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Abstract

Smart grids have developed as a potentially game-changing strategy for
controlling the demand and supply of energy. Unfortunately, peak demand
is a significant source of grid instability and rising energy prices, making
it one of the most critical difficulties in smart grids. During times of high
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energy demand on the grid, demand response (DR) strategies incentivize
consumers to change how they use energy. This study’s overarching goal is
to learn how DR methods may be used to help smart grids make better use
of their energy resources. The primary research is to develop a smart DR
system that can predict times of high energy demand and proactively alter
usage to reduce such periods. Machine learning strategies are utilized in the
proposed system to estimate peak demand via past data, weather predictions,
and other variables. The system will then alter energy use based on real-
time data from smart meters along with other sensing devices to meet the
projected demand. The simulation model will include several scenarios for
testing the DR system’s flexibility, including a range of weather conditions,
load profiles, and grid topologies. Several indicators, including peak demand
reduction (80.04%), energy savings (38.09%), environmental consequences,
and reaction time (<0.4 seconds), are used to evaluate the model’s perfor-
mance. The output of the method excelled all of the other current methods
that were taken into account. The system’s rapid response time and its positive
environmental impact further highlight its potential in managing smart grid
resources effectively.

Keywords: Demand shift, peak demand, response time, autonomous com-
putation, energy optimization, policy optimization.

1 Introduction

Revolutionary developments in the energy industry have resulted from the
widespread use of smart grids. These grids provide adequate control of
energy demand and supply via the integration of cutting-edge technology
and communication networks. Still, peak demand is a massive hurdle to grid
stability and contributes to growing energy costs, making it a severe problem
for smart grids [1].

Electricity usage peaks during certain times of day, known as “peak
demand.” A spike in energy use at these times may put a strain on the grid,
resulting in erratic voltage, power outages, and other problems. Less effective
and more expensive power sources are typically used to accommodate the
growing demand, driving up customer energy costs [20].

Demand response (DR) solutions have acquired widespread attention
and acceptance as a way to optimize energy usage patterns in accordance
with the problems posed by demand spikes. Consumers are incentivized to
alter their energy consumption habits at peak demand times as part of DR
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strategies. Demand curves may be efficiently managed and flattened by smart
grids, which incentivize users to decrease or transfer energy use to off-peak
times [2].

The core target of this research is to investigate the viability of demand
response strategies for improving energy efficiency in smart grids. In addi-
tion, the initiative intends to enhance stability in the grid and economical
energy administration by encouraging customers to adjust their energy usage
practices during peak demand times through DR methods.

Many advantages can be gained when integrating DR strategies with
smart grids. Primarily, it improves dependability and lessens the likelihood
of blackouts by easing pressure on the system during peak demand. Second,
DR techniques may help improve energy administration by promoting load
shifting and moving energy-intensive operations to off-peak times. This helps
to lessen the demand for extra generating capacity during peak times [15].

Additionally, DR could assist in optimizing energy usage by decreasing
the utilization of exorbitant and inefficient power sources during times of high
demand. Ultimately, this could make the energy market more reasonable and
sustainable for customers.

This project intends to contribute to worldwide efforts towards optimal
energy resource utilization, grid stability, and alleviating the issues associated
with peak demand by researching and evaluating the possibilities of DR
approaches inside smart grids. Furthermore, this study’s results and insights
may help policymakers, electricity providers, and stakeholders optimize the
administration of energy in smart grids on a worldwide scale by influencing
their decision-making and the implementation of efficient demand response
mechanisms.

1.1 Significance of Peak Demand in Smart Grids

The term “peak demand” describes times of high electrical usage, often
at regular intervals throughout the day [29]. High energy costs and grid
instability are only two of the problems that peak demand causes in smart net-
works. There may be voltage fluctuations, potential blackouts, and additional
strain on the power grid if it is unable to keep up with the elevated demand
for electricity at these times. As a result of the increasing demand, energy
suppliers may turn to more costly and inefficient sources of power, driving up
the price of electricity. Therefore, it is essential to deal with peak demand to
maintain grid stability and implement efficient energy management in smart
grids.
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1.2 Demand Response (DR) Strategies

Demand response solutions aim to reduce grid stress by encouraging cus-
tomers to adjust their energy use during peak demand times [14]. Time-based
pricing, payment incentives, and sophisticated control systems are just a
few examples of the methods used to encourage customers to modify their
energy use patterns. Flattening the demand curve, minimizing the need for
extra generating capacity, and improving grid stability are all benefits of DR,
which works by incentivizing users to decrease or shift their energy usage
during peak hours. Also, via promoting energy conservation and decreasing
dependency on renewable fuel-based generators, DR deployment aids the
environment and helps to make the grid more sustainable.

1.3 Development of a Smart DR System

Using machine learning algorithms, the suggested smart demand response
(SDR) system can foresee periods of high energy demand and regulate energy
consumption proactively in smart grids [5]. We use machine learning (ML)
methods to analyze past data, future weather forecasts, and other factors to
provide reliable peak demand estimates [12].

The SDR system can determine the relationships between energy use
and variables, including time_of_day, day_of_the week, and conditions, by
analyzing past consumption trends. ML algorithms can evaluate these trends,
which then use that information to forecast energy use in the future under
similar circumstances. The system can then anticipate when those times of
highest demand will be.

The ML algorithms take into account both past data and forecasts. The
degree of humidity, the temperature, and the time of year are just a few of the
meteorological variables that have a noticeable effect on energy consump-
tion. Therefore, the SDR system may improve the precision of its demand
projections by considering weather forecasts.

Once it has predicted when peak demand will occur, the system uses
actual data from the standard datasets comprising smart meters and other
sensed values. With the data provided by datasets, energy use can be tracked
and analyzed instantaneously at a granular level. Additional information on
individual sources of energy use can be gleaned from other sensing devices,
like appliance sensors or automated construction system data.

The constantly updated data allows the SDR system to take preventative
measures to control energy consumption and reduce peak demand. Some of
these measures include “load shifting,” in which non-critical energy-using
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activities are moved to “off-peak” durations, and “load shedding,” in
which systems or devices are temporarily shut down during “peak™ times
(Kakran&Chanana, 2018). In addition, the system might prioritize energy use
in response to important demands or user preferences.

The ML algorithms adapt and learn accordingly as the smart grid mech-
anism receives more data and input. As a result, extremely effective and
economical demand response solutions might be used as the computations
improve at anticipating peak demand and optimizing energy consumption.

Incorporating ML approaches, the suggested SDR system can automat-
ically manage energy resources and make choices based on trained data.
For instance, the system may dynamically change the energy usage patterns
to match the expected demand using historical data, weather forecasts, and
actual-time data from various grid components. In smart grids, this boosts
efficiency and profitability by decreasing peak demand and increasing grid
stability [30].

1.4 Scope and Motivation

The study presented in the abstract aims to design an SDR system that uses
ML algorithms to maximize smart grids’ effectiveness in using their energy
resources. In addition, this study seeks to find ways to mitigate the effects of
peak demand, which threatens the reliability of the power system and drives
up the cost of electricity. The remit includes DR strategies that encourage
customers to alter their energy usage patterns at peak demand times. The
study also includes developing a simulation model to evaluate the adaptability
and efficiency of the proposed DR system over a range of variables. These
have distinct weather patterns, load profiles, and grid configurations. Demand
spike reduction, reductions in environmental impacts, and response times
are only a few of the performance assessment indicators used to gauge the
system’s efficacy.

The potential for smart grids to transform the energy industry via
improved oversight of energy supplies is driving this study. The peak demand
issue, however, prevents smart grids from providing their full advantages
[7, 32]. High energy demand causes grid instability, cost spikes, and ineffi-
cient power use. The DR solutions that have arisen, forcing customers to alter
their energy usage routines during peak demand times, are one reaction to this
problem. This study aims to examine how DR strategies and ML in particular,
can be used to improve smart grid energy efficiency. The project aspires to
aid in grid stability, economically viable energy oversight, and ecological
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responsibility via developing an SDR system that can precisely forecast
demand spikes and proactively control energy use. The study’s secondary
goal is to help policymakers, energy suppliers, and other stakeholders develop
and execute efficient demand response techniques worldwide. Finally, the
study is motivated by a desire to improve smart grid energy management’s
effectiveness, dependability, and long-term viability.

1.5 Objectives and Contributions

* Develop a Smart Demand Response (DR) System: Design and imple-
ment a machine learning-based smart DR system that accurately predicts
peak energy demand and adjusts energy usage in real-time using data
from smart meters and other sensors.

* Test and Evaluate System Flexibility: Create a simulation model that
replicates real-world conditions, including different weather patterns,
load profiles, and grid topologies, to assess the adaptability and perfor-
mance of the smart DR system in optimizing energy usage and reducing
peak demand.

e Compare and Validate System Performance: Conduct a comparative
analysis to demonstrate the superiority of the developed smart DR sys-
tem over existing methods by evaluating metrics such as peak demand
reduction, energy savings, environmental impact, and response time.
Validate the effectiveness and potential of the system in optimizing
energy resource utilization in smart grids.

The contributions of this research towards the stated objectives are as
follows:

* A Smart Demand Response (DR) System was developed using a hybrid
of Reinforcement Learning and Generative Adversarial Networks. The
system accurately predicts peak energy demand and dynamically adjusts
energy usage using real-time data from smart meters and sensors.

* The research created a realistic simulation model replicating various
real-world conditions. This model facilitated the testing of the smart DR
system’s adaptability under different weather patterns, load profiles, and
grid topologies, confirming its robustness and versatility in optimizing
energy usage and reducing peak demand.

* A comprehensive comparative analysis was conducted, demonstrating
that the developed smart DR system outperforms existing methods. The
system showed significant improvement in key metrics such as peak
demand reduction, energy savings, environmental impact, and response
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time. This validates the potential of the proposed system in optimizing
energy resource utilization in smart grids.

The study outline is delineated in the following manner. Section 2
includes the discussions and overview of highly relevant research work.
Section 3 traces the incorporation of applicable datasets and the working
mechanism of the proposed work with the essential computation part. Sec-
tion 4 provides insight into the utilization of the methodology and elaborates
on the details of the observed outcomes. Section 5 briefs the research with
precise conclusive key points and future work.

2 Related Work

This section presents a short overview of the literature, focusing on the
contributions extracted from a select number of prior investigations.

Game theory is proposed in and as a decentralized method for controlling
energy usage and conservation and coordinating the recharging of Pluggable
Hybridized E-Vehicles (PHEVs) at end-user locations. Their results show
that through Nash equilibriums, they’ve reached guaranteed optimum per-
formance concerning the cost reduction in generating power for the grid and
maintaining a steady frequency [26, 31].

When numerous users are using a single energy source, Amir-
HamedMohsenian-Rad et al. and Mohsenian-Rad et al. offer utilization
management techniques that make use of two-way communications to cut
down on expenditures. Both the demand and consumption sectors can be spe-
cific that their information will remain confidential thanks to game-theoretic
techniques to solve the issue [3, 22].

Ibars et al. provide Congestion-based Distributive DR (CDDR) Systems.
These strategies are designed to lower consumer power costs while main-
taining optimal system performance. Common network congestion issues
inspired the method for digital infrastructure. Because of their equiva-
lence with prospective, congestion games guarantee the possibility of Nash
equilibrium [13].

O’Neill et al. present a model in which home electricity use and the
cost are seen as Markov decision operations (MDOs). However, the authors
use RL approaches to continually acquire and adjust to this unpredictable
knowledge over the course of time because the conditional likelihood of
transitions in the core Markov chains is often unpredictable. This method
guarantees the model’s efficacy regardless of alterations in the fundamental
Markov chain’s composition [23].
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Meanwhile, Liang et al. made zero emphasis on the dynamic patterns
demonstrated through PHEVs. Instead, they claim that the probability of tran-
sitioning between states, governed by the Markov chain, changes with time
for PHEVs. The authors deeply analyzethis unpredictable Markov decision
mechanism to determine the best Markov strategy for PHEVS’ recharging
and draining options [19].

Predicting future energy consumption is difficult, and Clement et al.
take on this task. Stochastic computing simulates unpredictable requests,
and likelihood density distributions are used. This ambiguity results from
incorrect predictions of residential energy use patterns [6].

Pedrasa et al. used a Particle Swarm Optimization (PSO) method to figure
out how to schedule DERs cooperatively. They went with PSO since it could
be implemented quickly and efficiently. Still, one of the limitations of PSO
is that it’s possible to gravitate towards alternatives that are very close to
being optimal. Because of this, much iteration are required to investigate the
possibility of finding more ideal solutions [25].

PSO variations are used by Ahmed Yousuf Saber & Venayaga moorthy,to
dynamically execute the operation of energy generation condominiums and,
to find the optimum number of grid-capable automobiles. Binary-PSO and
numerical PSO minimize the computing time and intricacy required to find
poor solutions [28].

The researchers use approximation dynamic code to handle multi-stage
optimization. In addition, they use a statistical learning technique to break
down the overarching issue into manageable, shorter-term challenges. How-
ever, one of the most difficult tasks in this setting is coming up with a
state-aware estimation of the significance unit for unpredictable issues [4, 17].

Therefore, the research gap lies in developing a comprehensive demand
response system that combines advanced machine learning techniques,
ensures confidentiality, efficiently handles unpredictable transitions and com-
plex multi-stage optimizations, and takes into account the time-varying nature
of system behaviours.

3 Methodology

In this research, we incorporated the hybridized working mechanism of Rein-
forcement Learning with Generative Adversarial Networks (RL-GAN) for
SDR in Smart Grids. RL-GAN combines the power of reinforcement learn-
ing (RL) and generative adversarial networks (GANs) to optimize energy
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Figure 1 Architecture of proposed DR strategy.

consumption in smart grids using demand response techniques. Figure 1
presents the architecture of the proposed model [8, 33].

The training procedure between the RL agent and the generator network
(G) is adversarial. The RL agent’s goal is to maximize the incentive signal,
which motivates actions that are good for the environment and save energy.
At the same time, the generator network works to create synthetic accounts
convincing enough for the discriminator (d) to mistake them for the actual
phenomenon.

The G provides feedback to the RL agent. The RL agent’s learning is sup-
plemented by the d’s results, which indicate whether the energy consumption
patterns are actual or crafted. This information is helpful for the RL agent in
assessing the credibility of the predicted energy consumption patterns. During
demand responses, the RL agent learns to make more sustainable decisions,
and the generator network evolves to provide synthetic energy consumption
patterns that are more probable and realistic.

3.1 Datasets

The datasets Global Energy Forecasting Competition (GEFCom2014)
(GEFCom2014.Zip, n.d.) and Pecan Street Dataset (Pecan-Street-DB, 2022)
are mined for actual energy consumption information collected from smart
meters, weather-related information, as well as other pertinent information.
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In other words, the RL-GAN model will use this information as its training
dataset [11].

Global Energy Forecasting Competition (GEFCom): It is a well-known pro-
gramme that offers datasets for predicting energy from sustainable sources
and electricity load. It is ideal for smart grid analytics since it contains both
past data and related meteorological statistics. Furthermore, GEFCom data
is structured in a way that allows researchers to explore different facets
of energy forecasting, such as hourly, daily, and monthly forecasting. It
also allows for the exploration of different forecasting horizons, from very
short-term (intra-day) to long-term (up to a year ahead).

The Pecan Street Dataset: It is a comprehensive database of building-level
energy usage records, including both business and residential structures.
Electricity use, renewable power output, weather records, and appliance-
specific energy use are all included. In addition to energy consumption and
generation data, the Pecan Street Dataset also includes local weather data.
This enables researchers to understand the impact of weather conditions on
energy consumption and renewable energy generation. This information is
invaluable for studying the interplay between electricity generation, storage,
and consumption at the building level.

3.2 Computations of RL-GAN

RL Component: To learn optimum control strategies, including the model’s
RL sub-component during operation is essential. Therefore, the study uses
RL algorithms, specifically Iterative Proximal Policy Optimization (IPPO),
to formulate control strategies through the consumption of electricity record.
Table 1 represents the essential premises for the training phases.

Table 1 Essential premises for the training phases

Premises Description
Discrete State Let’s assume that the state space, denoted as S, is discrete with N
Space states:

S ={S1,S2,...,Sn}
Discrete Action Let’s assume that the action space, denoted as a, is discrete with m
Space actions:

a={a,a2,...,am}
Markov Decision Let’s assume that the smart grid system can be modeled as an
Process (MDP) MDP, where the current state captures all relevant information to

make decisions.
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Beside the generalized components, RL includes specialized functionar-
ies like value function, policy regularization, advantage function for action
quantification, and surrogate objectives to update the policy iteratively.

Value Function: When beginning from state S and executing a policy v, the
value operations, represented as f,(S), estimate the predicted overall reward.
The value functioncan be defined as an N-by-N table, with one row for each
possible state. Bellman’s equation is employed to solve the value function,
and it is expressed as:

f’u(S) = S[r(t—i—l) + wfv(S)(t+1)|St =S, at = a] (1)

where, £[. . .] represents the prediction of every possible consequence. Taking
action a in state S at time t and arriving at state (S)(t +1) 1s rewarded
immediately with r(; 1). It is the instantaneous indication of reinforcement.
w (discount factor) is a number ranging from zero to one is used to weigh
prospective rewards significantly over present ones. Future benefits are given
greater weight if the discount component is nearer to 1. Besides the computa-
tion facts, the policy is required to determine the decision-making procedures
in mapping several S’s with appropriate a’s. Given a state S, the policy,
indicated as (a|S), specifies the distribution of possible a’s.

Policy Regularization: The policy can be modelled as a table with x rows (S)
and y columns (a), where each cell represents the likelihood of performing
the action a in state S and reads (a|S). Following significant notations are
considered for further computations.

* ¢(a|S): Expectancy of doing step a while in condition s.

* ¢(alS) € [0, 1]: The range of the probabilities is from O to 1.

* Y a¢(alS) = 1: A legitimate probability distribution requires that the
aggregate of the likelihood for all actions in a given state remain equal
to 1.

For an instance, let’s consider a simplified scenario with three states
(S1,S2,S3) and two actions (aj,@s). The policy table is represented as
follows in Table 2:

Table 2 Policy table
a

S a1 a2
S1 #(a1lS1)  ¢(azlS1)
Sz #(a1]S2)  @(az(S2)

Ss #(21]S3)  #(a2[Ss)
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Table 3 Policy computation of RL algorithm

1: ¢(alS), where ¢ — (x X y) matrix // Initialization
2: fu(S) « X ap(alS) Y. S'o(S'[S,a)[@ fo(S') + r(a,S,S")]  /policy evaluation

where, p(S'|S, a) denotes the state transition probability, v(a, S, S') indicates the
received rewards during transition for performing the specific action, w represents
the discount factor.

3:0@IS) «+ [1— pu+ (u/y)] /policy enhancement
4: Repeat 2 and 3 //policy iteration

The table’s values show the percentages of each state’s population likely
to do each activity. Measured values of state-action pairings can influence
policy revisions. Values for each state and action pair are estimated in the
policy assessment stage, and then those estimates are used in the policy
enhancement step to make adjustments to the policy. By iteratively refining
the policy, the smart grid system can eventually converge on a strategy that
maximizes the predicted cumulative return. Table 3 represents the policy
computation of RL algorithm which includes various steps like policy initial-
ization, evaluation, enhancements, and iterations. The algorithm states that
the policy table ¢(al|S) is prepared by populating it with initialized probabil-
ities. Policy assessment involves making estimates of the policy’s impact in
each S. Iterative computations, including value iteration and policy iteration,
can be implemented to accomplish the purpose. For example, determining
the values of (S,) pairings is often done using value iteration. The values are
revised recurrently in light of the predicted payoffs.

Reviewing the policy table with the predicted values concerning the
previous step constitutes the policy enhancement phase. The most valuable
action is selected with probability 1 — p, and a randomized response is
chosen with probability to promote exploration. After the first step 1, policy
iteration repeats steps 2 and 3 as long as convergence is reached and no further
modifications become apparent in the policy. The method for iteratively
refining a policy performs cycles of assessment and refinement until it reaches
a local maximum.

Advantage Function(fe): The advantage function, denoted as fo(S,a),
quantifies the advantage of taking action a in state s compared to the average
value of actions in that state. It is estimated using Temporal Difference
Learning (TDL) method. TDL estimates the advantage function based on the
observed rewards and estimated values of (S,) pairs. It uses a combination of
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7(t+1) and estimated future rewards to compute the advantage. Let’s consider
a TDL(Y) method, which is a family of TDL algorithms parameterized by
the eligibility trace decay parameter Y.

The advantage function fo(S,a) at time t can be computed using the
TDL(Y) update as follows:

et = [@fo(St41) + Pey1)] — fo(Se) )

where, 74 1) 1s the immediate reward received after taking action a in state
s, w is the discount factor, f,(S;+1) is the estimated value of the next state
S(tﬂ), fu(St) is the estimated value of the current state S;, and e; is the
TDL error. e, represents the discrepancy between the estimated value of the
current state-action pair and the estimated value of the next state. It quantifies
the advantage of taking a in state S. The (fg) can then be updated using the
eligibility trace as follows:

u—1
folSe,adl = Y (o(i,t) x er) 3)
i=t
where uj is the total number of time steps, e; is the TDL error at time ¢,
and o (i, t) is the eligibility trace, which captures the history of the advantage
function updates. o (i, t) can be defined as:

o(i,t) =Yt 4)

where, Y is the eligibility trace decay parameter. By updating the fo(S,a)
based on e; and o(i,t), the advantage values for each (S, a) pair can be
estimated.

Surrogate Objective( fso(¢)): IPPO utilizes a surrogate objective function to
update the policy iteratively. The surrogate objective aims to maximize the
likelihood ratio (B) between the updated policy and the older while constrain-
ing the policy update to be within a certain cutoff. Let’s consider a policy
parameterized by Y, denoted as (a|S; Y), which represents the probability of
taking @ in S given the policy parameters Y. The surrogate objective function
in IPPO can be defined as follows:

Iso(¢) = &min(fe(S,a),

X Sy, X[Ag(g), (1 + p), (1 — p)], X (fo))] 5

where fso (@) is the surrogate objective, fy4) is the ratio of the updated
policy to the old policy, fo(S, a), is the advantage function at time step #, and
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X(-) is a function that clips the ratio between 1 + p and 1 — p. The clipping
term X(-) in the surrogate objective ensures that the policy update is within a
certain threshold determined by w. This helps in stabilizing the training and
preventing large policy updates.

Policy Update: To optimize the policy, IPPO uses gradient-based optimiza-
tion methods. The policy update is performed by minimizing the clipped
surrogate objective using ADAM optimization algorithms. The policy update
step in IPPO involves taking gradient steps to minimize the fso(¢) with
respect to the Y. This can be done using ADAM optimizer. The update
equation for the Y is given by:

Tnew = Told - [C X fSO(¢) : VT] (6)

where, Ypew is the updated Y, Yq is the YT, ¢ is the learning rate, and
fso(¢) - VY is the gradient of the surrogate objective function with respect
to Y. By iteratively updating the policy parameters using the gradient descent
step, IPPO optimizes the policy to improve its performance in the smart grid
system. The learning rate (¢) determines the step size in the parameter update
and needs to be carefully chosen to balance between convergence speed and
stability.

GAN Component: Incorporate the GAN component into the model to gen-
erate realistic synthetic data samples. The GAN will learn the underlying
distribution of the energy consumption data and generate synthetic samples
that closely resemble the real data. This generated data can augment the
original dataset and improve the model’s performance.

We assume that the continuous latent space, denoted as «, which is
representing a randomized noise vector of size V: v = {v1, ve,..., vy }.

The G and d are parameterized by weights wg and wy, respectively. The
G takes a latent variable v from the latent space V as input and generates a
synthetic energy consumption sample, X q/p.. Mathematically, this can be
represented as:

Xsample = g[v; wg] (N

where, G(+) represents the generator network with weights wg.

The discriminator network d takes an X s4;p0¢ (€ither actual or synthetic)
as input and produces a probability d[P(X sumpie)] indicating the likelihood
of the sample being real. Mathematically, this can be represented as:

d[P(Xsample)] = d[X; w4l 3)
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where d(-) represents the discriminator network with weights wg.

Training Objective: The GAN training objective focus to find equilibrium
between the G and d networks. The generator’s goal is to provide convincing
samples that will deceive the discriminator, while the discriminator’s goal is
to identify the actual and fake ones correctly (Lars Mescheder et al., 2017).
This situation may be envisioned as a mini-max game. One such definition of
the objective function is:

mingmaach(g, d) = log d(X) : S[X ~ P( :ample)]
+&[V ~ P(Vy)][log(1 —d(G(v)))] (9)

where, P(X;’“ample) represents the probability distribution of real energy
consumption samples, P(V,) represents the probability distribution of latent

variables, and log(-) denotes the natural logarithmic notation.

Training: During training, the G and d networks are updated alternately
to improve their performances. The updates involve backpropagation and
gradient descent techniques to optimize the parameters wg and wy.

Demand Response Optimization: The model can learn to predict energy
consumption patterns, identify peak demand periods, and generate optimal
control policies to reduce energy consumption during the required peak
periods.

Training and Evaluation: Using the combined dataset of real and generated
samples, the model RL-GAN is trained. The ability of the model’s perfor-
mance is continuously evaluated to optimize energy consumption, reduce
peak loads, and improve overall grid efficiency.

The RL-GAN model offers several advantages, including the ability to
capture complex energy consumption patterns, adapt to changing conditions,
and generate synthetic data for training purposes. It can provide valuable
insights and decision-making support to energy management systems in
smart grids.

4 Performance Analysis

In this research, we utilized GridLAB-D (GridLAB-D Simulation Software,
n.d.) simulation software. It is a freeware and open-source package for model-
ing and simulating smart grid behavior. Distribution connections, alternative
power sources, loads, and adaptable sophisticated control algorithm choices
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Table 4 Feature of GridLAB-D

Characteristic Specification

Purpose Power system simulation and analysis tool

Components Distribution networks, renewable energy sources, loads, control
algorithms

Weather Modeling Realistic weather patterns (temperature, solar radiation, wind speed)

Load Profiles Diverse energy consumption patterns, including daily and seasonal
variations

Grid Topologies Distribution feeders, transformers, switches, and other grid
infrastructure

Simulation Accurate modeling of power flows, voltage profiles, and equipment

Capabilities behavior

Customization Flexible and customizable for specific requirements

Integration Ability to integrate and assess smart Demand Response (DR) systems

Performance Optimization of energy usage and peak demand reduction

Evaluation

Development Allows for further development and extensions

may all be simulated in this environment. Furthermore, in order to build a
more accurate simulation of the real-world, GridLAB-D may be used to add
actual weather conditions, load accounts, and network (grid) topologies. The
overall simulation hour is 168 hours (7 weeks). Table 4 provides the overview
of GridLAB-D’s characteristics.

To evaluate the performance and flexibility of the SDR system, a simula-
tion model is developed. The proposed model allows for the testing of various
scenarios that replicate real-world conditions. It includes diverse weather
conditions, representing different seasons or climate variations, as well as
different load profiles that mimic variations in energy consumption patterns.
Additionally, the simulation model incorporates different grid topologies to
account for variations in infrastructure and distribution networks. By subject-
ing the SDR system to these scenarios, it is easier to assess the models’ ability
to adapt and optimize energy usage under different operational conditions,
ensuring its effectiveness in real-world deployment. Several existing method-
ologies like CDDR, MDOs, and Binary-PSO and indicators are utilized to
evaluate the performance of the proposed SDR system.

Peak demand reduction: These metric measures the extent to which the
system successfully reduces peak demand levels compared to the baseline
scenario without SDR implementation. Higher peak demand reduction indi-
cates the effectiveness of the system in managing and flattening the demand
curve.
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Figure 2 Analysis of peak demand reduction (%).

The observed outcomes from Figure 2a demonstrate that the implemen-
tation of the Smart Demand Response (SDR) system significantly improved
peak demand reduction compared to the scenario without SDR. The SDR
system achieved a higher peak demand reduction (87.14%) compared to the
scenario without SDR (67.11%) during the 28th hour of the time period.
The SDR system excelled in peak demand reduction (94.25%) compared
to the scenario without SDR (66.16%) during the 168-time period. This
indicates that the SDR system was highly effective in optimizing energy
usage and reducing peak demand.

The observed outcome from Figure 2b depicts the effectiveness of
proposed SDR in reducing peak energy demand compared to the exist-
ing models. The SDR method consistently outperforms the other methods
(CDDR, MDOs, and Binary-PSO) in terms of peak demand reduction across
all time periods. SDR achieves the highest average peak demand reduction
of 80.04%, indicating its effectiveness in reducing peak energy demand and
optimizing energy usage. CDDR and MDOs show relatively lower peak
demand reduction values and average values compared to Binary-PSO and
SDR. This suggests that these methods might have limitations in proactively
altering energy usage to mitigate peak demand. Binary-PSO performs better
than CDDR and MDOs in terms of peak demand reduction, but it still falls
behind SDR in achieving higher reductions. The observed outcomes validate
the prominent research goal of proposed SDR system that can predict high
energy demand periods and proactively alter usage, resulting in significant
peak demand reduction.
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Figure 3 Energy saving (in kilowatt-hours).

Energy savings: It quantifies the amount of energy saved through the imple-
mentation of the SDR system. Energy savings can result from load shifting,
load shedding, or optimizing energy usage during peak periods, leading to
reduced overall energy consumption.

Figure 3 represents the observation on Energy Savings (in kilowatt-hours)
for different methods (CDDR, MDOs, Binary-PSO, and SDR). The energy
savings achieved by SDR range from 40.34 kWh to 48.19 kWh across
different time periods. The average energy savings achieved by SDR is
38.08 kWh. The SDR method consistently outperforms the other methods
(CDDR, MDOs, and Binary-PSO) in terms of energy savings across all time
periods. SDR achieves the highest average energy savings of 38.08 kWh,
indicating its effectiveness in optimizing energy usage and reducing overall
consumption. MDOs and Binary-PSO show moderate energy savings, but
they fall behind SDR in achieving higher savings. CDDR exhibits relatively
lower energy savings compared to the other methods, indicating potential
limitations in altering energy usage to achieve significant savings. These
findings highlight the potential of the SDR method in making better use of
energy resources in smart grids and addressing the challenges associated with
peak demand, grid instability, and rising energy prices.
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Figure 4 Analysis of response time vs demand shift.

Reaction time: This metric measures the system’s responsiveness to changing
demand conditions. A faster reaction time ensures that the system can quickly
adapt to sudden shifts in energy demand and effectively manage energy
resources [27].

From the Figure 4, it is notable that the SDR method consistently exhibits
the lowest response time among all the methods, with an average response
time of 0.33 seconds. This indicates that the SDR system can quickly adapt
to changing demand conditions and effectively manage energy resources in
real-time. MDOs and Binary-PSO show comparable response times, with an
average of 0.46 seconds for both methods. These response times are slightly
higher than those of SDR but still within an acceptable range for effective
demand response. CDDR exhibits a slightly higher average response time of
0.52 seconds compared to the other methods. While it still provides a reason-
able response time, it may have some limitations in terms of responsiveness
to sudden shifts in energy demand.

The observed outcomes suggest that the developed SDR system, par-
ticularly the SDR method, excels in terms of response time, indicating its
ability to quickly and efficiently adapt energy usage based on real-time data.
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The low response time is crucial for ensuring grid stability and optimizing
energy resources during high demand periods [27]. The utilization of machine
learning strategies, past data, weather predictions, and real-time data from
smart meters contributes to the system’s ability to accurately predict demand
and adjust energy usage promptly.

5 Conclusion and Future Work

In conclusion, the development of a smart demand response (DR) system uti-
lizing machine learning strategies has shown promising results in addressing
the challenges of peak demand and optimizing energy usage in smart grids.
The observed outcomes, including peak demand reduction, energy savings,
environmental consequences, response time, and energy-saving performance,
provide valuable insights into the effectiveness of different DR methods. This
study aims to develop a smart DR system that predicts and adjusts energy
usage proactively. RL-GAN techniques estimate peak demand using past data
and weather predictions. Real-time data from smart meters and sensors help
meet projected demand. The system’s flexibility is tested through various
scenarios. Several indicators, including peak demand reduction (80.04%),
energy savings (38.09% of average energy in kilowatt-hours), and response
time (average: 0.33 seconds), evaluate the system’s performance. The results
demonstrate the system’s superiority, with higher peak demand reduction,
significant energy savings, and shorter response times compared to other
methods. The suggested smart DR system can potentially improve smart
grids by maximizing the use of readily accessible resources and mitigating
the effects of peak demand.

The future investigation deals with the integration of renewable energy
sources, such as solar and wind, into the smart DR system. Moreover,
we planned to assess the impact of renewable energy generation on peak
demand reduction and energy savings, and develop strategies to optimize
their utilization in conjunction with DR.
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