision-makers in this
industrial park.

First, the optimization results of each node state variable under the above
cases are analyzed. Among them, the optimization results of each power bus
voltage and thermal node inlet temperature under different cases are shown
in Figures 6 and 7, respectively. The critical constraints for the power bus
voltage and the inlet temperature of the DHN nodes in different cases are
0.9p.u. and 1.1p.u. for the power bus voltage and 70◦C and 90◦C for the
thermal node inlet temperature, respectively, but the total time that the bus
voltage and the inlet temperature of (F I

E , F
N
T ) exceed the upper and lower

limits of safe operation in Case 1 and Case 3 are longer than those in other
cases. The total time that the total line voltage and node inlet temperature of
(F I

E , F
N
T ) exceed the upper and lower limits of safe operation in both Case 1
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Figure 5 Pareto solution set for economic and environmental objectives.

and Case 3 exceeds the other cases. Because the optimization objective of
technical dissatisfaction is considered in the IES optimal scheduling process,
Case 2 and Case 3: (FN

E F I
T ) cases significantly improve the node state

variables exceeding the upper and lower safe operating limits in Case 1 and
Case 3: (F I

E , F
N
T ) cases, significantly improving the renewable energy of

the IES system. This improvement in the node operating state comes at the
cost of additional dispatching costs so decision-makers need to consider a
solution for the relative tradeoff between dispatching cost and node operating
state. As shown in Case 3: tradeoff solution in figure, the optimization
results of its node operating state variables are between the values of Case 3:
(F I

E , F
N
T ) and Case 3: (FN

E F I
T ) case node operating state variables, i.e., the

simultaneous optimization of dispatching cost and technical dissatisfaction
can be achieved by further adjusting the node operating state variables.

In the IES multi-objective optimal scheduling process, decision-makers
also need to consider solutions for the relative trade-off between scheduling
cost and technical dissatisfaction. The NSGA-II algorithm can be used to
solve the complete Pareto frontier, as shown in Table 1. Among them, the
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Figure 6 Voltage optimization results for each bus of the power network in different cases.

Figure 7 Optimization results of inlet temperature of each node of DHN under different
cases.

points on the Pareto frontier are all optimal solutions to the IES multi-
objective optimal scheduling problem, which can provide decision-makers
with diverse scheduling solutions. According to the TOPSIS method, the
point (30,83907.98) is determined as the best compromise solution due to
the closest to the ideal point and the farthest from the negative ideal point.
According to the optimization results, it can be seen that compared to the
extreme point (F I

E , F
N
T ), although the scheduling cost increases by $158.74,

the technical dissatisfaction decreases by 36. Compared to the extreme point
(FN

E F I
T ), although the technical dissatisfaction increases by 15, the schedul-

ing cost decreases by $533.75. This indicates that the obtained solution has
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Table 1 Pareto frontier and optimal compromise solution for IES multi-objective optimal
scheduling

Name of Technology Economic
Each Point Dissatisfaction FT Objectives FE

Case 3: (FN
E F I

T ) 14.8276 8.44487
Case 3: (F I

E , F
N
T ) 65.977 8.37488

Case 3: Optimal compromise solution 29.7701 8.39132
Ideal Point: (F I

E , F
I
T ) 14.9425 8.37533

Negative ideal point: (FN
E FN

T ) 65.8621 8.44418
15.7471 8.43976
16.8966 8.43295
20.9195 8.41445
25.977 8.4013
27.0115 8.39619
30.9195 8.38961

Case 3: Pareto Frontiers 32.8736 8.38717
33.908 8.38717
37.0115 8.38472
37.931 8.38423
40.9195 8.38276
46.8966 8.38104
48.8506 8.3803
52.9885 8.37858
54.023 8.37833
56.8966 8.37783
57.931 8.3771
59.7701 8.37661
64.1379 8.37537
65.0575 8.37488

a double benefit in terms of improving the system economy and renewable
energy.

As an additional example of the applicability of the proposed method, a
larger-scale IES consisting of a 33-Bus power system and an 8-Node thermal
system is used for validation. Based on the stimulability results, Case 1 has
a stimulability cost of $1052360, technical dissatisfaction was 862, and the
mean number of iterations was 4032; In Case 2, the technical dissatisfaction
is 88, the economic target is $1486177, and the average number of iterations
is 4475. The NSGA-II algorithm is used to obtain the full Pareto front, where
the point (240, 1093482) is determined by the TOPSIS method to be the
best compromise solution to the problem. Compared to Case 1 and Case
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2, the objective of technical dissatisfaction and the economic objective of
this solution decreased by approximately 90% and 26 %, respectively, but
the average number of iterations of the algorithm increased by 1084 and
641, respectively. 2 The results of this study are summarized in Table 1.
Despite the impact of the multi-objective optimization method on compu-
tational efficiency, it still satisfies the computational time requirements of
current optimal IES scheduling. These outcomes in addition confirm the
effectiveness of the proposed multi-objective optimization technique and the
options acquired in the equilibrium of the economy, renewable electricity,
and complicated operational constraints in order to make the sure financial
and steady operation of the system.

6 Conclusion

This paper investigates the IES multi-objective optimal scheduling problem
and proposes a two-stage multi-objective benefit-equilibrium optimal coordi-
nation for coupled electrothermal systems, improve the NSGA-II algorithm
to solve the complete Pareto frontier for this multi-objective optimization
problem and use the TOPSIS method for optimal decision making. The main
conclusions obtained are as follows:

(a) In this paper, we analyze the thermodynamic characteristics of each
key device in the IES for electrothermal coupling, taking into account
the variability of meteorological conditions and the volatility of energy
supply and demand. The thermodynamic mechanism modeling of
equipment, regression analysis of operational data, DOE-2 model in
ASHRAE Standards 90.1, and the model based on the variability of
solar radiation conditions are combined to establish the time-by-time
thermodynamic modeling of each major equipment of the system under
different operating the time-by-time thermodynamic characteristics of
each system under different operating conditions are modeled.

(b) Based on the characteristic analysis, a two-stage multi-objective optimal
configuration method is proposed to determine the optimal type, capac-
ity, unit combination and optimal operation strategy of the multi-energy
system, which optimize the total present value and CO2 emission in the
planning stage and minimize the daily operation cost in the operation
stage.

(c) The proposed algorithm adjusts the cross rate, variation rate, cross distri-
bution index and variation distribution index in NSGA-II following the
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traditional evolutionary stage based on individual adaptation strategy.
It also gives the corresponding adaptive adjustment model, so that the
algorithm can adjust the operation parameters adaptively during the
evolutionary process and achieve the purpose of adaptive evolution.

(d) The model is solved by NSGA-II. The optimal Pareto solution set is
obtained for the three objectives of economy, environmental protection,
and renewable energy share. The weight vector of multiple objectives is
w = (0.6, 0.3, 0.1), and the point (240, 1093482) in the Pareto front is
determined as the best compromise solution by TOPSIS method. The
effectiveness of the proposed multi-objective optimization approach.
The bought options, in taking into account the economics, renewable
power, and complicated operational constraints, make sure the mon-
etary and secure operation of the device, which is tested through the
comparative evaluation of exclusive cases.

The case of electro-thermal coupled system studied in this paper is not
equipped with a large capacity energy storage system, and with the improve-
ment of renewable energy capacity and energy storage technology, the energy
storage system plays an increasingly important role in the operation of
integrated energy systems. In future research, the thermodynamic analysis
and system optimization of the energy storage system can be further studied
in depth.
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