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Abstract

The necessity for smart energy oversight solutions has arisen in response to
the rising popularity of energy-efficient home automation and other energy-
saving technologies. Optimizing smart home energy use using multi-criteria
decision-making (MCDM) is a proven methodology. However, the procedure
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for making decisions and MCDM’s capacity to handle various criteria are
typically limiting factors. Hybrid methods, which integrate multiple decision-
making approaches like Fuzzy Logic (FL) and Modular Neural Networks
(MNN), could potentially be able to circumvent these restrictions and
boost energy management systems’ efficacy and precision. This investigation
presents a hybrid Neuro-Fuzzy (H-NF) method for MCDM in regulating
energy for smart homes by combining FL with an MNN. The suggested
approach would optimize energy use in smart homes by considering several
parameters, notably cost, ease of use, and environmental effects. In addition,
this study aims to examine how the H-NF model fares in comparison to
other methods of making important decisions in terms of several performance
metrics. The suggested hybridized approach has the potential to deliver more
precise and effective decision-making processes for energy management in
smart homes, allowing users to optimize their energy consumption while
preserving comfort and lowering environmental impact.

Keywords: Neural network, decision accuracy, fuzzy logic, inference,
hybridization, decision-making, sustainability.

1 Introduction

Smart houses have been developed and used in response to the rising world-
wide demand for energy and concerns about environmental sustainability.
Smart homes optimize energy use, increase comfort, and boost productivity
using cutting-edge technology like the Internet of Things (IoT), artificial
intelligence (AI), and automation. In addition, smart homes have prioritized
energy management in recent years to meet their goals of decreased energy
use, a more stable energy grid, more energy efficiency, and outstanding
environmental friendliness.

Making well-informed decisions based on various factors is crucial for
successful energy management in smart homes. However, this procedure
might be complicated because of the presence of unknowns and competing
goals. Multi-Criteria Decision-Making (MCDM) is one strategy in which
the optimal action is chosen from a pool of possibilities using several cri-
teria [11]. Homeowners may make well-informed choices that reflect their
values and preferences with the help of MCDM methods, which provide a
standardized framework for assessing and ranking various energy manage-
ment measures. To this end, a hybrid neuro-fuzzy (H-NF) approach has been
developed for optimizing smart home energy use.
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1.1 Overview of MCDM

MCDM is a computational approach for determining whichever among
several alternatives meets the most criteria. It considers the priorities of
decision-makers and evaluates options based on how well they meet the speci-
fied criteria. Since MCDM allows for the consideration of various elements, it
has found widespread application in the realm of energy management, where
it is employed to make decisions about energy usage and conservation [3].

1.2 Overview of H-NF Approach

The H-NF method integrates elements of both neural networks and fuzzy
logic. Using the input data, the neural network trains its neurons to identify
patterns and formulate predictions. In contrast, fuzzy logic is used when exact
information is lacking, and assessments must be made using approximate
criteria [8, 13].

By considering factors including energy usage, cost, convenience, and
ecological effect, the H-NF Strategy for Energy Management may help
smart homes make the most of their energy use. Selecting inputs, extracting
features, and making a call are the three major procedures that make up the
methodology. First, data is gathered from various sensors and smart actuators
in the input selection phase. Next, the data is prepared for the decision-
making step by being transformed and preprocessed in the feature extraction
phase. Finally, in the decision-making phase, the H-NF method is utilized to
choose the optimal action given the available options.

1.3 Motivation

Significant research efforts have been made to optimize energy usage,
decrease expenses, and promote sustainability in light of the rapid prolif-
eration of smart houses and the increased emphasis on energy management
in residential environments. However, there are significant obstacles to over-
come due to the complexity and ambiguity of energy-related decision-making
procedures. Energy management solutions may be evaluated and chosen
using the practical framework MCDM methods provide, which considers
several factors simultaneously. In this light, investigating how to combine
FL and MNN into an H-NF strategy is an intriguing area of inquiry [14].

Fuzzy logic is a computational approach for representing and working
with uncertain, imprecise, and subjective information [9]. Conventional crisp
reasoning fails to represent the inconsistencies and uncertainty commonly
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associated with energy management choices due to considerations like
evolving energy costs, varied customer preferences, and unexpected weather.
To work around such issues, fuzzy logic makes use of linguistic factors and
membership mechanisms to determine and reason with subjective material
that is prone to ambiguity [12]. As a result, decisions that consider subjective
and inaccurate criteria can be conducted with more precision and adaptability
with the help of fuzzy logic.

However, MNN is a valuable tool for modeling complicated systems and
capturing subtle connections between different variables. Utilization patterns,
alternative energy outlets, storage facilities, and individual preferences are all
interconnected in the management of smart home energy. These dependencies
can be encapsulated in an MNN topology, which facilitates the examination
of various data sources and the recognition of actionable insights. The H-NF
methodology, which is the outcome of integrating MNN with fuzzy logic,
takes advantage of the positive aspects of both methods to provide better and
more accurate decisions.

The potential of the H-NF technique to overcome the shortcomings of
conventional approaches is what drives its use in the context of MCDM
for regulating energy in automated residences. Traditional decision-making
methods often use oversimplified models that fail to account for the nuances
and unknowns of today’s smart home ecosystems. The use of fuzzy logic
and modular neural networks enhances the suggested approach by enabling
the modeling of intricate connections and the provision of highly customized
suggestions in response to changing data.

The H-NF strategy may also increase consumer happiness and partici-
pation in energy management. Convenience, accessibility, and management
are two significant features that smart homes aim to provide for their inhabi-
tants. The suggested method may personalize energy management techniques
by considering user preferences and comfort-related parameters within the
decision-making frame. This tailored strategy encourages users to take an
active role in conserving energy and boosts user satisfaction.

1.4 Advantages of the Hybridized Neuro-Fuzzy Approach

The hybridized neuro-fuzzy method boasts various benefits compared to the
existing approaches, such as [2]:

• The FL part of the technique allows it to deal with the frequently
encountered imprecise and unpredictable information found in the field
of energy governance.
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• Because of its malleability, the method can be adapted to meet the
demands of a wide variety of smart homes.

• The technique considers numerous criteria when evaluating energy-
related decisions, allowing stakeholders to make educated decisions
according to a variety of considerations.

Implementing an H-NF technique to optimize energy consumption in
smart homes is an exciting new frontier. In addition to being versatile and
adaptive, the method may be used to consider several factors and deal with
imperfect or incomplete information. As a result, H-NF techniques, like those
employed in energy management, are predicted to gain popularity as the
importance of sustainable and efficient energy consumption expands.

1.5 Research Scope

The research scope encompasses the development and application of a
hybridized Neuro-Fuzzy approach for multi-criteria decision making in
energy management in smart homes. The research will focus on integrating
fuzzy logic and modular neural networks, identifying relevant criteria, devel-
oping a decision-making model, evaluating alternative strategies, developing
a user-friendly decision support system, and validating the effectiveness of
the proposed approach [18].

1.6 Objectives

The prominent objectives of this study are delineated as follows:

• Develop a comprehensive framework for energy management in smart
homes: The research aims to design a holistic framework that encom-
passes various aspects of energy management, including energy gen-
eration, consumption, storage, and distribution. This framework will
consider multiple criteria, such as cost, comfort, environmental impact,
and user preferences, to facilitate optimal decision making.

• Implement a hybridized Neuro-Fuzzy approach: The research proposes
the integration of artificial neural networks and fuzzy logic to develop
a hybridized Neuro-Fuzzy system. This approach will enable effective
modeling, analysis, and decision making within the context of energy
management in smart homes. The hybridized system will leverage the
strengths of both techniques, such as neural networks’ ability to handle
complex data patterns and fuzzy logic’s capability to handle imprecise
and uncertain information.
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• Provide a user-friendly decision support system: The research aims to
develop a user-friendly decision support system that enables homeown-
ers to interact with the proposed framework easily. This system will
provide intuitive visualizations, recommendations, and insights based on
the analysis conducted using the hybridized Neuro-Fuzzy approach. By
incorporating user preferences and feedback, the system will empower
homeowners to make informed decisions and actively participate in
energy management processes.

The layout of the research work is structured as follows: Section 2 delin-
eates the literature reviews of recent research works that exhibit the proposed
methodology’s significance in filling the gap. Section 3 briefs the dataset
utilized and core methodology with computations and Section 4 highlights
the observed outcomes with appropriate discussions. Finally, Section 5 put
an end note to the research study with future work and analyzed vital points.

2 Related Work

Wang et al. offer a novel method for selecting appropriate locations for wind
power projects in Vietnam, which combines the Fuzzy Analytic Hierarchy
Process (FAHP) and The Technique for Order of Preference by Similarity to
the Ideal Solution (TOPSIS) [20]. This study makes an impact by suggesting
a multi-criteria decision-making (MCDM) strategy inside a fuzzy setting
for the installation of wind farms in Vietnam. Initially, the FAHP model is
used to provide a relative importance score to each candidate site based on
various qualitative as well as quantitative criteria. Finally, we use TOPSIS to
determine the ranking of the remaining options. TOPSIS’s subjective nature
in the decision-makers’ evaluation of weights is one of the system’s flaws.
Consequently, how can lapses be handled when data collected by decision-
makers is inadequate or the subjective awareness of the decision-makers is
robust?.

For efficient supply chain procurement, Chen zeroes emphasis the dif-
ficulties of making informed choices among viable options throughout the
supplier selection process [4]. The study emphasizes that depending entirely
on subjective or objective criteria weights in various choice procedures might
lead to biased findings and draws attention to the contrast between the two.
As a result of integrating the entropy significance, the analytic hierarchy
process (AHP) weight, and the methodology for choosing an order through
resemblance to an optimal approach (TOPSIS), this research has developed
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an MCDM solution. By substituting entropy-AHP factors for qualitative
weights, the TOPSIS approach is improved. The most suitable supplier can
be chosen with the help of this innovative decision-making technique. The
decision-making process on construction material suppliers is employed to
demonstrate the suggested method’s efficacy in the study. The benefits of
integrating the TOPSIS technique with entropy-AHP factors in correctly
choosing the best supplier are shown via sensitivity assessment.

Dymova et al. provided a synthesis of more than four decades of research
and practice on establishing and resolving MCDM issues in diverse domains
of human endeavor in the face of various forms of uncertainty [5]. For practi-
cal reasons, the authors don’t describe the many decision-making procedures
already known to man, opting instead to zero down on the most widely used
computational tools and approaches. Consequently, the work may be seen as
a kind of illustrated survey of the most prevalent mathematical techniques
used to address MCDM issues, emphasizing applications. For demonstration
purposes, we apply these methods and techniques to the seemingly straight-
forward “buying a cat” issue, which has all the hallmarks of a multilayered
fuzzy MCDM assignment. The primary element of the approach and actual
entropy-weighing approach is often carried out using the actual data, yielding
more trustworthy conclusions; nevertheless, using incorrect data may also
lead to biased evaluations.

To aid manufacturing enterprises in selecting appropriate locations
for industrial parks, He et al. proposed an MCDM methodology [6].
The approach starts with an examination of the literature to create assess-
ment criteria. Next, we present a fuzzy optimization model by fusing
the fuzzy-TOPSIS with the fuzzy-VIKOR (VlseKriterijumska Optimizacija
I Kompromisno Resenje) approaches which can be expressed as FT-FV.
The optimization model employs a Lagrange mechanism to compute the
significance of choice criteria, and Fuzzy-TOPSIS is used to establish their
relative importance. In addition, the fuzzy-VIKOR technique is used to eval-
uate potential locations and choose the most advantageous one. Finally, the
suggested methodology is used for a quantitative investigation that compares
and rates five potential sites for a production business. The research shows
how the framework could be used in the real world. The study also pro-
vides a thorough evaluation of alternative approaches, as well as sensitivity
studies, to account for uncertainty in the relative importance of criteria
and decision-makers. These studies validate the framework’s applicability to
the issue of choosing locations for intelligent and environmentally friendly
manufacturing complexes.
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This study examines hydroelectricity, solar power, wind, biomass, and
geothermal power energies in Pakistan, among additional sources of renew-
able sources. The researchers use a unified approach that merges the AHP,
the Delphi technique, and the Fuzyy-TOPSIS methodologies. In the first
process, the most critical criteria for picking renewable energy (RE) resources
are defined and selected using the Delphi technique. The four primary
factors are financial, environmental, technological, and social and political
considerations. Twenty more criteria enhance these main ones. The AHP is
then used to care for each factor in the selection paradigm. According to
the report, wind power is probably the most practical option out of all the
potential alternative energy resources for electricity production in Pakistan.
The study’s findings are significant, reliable, and resilient, as shown by the
sensitivity assessment performed on the selection process. The study’s find-
ings help prioritize renewable energy sources for power production, which
may inform policy choices and promote long-term energy sustainability in
Pakistan.

A new neuro-fuzzy diagnostic system was presented in [23] by combining
a non-iterative ANN with a novel fuzzy model, the T-controller. Using a
Padé polynomial for improved accuracy and coefficients synthesized using
an optimized simulated annealing simulation on a pre-trained SGTM neural-
like structure, the system has been tested on actual data to forecast generator
power from 13 variables. The system’s great performance is proved via a
number of measures, and the findings are made more understandable by the
use of polynomial coefficients.

An innovative concept of mathematical transformations from [24] was
introduced the basis for information modeling, opens up possibilities for
solving problems in areas as diverse as pattern identification, estimation, cat-
egorization, basic distinct elements selection, optimization, retrieving infor-
mation or reorganization, and security. Employing space-time parallelization
methods, it employs neural-like components that serve as general approxima-
tor, facilitating both supervised and unsupervised learning via algorithmic or
hardware representations. The model enables a standardized approach across
a broad spectrum of purposes, provides fast non-iterative learning with a fixed
amount of computation steps, and guarantees reproducibility and good results
with both big and minor instruction samples.

From all the recent reviews, it’s been noticed that none has included
an optimal strategy to address the energy management problem concerning
essential factors like user preferences. Thus, this study incorporated a novel
management technique to optimize energy management barriers.
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3 H-NF Methodology

3.1 Problem Statement

The primary challenge this research aims to address is the optimization of
energy management in smart homes, considering multiple criteria such as
cost, comfort, environmental impact, and user preferences. This involves
the integration of artificial neural networks and fuzzy logic into a hybrid
Neuro-Fuzzy system for effective modeling and decision-making. More-
over, the research seeks to develop a user-friendly decision support system
that empowers homeowners to actively participate in energy management
processes.

In the context of energy management in smart homes, the problem can be
formulated as follows:

Given a set of alternative energy management strategies, E = {e1, e2,
. . . , en}, and a set of criteria î = {î1,î2, . . . ,îm}, the objective is
to determine the optimal energy management strategy that maximizes the
overall satisfaction and minimizes the energy cost while considering multiple
criteria simultaneously. Each alternative strategy Ei can be represented by a
vector of decision variables:

Ei = ⟨x1,x2, . . . ,xj⟩ (1)

where, xj represents the degree of adoption or utilization of a particular
energy management option or component, such as renewable energy sources,
energy storage systems, consumption patterns, or control strategies.

Let L = {l1, l2, . . . , ln} represent the set of linguistic terms associated
with each criterion, îm. The linguistic terms define the qualitative levels or
linguistic variables that describe the evaluation of the criteria. For example,
in the case of energy cost, the linguistic terms could be “low,” “medium,” and
“high,” representing different levels of energy cost. The problem involves the
following components which are represented in Table 1.

3.2 Dataset

The Smart* Data Set (Smart – UMass Trace Repository, n.d) for sustainability
is a dataset available in the UMass trace repository that was collected as
part of the Smart* project, which targets to optimize home energy consump-
tion [1]. Unlike previous work that focused on collecting data from a large
number of homes, the Smart* project prioritized collecting a comprehensive
set of data from each home, referred to as “sensing depth.” The dataset
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Table 1 Problem components and descriptions

Problem Components Description

Fuzzy Logic Modelling Fuzzy sets and membership functions will be defined to
represent the linguistic variables associated with each
criterion, îm. Let µ[îm, ln, xj ] denote the membership
function that represents the degree of membership of
decision variable xj to the linguistic term ln associated with
criterion îm.

Modular Neural Network
Modelling

A modular neural network structure will be developed to
capture the complex relationships between decision
variables xj and criteria îm. The neural network will
consist of interconnected modules, each module responsible
for modelling the relationships within a specific criterion
îm. The output of each module will be the aggregated
evaluation for the corresponding criterion.

Weight Assignment Weights will be assigned to each criterion îm to reflect
their relative importance in the decision-making process.
Let ϖj denote the weight assigned to criterion îm. The
weights will be determined based on the preferences and
priorities of smart home occupants.

Aggregation and Decision
Making

The fuzzy outputs from each module of the modular neural
network will be aggregated using fuzzy aggregation
operators, such as weighted averaging or weighted
maximum. The result of the aggregation will provide an
overall evaluation for each alternative strategy ai. The
alternative with the highest overall evaluation will be
selected as the optimal energy management strategy.

captures multiple aspects of the home environment. Overall, the Smart*
Data Set for sustainability provides a rich collection of actual information
from real homes, encompassing various aspects of energy consumption and
environmental factors.

3.3 Architecture

The architectural components of the proposed H-NF method for energy
management in smart homes are depicted in Figure 1. The component of
the architecture integrates the outputs of the FL and MNN components to
form the hybrid Neuro-Fuzzy approach. It combines the fuzzy logic-based
reasoning with the neural network-based learning and adaptation to leverage
the strengths of both approaches, resulting in a more robust and accurate
energy management system.
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Figure 1 H-NF architecture.

3.4 Computational Process

The computational procedure for multi-criteria decision making for energy
management in smart homes using an H-NF approach involves the following
steps which are diagrammatically represented in Figure 2:

Figure 2 Computational procedures of H-NF.

Problem Formulation and Data Collection: Define the set of alternative
energy management strategies E = {e1, e2, . . . , en} and the set of cri-
teria î = {î1,î2, . . . ,îm}. Collect relevant data for each strategy
and criterion, including energy consumption patterns, renewable energy
availability, user preferences, and cost factors.
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FL Modelling: Define the linguistic terms L = {l1, l2, . . . , ln} for each
criterion îm develop membership functions µ[îm, ln, xj ] to represent the
degree of membership of decision variable (Ross, 1994) xj to each linguistic
term ln associated with criterion îm. These membership functions will
capture the qualitative evaluation of each criterion.

Energy Cost (î1):

L: µ(î1,L,x) = 1− µ(î1,M ,x)− µ(î1,H,x) (2)

M : µ(î1,M ,x) = 1− µ(î1,L,x)− µ(î1,H,x) (3)

H: µ(î1,H,x) = 1− µ(î1,L,x)− µ(î1,M ,x) (4)

Here, x represents the decision variable associated with energy cost. L, M,
and H denote low, moderate, and high, respectively.

User Comfort(î2):

P : µ(î2,P ,x) = 1− µ(î2,M ,x)− µ(î2,G,x)− µ(î2, ξ,x) (5)

M : µ(î2,M ,x) = 1− µ(î2,P ,x)− µ(î2,G,x)− µ(î2, ξ,x)
(6)

G: µ(î2,G,x) = 1− µ(î2,P ,x)− µ(î2,M ,x)− µ(î2, ξ,x) (7)

ξ: µ(î2, ξ,x) = 1− µ(î2,P ,x)− µ(î2,M ,x)− µ(î2,G,x) (8)

Here, x represents the decision variable associated with user comfort. P,
G, and ξ represent the poor, good, and excellent, respectively.

Environmental Impact(î3):

L: µ(î3,L,x) = 1− µ(î3,M ,x)− µ(î3,H,x) (9)

M : µ(î3,M ,x) = 1− µ(î3,L,x)− µ(î3,H,x) (10)

H: µ(î3,H,x) = 1− µ(î3,L,x)− µ(î3,M ,x) (11)

Here, x represents the decision variable associated with environmental
impact.

Other Energy Utilization(î4):

L: µ(î4,L,x) = 1− µ(î4,M ,x)− µ(î4,H,x) (12)

M : µ(î4,M ,x) = 1− µ(î4,L,x)− µ(î4,H,x) (13)

H: µ(î4,H,x) = 1− µ(î4,L,x)− µ(î4,M ,x) (14)
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Here, x represents the decision variable associated with other energy
utilization.

User Preferences(î5):

L: µ(î5,L,x) = 1− µ(î5,M ,x)− µ(î5,H,x) (15)

M : µ(î5,M ,x) = 1− µ(î5,L,x)− µ(î5,H,x) (16)

H: µ(î5,H,x) = 1− µ(î5,L,x)− µ(î5,M ,x) (17)

Here, x represents the decision variable associated with user preferences.
In each equation, the membership function µ[îm, ln, xj ] represents the

degree of membership of the decision variable x to the linguistic term ln
associated with criterion, îm. These equations define the fuzzy sets and
membership functions that capture the qualitative evaluation of each criterion.
The values of the membership functions will depend on the specific fuzzy
logic techniques and membership function shapes chosen for the application.

MNN Modeling: Design an MNN structure to model the complex relation-
ships between decision variables xj and criteria îm. Divide the network
into interconnected modules, with each module responsible for modeling the
relationships within a specific criterion îm. Train each module using appro-
priate learning algorithms, such as backpropagation or radial basis function
networks, to capture the interdependencies between decision variables and
criteria.

Let’s assume we have ‘n’ decision variables represented by the vector
⟨x1, x2, . . . , xj⟩, and m criteria represented by the vector î = {î1,î2,
. . . ,îm}. We want to model the complex relationships between these
decision variables and criteria using a Modular Neural Network (MNN).

The MNN is divided into interconnected modules, with each module
responsible for modeling the relationships within a specific criterion, îm.
Let’s denote the module for the criterion îm as µj . Each module µj takes
the input vector x as its input and produces an output, Oj .

The output Oj of module µj is calculated by applying a set of weight
parameters ϖj and activation function f() to the inputs x. The computation
can be represented as,

Oj = f [ej + (ϖj ∗ x)] (18)

where, ϖj is the weight matrix for the module µj , * denotes matrix
multiplication, and ej denote the bias vector for the module µj .
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To train each module µj , an appropriate learning algorithm, such as
backpropagation, is utilized. Backpropagation is a commonly used algorithm
for training neural networks. It involves iteratively adjusting the ϖj and ej
of the module relied on the gradient of the error with respect to the network
parameters. The specific details of the training process depend on the chosen
algorithm.

Weight Assignment: Assign weights ϖj to each criterion îm to reflect their
relative importance in the decision-making process. These weights can be
determined based on the preferences and priorities of smart home occupants.
The weights should be normalized to ensure their sum is equal to 1.

The weights ϖj = {ϖ1, ϖ2, . . . , ϖm} is determined based on the prefer-
ences and priorities of the smart home occupants. There are several methods
to determine the ϖj , such as direct user input, pair-wise comparisons, or
Analytic Hierarchy Process (AHP). In this study, we employed AHP to
determine the weights.

Once the weights are assigned, it is important to normalize them to ensure
their sum is equal to 1. Normalization is performed by dividing each ϖj

by the sum of all {ϖ1, ϖ2, . . . , ϖm}. The normalized weights ϖnormj =
⟨ϖnorm1 , ϖnorm2 , . . . , ϖnormm⟩ can be computed as follows:

ϖnormj
=ϖj/(ϖ1 +ϖ2 + · · ·+ϖm) (19)

The normalized weights ϖnormj
represent a valid probability distribu-

tion, where each weight represents the relative importance or priority of the
corresponding criterion îm in the decision-making process.

By combining the MNN modeling and ϖj assignment, the H-NF
approach can effectively capture the complex relationships between decision
variables and criteria while incorporating the relative importance of each
criterion in the decision-making process. This enables intelligent energy
management in smart homes based on multiple criteria and user preferences.

Aggregation and Decision Making: For each alternative strategy Ei, calculate
the overall evaluation value (Ei) by aggregating the fuzzy outputs from each
module of the MNN. This is performed using fuzzy aggregation operators,
such as weighted averaging or weighted maximum. The aggregation process
is represented as follows:

ϕ(Ei) =
∑

[ϖj ∗Oj(Ei)] (20)

where, Oj(Ei) represents the outcome of the jth module for the alternative
strategy Ei.
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Rank and Selection: Rank the alternative strategies based on their overall
evaluation values Oj(Ei). The strategy with the highest evaluation value is
selected as the optimal energy management strategy for the smart home.

Visualization and Decision Support: A user-friendly decision support sys-
tem that provides visualizations (Kim et al., 2020), recommendations, and
insights based on the analysis conducted using the H-NF approach is evolved.
The system is supposed to enable homeowners to interact with the decision-
making process, adjust criteria weights, and explore the impact of different
strategies on energy consumption, cost, and user comfort.

Validation and Performance Analysis: The developed H-NF approach and
decision support system using real-world data and scenarios are validated.
Evaluate the performance of the approach in terms of decision and inference
accuracy, efficiency, scalability, and usability. Analyze the effectiveness of
the approach in optimizing energy consumption, enhancing user comfort, and
promoting sustainable practices in smart homes.

The computational procedure outlined above combines the strengths of
FL and MNN to enable multi-criteria decision-making for energy manage-
ment in smart homes. By integrating these techniques, homeowners can make
informed decisions that consider various criteria and lead to energy-efficient,
comfortable, and sustainable smart homes. The algorithm of proposed H-NF
is depicted in Table 2.

Table 2 Algorithm of proposed H-NF

Input: î = {î1,î2, . . . ,îm}, L = {l1, l2, . . . , ln}, ⟨x1, x2, . . . , xj⟩

Output: E = {e1, e2, . . . , en}

1: µ[îm, ln, xj ] //fuzzy modelling

2: ∀(µj ← x)

2.1: Oj ← f [ej + (ϖj ∗ x)] //relationships within a specific criterion, îm

2.2 Adjust (ϖj , ej) //backpropagation

2.3 ∀(îm)

Assign ϖj

2.4 ϖj Normalization:

ϖnormj = ϖj/(ϖ1 +ϖ2 + · · ·+ϖm)

3: ϕ(Ei) =
∑

[ϖj ∗Oj(Ei)] //Aggregation and Decision-making
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4 Performance Analysis

The proposed approach’s evaluation is compared to the performance of a few
recent existing approaches like TOPSIS-AHP, TOPSIS-FAHP, FT-FV, and
H-NF approaches, which are discussed in Section 2. A variety of performance
indicators and their accompanying mathematically computable equations are
utilized for assessing the study, as mentioned earlier on MCDM for energy
management in smart homes using an H-NF approach.

Mean Square Error (MSE): The MSE calculates the typical squared disparity
between the expected and actual results [21]. The performance of the H-NF
technique in modeling the connections between choice factors and criterion
is evaluated. For any data point, i, we can record the projected result as Υi

and the actual result as ψi. Then, we can calculate the MSE as,

MSE = [1/N ]×
∑

(Υi −ψi)
2 (21)

The observed MSE values for different methods (TOPSIS-AHP, TOPSIS-
FAHP, FT-FV, and H-NF) at varying training-to-testing ratios indicate the
performance of each method in terms of prediction accuracy. A lower MSE
value indicates better prediction accuracy, while a higher value suggests less
accurate predictions.

Based on the observed values from Figure 3, it can be seen that
the H-NF method consistently achieves the lowest MSE values across
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Figure 3 Analysis of MSE.
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all training-to-testing ratios. This indicates that the hybrid Neuro-Fuzzy
approach outperforms the other methods (TOPSIS-AHP, TOPSIS-FAHP, and
FT-FV) in terms of prediction accuracy for energy management in smart
homes. The decreasing trend of MSE values as the training set size increases
suggests that increasing the training data helps improve the prediction accu-
racy of the models. These observed values indicate that the H-NF method
shows promise for delivering more precise and effective decision-making
processes for energy management in smart homes, as it consistently achieves
lower MSE values and therefore demonstrates better prediction accuracy
compared to the other methods. It is significant to observe that the interpreta-
tion of MSE values should be considered in the context of the specific dataset
and problem domain.

Root Mean Square Error (RMSE): The average prediction error of the H-NF
method can be quantified by estimating the RMSE, which is the square root
of the MSE [21]. It can be helpful when comparing various strategies. The
RMSE formula is expressed as,

RMSE =
√
MSE (22)

The outcome from Figure 4 exhibits that the H-NF approach yields
the best RMSE results over a wide range of training-to-testing ratios.
The H-NF technique improves prediction accuracy for smart home energy
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management compared to the other approaches (TOPSIS-AHP, TOPSIS-
FAHP, and FT-FV). A more extensive training set is associated with better
model accuracy, measured by a smaller RMSE. By consistently achieving
lower RMSE values, the H-NF method demonstrates better prediction accu-
racy than the other methods. Thus, the results exhibit promise for delivering
more precise and effective decision-making processes for energy manage-
ment in smart homes. Since the H-NF model has a reduced average prediction
error, it may give more accurate estimates of energy usage and help customers
better manage their energy consumption without sacrificing comfort or the
environment.

Fuzzy Inference Accuracy (FIA): The accuracy of the fuzzy logic inferential
process is quantified using a metric called “fuzzy inference accuracy” [22].
It can be calculated the same way as the preceding reasoning, as the mean
of the absolute differences between the expected value ranges and the actual
ones.

FIA = [1/N ]×
∑

|Υi −ψi| (23)

Results from Figure 5 reveal the performance of different methods
(TOPSIS-AHP, TOPSIS-FAHP, FT-FV, and H-NF) in optimizing energy
management in smart homes. The FIA values at various training-to-testing
ratios (94.14% at 80:20, 92.15% at 70:30, 90.11% at 60:50, and 89.67%
at 50:50) indicate the improvement achieved by each proposed method
compared to the other baseline. The H-NF consistently outperforms the
other methods, demonstrating the highest FIA values across all ratios. This
suggests that the H-NF model provides more precise and effective decision-
making processes, enabling users to optimize their energy consumption
while maintaining comfort and reducing environmental impact. The observed
improvements in FIA values signify the potential of the hybridized approach
to enhance energy management systems’ efficacy and precision in smart
homes, making it a promising solution for achieving energy efficiency and
sustainability.

Energy Savings (ES): The amount of energy conserved or optimized can be
estimated when comparing the H-NF method to a baseline or benchmark
scenario [19]. It reflects the decrease in energy usage that resulted from
adopting the strategy. Let σ represent the initial energy consumption, and
ϑ represent the energy consumption after implementing the approach. Then,
the amount of energy saved can be determined as follows:

ES = σ − ϑ (24)
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Figure 5 Analysis of FIA.

The observed results from Figure 6 in terms of energy-saving percentages
provide insights into the performance of different methods (TOPSIS-AHP,
TOPSIS-FAHP, FT-FV, and H-NF) in optimizing energy management in
smart homes. The higher the energy-saving percentage, the more effective
the method is in achieving energy efficiency. Among the methods, the H-NF
approach demonstrates the highest energy-saving percentage of 93.16%. This
indicates that the hybrid Neuro-Fuzzy model outperforms the other meth-
ods in terms of energy saving, offering the greatest potential for reducing
energy consumption in smart homes. TOPSIS-FAHP follows closely with an
energy-saving percentage of 89.14%, indicating its effectiveness in achieving
substantial energy savings. The FT-FV method also performs well, with an
energy-saving percentage of 87.15%. However, the TOPSIS-AHP method
shows a relatively lower energy-saving percentage of 78.18%, suggesting that
it is less efficient in optimizing energy use compared to the other methods.
Overall, the H-NF method stands out as the most effective approach for
achieving significant energy savings in smart homes.
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Decision Accuracy (DA): The effectiveness of the decision-making procedure
is measured by Decision Accuracy, which uses user-defined criteria [7].
It evaluates the H-NF method’s ability to choose the most suitable energy
management strategies across a broad spectrum of scenarios. Let Rrepresent
the number of correct decisions made by the approach and T represent the
total number of decisions. The accuracy of the resulting evaluation can then
be calculated as

DA = R/T (25)

Figure 7 shows the findings of a value-based examination of four alter-
native approaches (TOPSIS-AHP, TOPSIS-FAHP, FT-FV, and H-NF) to
optimize energy management in smart homes, as measured by the propor-
tion of correct decisions made by each approach. Each approach’s correct
decision ratio shows how well it does its job. The H-NF technique has
the most significant percentage of decision accuracy (94.17%) among the
approaches. As a result, the H-NF model provides the most exact and accu-
rate decision-making procedures for energy management in smart homes,
showing its superiority over the other techniques regarding decision correct-
ness. TOPSIS-FAHP follows suit, demonstrating efficacy in decision-making
with an accuracy percentage of 88.17%. With an estimated accuracy rate
of 85.17%, the FT-FV approach likewise does well. Compared to the other
approaches, TOPSIS-AHP’s comparatively low decision accuracy percentage
of 83.12% suggests it makes less-than-optimal decisions. When optimizing
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energy usage, maintaining comfort, and reducing environmental effects, the
H-NF technique stands out as the most accurate way to decision-making in
energy management for smart homes.

5 Conclusion and Future Work

The hybrid Neuro-Fuzzy (H-NF) method proposed in this study offers a
promising solution for optimizing energy management in smart homes.
By integrating Fuzzy Logic (FL) with Modular Neural Networks (MNN),
the H-NF approach considers multiple criteria and parameters to enhance
the precision and efficacy of decision-making processes. The comparison
of the H-NF model with other methods demonstrated its superior perfor-
mance in terms of energy savings (>90%), decision accuracy (94.17%), and
overall effectiveness. The suggested approach has the potential to empower
users in optimizing energy consumption, ensuring comfort, and reducing
environmental impact. Future work is focused on several aspects to further
enhance the effectiveness of energy management in smart homes. Firstly,
exploring the integration of additional decision-making approaches or algo-
rithms could potentially enhance the H-NF model’s performance. This could
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involve incorporating machine learning techniques or advanced optimization
algorithms to better handle complex and dynamic energy management sce-
narios. However, the system’s complexity could be a challenge, especially
with integrating additional decision-making approaches or algorithms. Its
performance might also rely heavily on the quality and quantity of input data.

Our future work involves testing the model with a broader and more
diverse set of data, including different types of households and vary-
ing patterns of energy usage, could help validate its effectiveness and
generalizability.
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