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Abstract

The effective planning of active distribution networks is crucial for utility
companies to make informed decisions regarding investments in distributed
generation, reliability assessment, reactive power planning, substation revi-
sions, and feeder repositioning. However, the dynamic nature of the solu-
tion space makes it challenging for model-based optimization methods to
ensure computational performance in active distribution network planning.
To address this issue, this study proposes a planning method that focuses
on improving computational performance through the continuous updating
of the planning model’s solution space during the reinforcement learning
training process. Based on simulations conducted on the IEEE 33-bus test
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system, the proposed planning strategy successfully enhances computational
performance while minimizing investment costs compared to other strategies.
With the proposed method, the investment cost and the operation cost are
reduced by 32.42% and 23.91%, respectively.

Keywords: Planning, active distribution network planning, reinforcement
learning, renewable energy source.

1 Introduction

The distribution network is a vital component of the power system respon-
sible for distributing the electricity generated by power plants to end-users.
With the growing use of distributed generation, which offers the benefits of
low-carbon environmental protection and flexible installation in the distri-
bution network, the term “active distribution networks” refers to networks
with control systems for dispersed energy resources [1]. The introduction of
large-scale distributed generation transforms a traditional passive distribution
network with a single flow into an active distribution network with multiple
power sources, increasing the complexity and unpredictability of system
operation and planning [2]. Active management and planning are required to
address issues arising from distributed generation access, optimize distributed
generation placement, and maximize the benefits of distributed generation in
distribution networks. An active distribution network utilizes advanced com-
munication and information technologies to actively manage the network,
thereby scaling up access to distributed power sources, energy storage, and
demand-side management, among others. The present management strategy
encourages the adoption of distributed power sources and increases environ-
mental stress by enabling them to actively participate in system regulation
based on operational requirements [3]. The standard approach to planning
distributed generation assumes that “installation is forgotten.” Therefore, it
is crucial to investigate the optimal planning problems for distributed power
sources in active distribution networks based on active management models.

In order to achieve a clean energy supply and net zero carbon emissions, it
is crucial to incorporate renewable energy sources through active distribution
network planning. In [4], SVC devices were introduced to increase the host-
ing capacity of photovoltaic generation. By upgrading conventional feeders
and substations, and strategically investing in distributed generations [6, 7],
energy storage systems [8], and reactive power sources [4, 5], a utility
company can achieve certain performance targets, such as reducing carbon
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emissions and minimizing unserved load. Current methodologies predefine a
mix of active distribution network management technologies to find the best
solutions within a fixed space. System reliability was improved in [9] by prop-
erly configuring energy storage systems [10], distribution automated systems,
and distribution switches. In [11], the ideal mix, location, and size of wind
turbines, photovoltaic panels, and energy storage systems were determined
to increase revenue in the active distribution network. References [12, 13]
focused on enhancing distribution network resilience, while [14] optimized
active distribution network facilities to meet the growing demand for electric
vehicle charging. Reference [15] employed renewable energy sources, energy
storage systems, and demand response to reduce carbon emissions. If the
solution areas are dynamically updated, these performance metrics can be
further improved.

The presence of distributed generation has an impact on various aspects
of traditional distribution networks, including line energy flow, node voltages,
and power network topology. While research has mainly focused on place-
ment and capacity of distributed generation, grid planning, and multi-stage
planning, some studies have examined conventional distribution networks.
Researchers have developed models using particle swarm optimization algo-
rithms to address load uncertainty and identify the ideal solution. Other
studies have created computational formulas and optimization models to
determine the appropriate size and location of distributed generation units,
considering factors such as node voltages and line current. Additionally, some
researchers have categorized distributed generation into power controllable
and power stochastic types and developed operation optimization models.
Reference [21] provides a simple planning method that evaluates the status
of multistage or multi-scenario modelling for distribution systems. However,
many studies still rely on passive management techniques, which do not
accurately represent the ability to adapt to distributed energy. To address
this issue, recent research has focused on hierarchical modelling techniques,
distributed generation capabilities, and optimization techniques for active
distribution system planning.

Various planning methods are being explored for active distribution net-
work planning, including distributed generation planning, strategy implemen-
tation models, demand side response, and optimization methods. Researchers
have investigated heuristic algorithms such as particle swarm optimiza-
tion [29], robust optimization [30, 31], and genetic algorithm [32, 33] for
optimizing active distribution network architecture [28]. However, very few
studies have considered both distributed generation and demand side response
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in these planning methodologies. This paper proposes a solution to the distri-
bution network planning problem by utilizing both the non-dominated sorting
genetic algorithm and tabu search method. These algorithms are frequently
used to address the workshop scheduling problem, and their combination
provides complementary benefits in calculation and search, resulting in faster
algorithm convergence.

Compared to standard planning techniques, hierarchical multi-objective
planning that considers multiple planning objectives can enhance the com-
prehensiveness and effectiveness of distribution network planning. Refer-
ence [22] proposes a hierarchical planning paradigm for implementing active
distribution network planning control. The lower level planning involves
building a distributed power optimization model for an operational dis-
tribution network, while the higher level planning focuses on generating
distributed energy-related challenges from the system network loss sensitivity
perspective. In addition, Reference [22] examines crucial assessment metrics
for active distribution networks, management capability planning, and con-
structs a hierarchical model approach. The study also builds a distribution
system planning model that takes into account the association between bal-
ancing network loss, line investments, power price, carbon emission expen-
diture, and policy subsidies using an active management mode. To develop
hierarchical multi-objective procedural programming, this study suggests
taking into account the distributed power grid connection perspective.

According to literature, active distribution network planning places a
strong emphasis on distributed generation planning, and several studies have
explored this topic [23]. The study found that demand-side management and
network load can affect the method for mapping distributed generation and
the detailed yearly cost of the planning scheme when energy production
is scheduled. Reference [24] examines methods for scheduling distributed
stored energy and distributed generation. Reference [25] outlines a method
for creating a distributed energy forecast for an active distribution system.
Furthermore, the use of renewable energy can increase the share of clean
energy in an area, improve the environment, and promote efficient and safe
operation of the power system [26, 27].

Reinforcement learning has gained popularity in the field of active dis-
tribution networks due to its ability to adapt to the environment and make
optimal decisions without requiring a model. Researchers have developed a
collaborative multiple voltage control using smart inverters [35], and a batch-
constrained reinforcement learning approach for dynamic distribution net-
work reconfiguration using limited historical operational data [37]. Literature
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extensively documents the use of reinforcement learning for managing active
distribution systems, including a multi-agent deep reinforcement approach
for voltage control using on-load tapping changers and solar inverters [34],
addressing overvoltage problems in distribution systems with significant
solar penetration [38], and creating a safe volt/var control using a restricted
soft actor-critic method [36]. Furthermore, research has used reinforcement
learning to plan the stochastic operation of active distribution systems [39].
There is still great potential for using reinforcement learning to dynamically
explore solution spaces for active distribution system planning issues.

A new method for active distribution network planning is proposed in this
article. The method utilizes reinforcement learning to dynamically update
solution spaces, resulting in an active distribution network planning scheme
that guarantees desired performance. The following is a summary of this
paper’s significant contributions:

• Instead of addressing the model-based optimization problem with fixed
solution spaces, this study models the dynamic update of the active dis-
tribution network solution spaces as a Markov decision-making process
to achieve the essential performances.

• Reinforcement learning is used to train the deep neural networks in the
active distribution network to make sure it performs as predicted.

• The proposed approach is tested on the industry-recognized IEEE 33-bus
system, and the numerical outcomes demonstrate that it is possible to
guarantee the active distribution network’s predicted performance at a
lower investment cost than in other circumstances.

2 Problem Description

Passive distribution networks are currently in use, but they differ from
active distribution networks in their inability to actively monitor and reg-
ulate dispersed generation and load. While traditional distribution systems
utilize a single network topology to manage load variation, active distribution
networks employ stochastic and dynamic planning techniques and consider
source-grid-load coordinated scheduling. Additionally, active distribution
networks can actively regulate multiple controllable resources to prevent
network failures, while traditional distribution networks can only control
their systems after a failure has occurred. Despite its use of passive control
technology to manage one-way power flow, traditional distribution networks
can still implement distributed hierarchical management and incorporate
demand-side management components.
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The planning of the active distribution network faces three main chal-
lenges. Firstly, the selection of optimal locations for energy storage systems,
units, and SVCs introduces binary variables and creates linkages between
current and new nodes. Secondly, traditional distribution network planning
encounters increasing complexity due to the unpredictability of distributed
generation and management challenges. Finally, the planning is a multi-
objective uncertain nonlinear mixed integer problem that requires balancing
conflicting objectives and restrictions within a targeted time frame. As dis-
tributed generation increases, load growth becomes more difficult to predict,
leading to power loss, under or overvoltage, and modifications to fault events.
Moreover, conflicts may arise between independent investors installing dis-
tributed generation and distribution network businesses maintaining grid
security and power quality. Effective voltage management, reactive power
balance, and relay protection are crucial for the system’s dependable and
secure operation. To transition from passive to active management, the
distribution network must update its current automation system.

In recent years, active distribution network planning has become cru-
cial to the growth of sustainable energy sources and the power industry.
Its primary objective is to determine the optimal location, size, and type
of producing facilities to meet future load demand while maintaining the
security and dependability of the power system and establishing the ideal
generation mix. Active distribution system planning models may be short-
term, mid-term, or long-term, with a planning horizon ranging from a few
years to several decades. The active distribution system planning model
comprises two distinct modules: the operational evaluation module and the
investment decision module. The former selects the production mix that can
meet the growth in yearly peak load and overall energy consumption based
on predicted utilization hours, while the latter evaluates the feasibility of
the proposed generation mix using probabilistic or deterministic production
simulation methods. However, such compartmentalized models only offer
possible development plans rather than optimal ones. Recent advances in
computing power have enabled the integration of the operational evaluation
and investment decision modules into a detailed active distribution network
planning model. This integrated approach allows for more accurate simula-
tion of power systems operating at various load levels, resulting in a more
reasonable and reliable generation expansion strategy. Techniques have been
proposed to incorporate precise operational limitations into active distribution
network planning, including the use of load blocks generated from the daily
load curve. While load blocks require less processing time than accounting
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Figure 1 Optimization planning framework for the active distribution system.

for all operating limitations across several days, they may not effectively
depict the ongoing fluctuation and volatility of renewable energy sources.

Demand Side Management (DSM) refers to strategies implemented on
the consumer side of electricity usage to optimize electricity consump-
tion, ensure rational usage, and support effective distribution of available
resources [34]. With increasing power demand, passive distribution net-
works have evolved into active distribution networks that incorporate demand
response technology. Active distribution network management encompasses
various factors, including demand-side response to peak and valley load
characteristics that drive up operational costs. By reducing peak load demand
through improved consumption patterns, user guidance, and peak load shift-
ing, demand-side management can balance the load and lessen the pressure
on distribution system cables and equipment. Pricing and incentive-based
measures such as interruptible capacity planning and time-of-use power pric-
ing can also be employed to support demand response. Prior to implementing
demand response, power workers must ensure the effective functioning of
the power system by taking into account user characteristics to reduce dis-
tribution system loss, power purchase costs, and equipment wear and tear.
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Effective demand side response can enhance equipment voltage compliance,
extend equipment useful life, and improve component operating conditions,
which leads to improved system safety and higher control power over the
load. By matching the user’s electrical demand, demand side response can
reduce the risk of overload operations and greatly enhance power supply
security.

3 Model Formulation

Reinforcement learning’s sole objective is to learn from interaction and
accomplish a goal. The so-called Markov decision-making process is a
particular type of stochastic process that frequently describe this process.
The agent and environmental concepts are essential. Components of the
Markov decision-making process [40]. The agent is in charge of selecting
a solution after solving the puzzle. The agent primarily engages with the
environment to gather data. The ongoing relationship between the agent and
the environment is described by the technique below: The agent receives
feedback in the form of incentives as a result of the actions they take and
their environment. The agent aims to maximize the sum of its acquired
rewards over a predetermined (or indefinite) time scale. The relationship
between the agent and the environment happens at certain discrete intervals
of time t = 0, 1, 2, 3 . . . . After getting an accurate description of the state
of the environment, the agent selects a course of action for each time step t.
The environment reacts to the agent by sending a numerical signal relating
to the action that was chosen by the agent after it has completed it. The
signals are considered as a reward in this instance. The agent’s objective is to
maximize the rewards’ discounted total as determined by

∑
p γReward t+p.

The task of translating states to actions at each time step is then left to the
agent. The signπt stands for the agent’s policy, which refers to this map-
ping. Once again, this procedure is carried out until convergence is reached
before the system enters a new state [40]. Finally, the reward of acting in
the initial state and following the policy is clearly expressed as q(s, a) =
E[

∑
p γ Reward t+p|St = s, At = a]. Using this function, the optimum

policies for the current situation can be determined. In summary, the first
subsection’s long-term dynamic storage investment problem is reformulated
using the Markov decision-making process framework, which serves as the
foundation of the solution approach. The reward and transit functions are
described in depth, as well as the state and action sets. This paper tackles the
overestimation bias issue with Q-learning by using a novel approach termed
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metamodeling in combination with artificial datasets. As a result, the second
paragraph goes into the specifics and presumptions of the above technique.
The final step-by-step methodology is described before a test case and its
results.

In order to construct optimal policies using appropriate algorithms, it is
essential to provide definitions for all the actions and state sets, transition and
reward functions, and discount factor within every Markov decision-making
process.

State:

S = {si,n, ∀i ∈ I, ∀n ∈ Node}

si,n ∈ {0, 1}
(1)

si,b is a binary value of the state space, indicating whether to invest equipment
i in node n or not.

Action: The set of potential actions for the problem is defined by the agent’s
available actions. In the second scenario, the agent is expected to respond at
one of the various defined levels based on a discrete-time Markov structure.
Therefore, the following vector can be used to define the agent’s action:

A = {ai,∀i ∈ I}

ai ∈ {1, 2, 3, . . . , N}
(2)

ai is an integer value of the action space, an indication of which node the
equipment i is invested at.

Environment: This study evaluates the effectiveness of different planning
strategies, based on RES serving capability and the number of unserved loads
in the active distribution system. To evaluate this performance at each stage,
convex optimization models are used for each state, as shown below:

network constraints :



∑
j

(pji − rji|Iji|2) + p̃gi − Sicosφi =
∑
k

pik,∀i

∑
j

(qji − xji|Iji|2) + q̃gi − Sisinφi =
∑
k

qik,∀i

vi − vj − 2(pijrij + qijxij)

+ |Iij |2(r2ij + x2ij) = 0, ∀ij
vi|Iij |2 = p2ij + q2ij ,∀ij

(3)
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constraints of cutting power :


∆pCwind ≤ PCwind .max

∆pCsolar ≤ PCsolar .max

∆pClaod ≤ PCload .max

(4)

constraints of equipments :




Ees,t+1 = Ees,t − ηpes.c + ηpes.d ,

0 ≤ pes.d ≤ aesues.dpes.max ,

0 ≤ pes.c ≤ aesues.cpes.max ,

aesEes.min ≤ Ees,t ≤ aesEes.max

aunitPunit .min ≤ punit ≤ aunitPunit .max

aSVCPSVC .min ≤ pSVC ≤ aSVCPSVC .max

(5)

Constraint (3) consists of convexified power flow restrictions, which
include constraints on voltage, network power flow, branch current, and
relaxed second-order cone constraints. Constraint (4) imposes limitations on
renewable energy sources and loads that need to be respected. Constraint (5)
outlines the operating limitations for the energy storage system, unit, and
SVC. p̃gi is the energy output of generations in the distribution network,
considering the uncertain RES generations.

Reward: The reward function is the final Markov decision-making process
component to be defined. This is a key component of the definition since
it influences the signals that the agent receives from the environment or
rewards. The main forces behind the agent’s derivation of the best possible
policies are these signals.

Reward = −
[∑

i

C̃ostinv ,iai + Cost loss
∑
line,t

Iline,trline,t

+
∑
t

(C̃ostwind∆pCwind + C̃ostsolar∆pCsolar

+ C̃ost load∆pCload )

]
(6)

The reward function of the initial investment cost and yearly operating
costs is described by function (6), where The first term is the equipment’s
original investment cost, the second is network loss, the third is the cost of
decreasing wind and photovoltaic power, and the fourth is load curtailment
cost. C̃ost inv ,i, C̃ostwind , C̃ostsolar , C̃ost load are the cost of investment,
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wind curtailment, solar curtailment and load curtailment considering the
uncertainty from the government tax policies, environment, etc.

4 Solving Method

What results in the Q-learning method’s overestimation bias under highly
stochastic circumstances has been demonstrated. Since the action space
and state space are small, the reinforcement learning method based on Q
learning is the most efficient. In practical terms, this implies that the agent
might try to transition to a particular state, even if transitioning to other
states would be the best course of action, if it believes there is a chance
of receiving an exceedingly “excellent” reward. This section of the essay
discusses how this phenomenon pertains to the scenario under consideration
and proposes a potential solution to mitigate its impact. It is crucial to note
that the operational-level assumptions enumerated will be utilized solely in
this study’s investigation. The goal is to devise a computationally efficient
and unbiased method for computing the loss of the load cost component in
the reward function.

Assuming that the issue arises when the agent receives inaccurate signals
about the optimal approach, these signals serve as incentives for the agent
during each control period of the problem. The reward function contains
two negative components, namely capital costs and outage penalties. Increas-
ing storage capacity has a direct effect on investment costs, while outage
penalties are largely dependent on the stochastic occurrence of outages.
If there are few or infrequent outages during a decision period, the agent
may choose to continue operating the system as it is and accept the outages
instead of taking measures to prevent them, such as making investments. This
outcome generates the previously mentioned misleading signals. In the best-
case scenario, this occurrence would result in a slower convergence rate of
the solution algorithm. However, in the worst-case scenario, it could result
in the development of suboptimal strategies. To reduce the impact of this
phenomenon on the outage part of the reward function, a unique approach
must be developed using synthetic data and function approximation.

In contrast to real data collection and investigations, simulated datasets
are created dynamically using methods. In this case, a simulated dataset with
multiple input variables and a single output feature, the interruption cost, can
be generated using current simulation techniques. A function approximation
technique can then be used to map the desired and approximate output
from the given inputs. Since this cost component is dependent on the storage
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Table 1 The procedure of reinforcement learning for active distribution network planning
The procedure of reinforcement learning
1 initialization: Q table
2 for every episode do:
3 Observe current state s

4 Select action a based on the Q table according to ε-greedy policy
5 Obtain a new state and reward from the environment
6 Update the Q table based on the Bellman function
7 Update the current state
8 End for

unit in the system, a vector can be created using the necessary attributes to
estimate the cost of an outage.

In the initial stage of this process, it became evident that a systematic
approach was necessary for generating data to be included in the data
collection. Each of these findings is based on n distinct and independent
simulations of the system, with the results subsequently being averaged.
To ensure independent observations, each input feature of a data set (includ-
ing all time characteristics and electricity production for all storage units)
is randomly chosen from the corresponding ranges. We generate n network
model realizations after selecting the input data for a specific observation and
inducing outages for each test. The corresponding outputs (outage cost) are
then computed by evaluating the outcomes of these simulations.

Prior to presenting the numerical case studies and results, a comprehen-
sive and schematic outline of the proposed methodology is provided. While
the categorizing Q-learning approach remains the foundation of the algo-
rithm, a pre-processing stage involving the generation of synthetic datasets
and function approximation has been incorporated. Table 1 illustrates the
process, which comprises the standard phases of the Q-learning algorithm
modified to suit the specific situation.

5 Results and Discussion

This section presents case studies that were conducted to validate the
proposed approach in various technology combinations. The proposed algo-
rithms were implemented using TensorFlow Python backend and executed on
an Intel Core 1.6 GHz system with 8 GB of RAM. The optimization model
was solved using GUROBI. To avoid computational complexity, a k-means
clustering method was employed to group daily operating vectors and select
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Figure 2 Illustration of the original IEEE 33 system before planning.

Table 2 Reinforcement learning algorithm parameters
Symbols Value

Learning rate – 10−3

Batch size NB 64
Discount factor γ 0.9
Episode size T 96

a subset of representative days that adequately capture various operating
conditions, such as load, wind, and solar, across seasons. The second module
was designed to select multiple sample days and streamline the model before
conducting the proposed tasks. Load, wind, and solar yearly profiles were
normalized and separated into daily profiles, which were then combined to
generate a high-dimensional vector. This process was repeated to establish
all representative days of each year across the planned horizon. The proposed
technique was tested on the IEEE 33-bus distribution network, as shown
in Figure 2. Table 2 lists all the parameters for the reinforcement learning
algorithm, while Table 3 displays the investment at each node. Finally, the
desired performances were achieved.

To highlight the advantages of the proposed approach, Table 4 compares
the proposed example with other scenarios. Case A has the same investment
as the baseline example at all stages. In Case B, a mathematical optimization
method is utilized.

In Table 4, the numbers in parentheses represent the possible nodes
for installing equipment, and the feasible space of the decision variables is
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Table 3 Investment result using the proposed method
Energy Storage System Units SVC

Step 1 Invest in Node 14 Invest in Node 14 No
Step 2 Invest at Node 29 No Invest in Node 6
Step 3 Invest in Node 21 Invest in Node 5 Invest in Node 3
Step 4 No Invest in Node 32 No

Table 4 Comparison with other cases
Case Investment Cost (k$) Operation Cost (k$) Total Cost (k$)
Base case 231.32 132.42 363.74
Case A 321.43 132.42 453.85
Case B 352.19 174.03 526.22

Figure 3 Convergence result of reinforcement learning.

only partially explored in this case. As a result, despite the relatively low
investment cost, there is minimal improvement in performance. Considering
the high cost of energy storage system installation, we expand the potential
nodes for SVC and units. The results show that while the load curtailment is
significantly reduced, the photovoltaic curtailment remains below the target
level.

As shown in Figure 3, the return of the proposed reinforcement learn-
ing can be converged to −363.74, meaning the total planning cost of the
distribution network is 363.74 k$ within 1000 training times.
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6 Conclusion

This research presents a novel performance-oriented active distribution
network planning method using reinforcement learning. Unlike traditional
methods that optimize an objective function over a known solution space,
reinforcement learning dynamically updates the active distribution system
until the desired performance is achieved. The proposed solution effectively
achieves the target performance at a low investment cost by minimizing load,
wind, and photovoltaic curtailment. As the element set expands to include
feeders, switches, and charging stations, and more complex performance
indices such as dependability, social conflict, and EV hosting capacity are
introduced, the approach can become even more sophisticated over time.
With the proposed method, the investment cost and the operation cost are
reduced by 32.42% and 23.91%, respectively.

Acknowledgements

This research was Supported by the Research on Economic Capacity
Increase and Flexible Network Structure Construction Technology of Dis-
tribution Network for High Proportion Distributed Energy Access (Project
No. 52022322000U).

References

[1] Rupolo D, Pereira Junior BR, Contreras J, et al. A new parallel and
decomposition approach to solve the medium-and low-voltage planning
of large-scale power distribution systems. Int J Electr Power Energy Syst
2021;132:107191.

[2] Nick M, Cherkaoui R, Paolone M. Optimal planning of distributed
energy storage systems in active distribution networks embedding grid
reconfiguration. IEEE Trans Power Syst 2018;33(2):1577–90.

[3] Alobaidi AH, Khodayar M, Vafamehr A, et al. Stochastic expansion
planning of battery energy storage for the interconnected distribu-
tion and data networks. Int J Electr Power Energy Syst 2021;133:
107231.

[4] Xu X, Li JY, Xu Z, et al. Enhancing photovoltaic hosting capacity-
A stochastic approach to optimal planning of static var compensator
devices in distribution networks. Appl Energy 2019;238:952–62.



1756 H. Li et al.

[5] Amrane Y, Boudour M, Belazzoug M. A new Optimal reactive power
planning based on Differential Search Algorithm. Int J Electr Power
Energy Syst 2015;64: 551–61.

[6] Shen X, Shahidehpour M, Zhu S, et al. Multi-stage planning of active
distribution networks considering the co-optimization of operation
strategies. IEEE Trans Smart Grid 2018;9(2):1425–33.

[7] Ugranlı F. Analysis of renewable generation’s integration using multi-
objective fashion for multistage distribution network expansion plan-
ning. Int J Electr Power Energy Syst 2019;106:301–10.

[8] Gao HJ, Wang LF, Liu JY, et al. Integrated day-ahead scheduling consid-
ering active management in the future smart distribution system. IEEE
Trans Power Syst 2018;33 (6):6049–61.

[9] Xie S, Hu Z, Yang L, et al. Expansion planning of active distri-
bution system considering multiple active network managements and
the optimal load-shedding direction. Int J Electr Power Energy Syst
2020;115:105451.

[10] Narimani A, Nourbakhsh G, Arefi A, Ledwich GF, Walker GR. SAIDI
constrained economic planning and utilization of central storage in rural
distribution networks. IEEE Syst J. 2019;13(1):842–53.

[11] Ehsan A, Yang Q. Coordinated investment planning of distributed multi-
type stochastic generation and battery storage in active distribution
networks. IEEE Trans Sustain Energy 2019;10(4):1813–22.

[12] Ghasemi M, Kazemi A, Bompard E, et al. A two-stage resilience
improvement planning for power distribution systems against hurri-
canes. Int J Electr Power Energy Syst 2021;132:107214.

[13] Najafi Tari A, Sebastian MS, Tourandaz Kenari M. Resilience assess-
ment and improvement of distribution networks against extreme weather
events. Int J Electr Power Energy Syst 2021;125:106414.

[14] Mozaffari M, Abyaneh HA, Jooshaki M, et al. Joint expansion planning
studies of EV parking lots placement and distribution network. IEEE
Trans Ind Inform 2020; 16(10):6455–65.

[15] Melgar-Dominguez OD, Pourakbari-Kasmaei M, Lehtonen M, Sanches
Mantovani JR. An economic-environmental asset planning in electric
distribution networks considering carbon emission trading and demand
response. Electr Power Syst

[16] Xiang Y, Wang Y, Su YC, Sun W, Huang Y, Liu JY. Reliability correlated
with optimal planning of the distribution network with a distributed
generation [J]. Electr Power Syst Res 2020;186:106391.



A Multi-objective Optimization Planning Framework 1757

[17] Yu T, Feng B, Wei DN, Liu SK, Zhang BB, Ji L. Source-network-load-
storage coordinated optimal scheduling for active distribution network
with a distributed generation [J]. Water Resource Hydropower Eng
2021;52(6):215–22.

[18] Kong T, Cheng HZ, Li G, Xie H. Review of power distribution network
planning [J]. Power Syst Technol 2009;33(19):92–9.

[19] Zhang J.Z. Research on the Locating and Sizing of Multi-type Dis-
tributed Generations and the Optimal Operation [D]. North China
Electric Power University, 2015.

[20] Xue HB. Research on distribution network planning with a distributed
generation [D]. Xi’an University of Technology; 2018.

[21] Nie ML, Wang F, Chen C, Wang LX, Dong XZ. Multi-objective dis-
tribution network planning considering reliability [J]. Proc CSU-EPSA
2016;28(1):10–6.

[22] Cai Y, Lin J, Wan C, Song YH. A Bi-level stochastic program-
ming approach for strategic active distribution network operators in
the electricity market [J]. Proceedings of the CSEE, 2016; 36(20):
5391–5402+5715.

[23] Koutsoukis NC, Georgilakis PS, Hatziargyriou ND. Multistage coor-
dinated planning of active distribution networks[J]. IEEE Trans Power
Syst 2018;33(1):32–44.

[24] Zhang SX, Yuan JY, Cheng HZ, Li K. Optimal distributed genera-
tion planning in active distribution network considering demand side
management and network reconfiguration [J]. Proc CSEE 2016;36(S1):
1–9.

[25] Wu XM, Dang J, Ren F, Wang SK. Research on Optimal dispatch of
active distribution network with distributed energy storage [J]. J Phys:
Conf Ser 2020; 1634(1): 012121 (6pp).

[26] Li X, Shan WL, Du DJ, Fei MR. Bilevel Planning of active distri-
bution networks considering demand-side management and distributed
generation penetration [J]. Sci Sin Inform 2018;48:1333–47.

[27] Tian LL. Research on the energy management strategy of an active dis-
tribution network for improving new renewable energy harvesting [D].
Beijing Jiaotong University; 2018.

[28] Ebrahimi H, Marjani SR, Talavat V. Optimal planning in active distri-
bution networks considering nonlinear loads using the MOPSO algo-
rithm in the TOPSIS framework [J]. Int Trans Electric Energy Syst
2019;30(3):17.



1758 H. Li et al.

[29] Jordehi AR. Particle swarm optimisation with opposition learning-based
strategy: an efficient optimisation algorithm for day-ahead scheduling
and reconfiguration in active distribution systems [J]. Soft Comput
2020;24(24):18573–90.

[30] Malee RK, Chundawat AS, Maliwar N, Sharma AK. distributed gener-
ation integrated distribution system expansion planning with uncertain-
ties [J]. J Intell Fuzzy Syst 2018;35(5): 4997–5006.

[31] Babaei S, Jiang RW, Zhao CY. Distributionally robust distribution net-
work configuration under random contingency [J]. IEEE Trans Power
Syst 2020;35(5): 3332–41.

[32] Koutsoukis N, Georgilakis P. A chance-constrained multistage planning
method for active distribution networks [J]. Energies 2020;12(21):4154.

[33] Gao HJ, Liu JY. Coordinated planning considering different types of
distributed generation and load in active distribution network [J]. Proc
CSEE 2016; 36(18): 4911–4922+5115.

[34] Ebrahimi H, Marjani SR, Talavat V. Optimal planning in active distri-
bution networks considering nonlinear loads using the MOPSO algo-
rithm in the TOPSIS framework [J]. Int Trans Electric Energy Syst
2019;30(3):17.

[35] Jordehi AR. Particle swarm optimisation with opposition learning-based
strategy: an efficient optimisation algorithm for day-ahead scheduling
and reconfiguration in active distribution systems [J]. Soft Comput
2020;24(24):18573–90.

[36] Malee RK, Chundawat AS, Maliwar N, Sharma AK. distributed gener-
ation integrated distribution system expansion planning with uncertain-
ties [J]. J Intell Fuzzy Syst 2018;35(5): 4997–5006.

[37] Babaei S, Jiang RW, Zhao CY. Distributionally robust distribution net-
work configuration under random contingency [J]. IEEE Trans Power
Syst 2020;35(5): 3332–41.

[38] Koutsoukis N, Georgilakis P. A chance-constrained multistage planning
method for active distribution networks [J]. Energies 2020;12(21):4154.

[39] Gao HJ, Liu JY. Coordinated planning considering different types of
distributed generation and load in active distribution network [J]. Proc
CSEE 2016; 36(18): 4911–4922+5115.

[40] Sutton R, Barto A. Reinforcement learning: an introduction. The MIT
Press; 2015.



A Multi-objective Optimization Planning Framework 1759

Biographies

Hongtao Li received his bachelor’s degree from Tianjin University in 1996
and his master’s degree in power systems and automation from North China
Electric Power University in 2005. He is currently working at State Grid
Beijing Electric Power Company. His research area is distribution network
operation and control technology.

Cunping Wang received his bachelor’s degree in electrical engineering from
Tianjin University in 2008 and Doctor’s degree in electrical engineering from
Huazhong University of Science and Technology in 2013. He is currently
working at State Grid Beijing Electric Power Company. His research areas
include active distribution network operation and control, and high reliable
power supply for important users.



1760 H. Li et al.

Hao Tian received his master’s degree in electrical engineering from North
China University of Technology. He is currently working as a teacher at Wuxi
University. He is mainly engaged in energy Internet planning, power system
reliability assessment, power system analysis, power grid planning and other
research work.

Zhigang Ren received the master’s degree in high voltage and insulation
technology from Xi’an Jiaotong University in 2009. He is currently working
at State Grid Beijing Electric Power Company. His research area is power
cable operation and condition monitoring technology.



A Multi-objective Optimization Planning Framework 1761

Erang Zhao received the bachelor’s degree in electrical engineering from
Hebei of University Technology in 2014 and the master’s degree in electrical
engineering from Tsinghua University in 2021, respectively. He is currently
working as a researcher at Wuxi Research Institute of Applied Technologies,
Tsinghua University. His research areas include power system operation and
planning, microgrid operation.

Lina Xu received the bachelor’s degree in Electronic Information Science
and Technology from Xuzhou University of Engineering in 2018. She is cur-
rently working at Wuxi Research Institute of Applied Technologies, Tsinghua
University. She is mainly engaged in engineering software development
work.




	Introduction
	Problem Description
	Model Formulation
	Solving Method
	Results and Discussion
	Conclusion

