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Abstract

This study explores the intricate challenge of energy demand uncertainty in
the design of Photovoltaics and Energy Storage integrated Flexible Direct
Current Distribution (PEDF) systems. Our objective is to examine the impact
of different scenario generation methods on PEDF system optimization.
We compare four approaches, including probabilistic techniques based on
Monte Carlo simulation, Latin Hypercube Sampling for base scenario sam-
pling, and a simulation-based method using building performance modeling.
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We evaluate these approaches using the Independent Scenario Optimiza-
tion (ISO) and Two-Stage Stochastic Programming (TSSP) models, aiming
to minimize the annual total cost within PEDF systems while addressing
uncertainties. Our findings shed light on the optimal PEDF design under
uncertainty, offering valuable insights for future decision-making in dynamic
energy systems.

Keywords: Stochastic programming, scenario generation method, indepen-
dent scenario optimization, energy flexibility, energy storage.

1 Introduction

As energy resources become scarce and environmental concerns escalate,
renewable energy has emerged as a popular research direction within the
energy field due to its clean and sustainable nature [1]. The Photovoltaics and
Energy Storage integrated Flexible Direct Current Distribution (PEDF) sys-
tem, as a fusion of photovoltaic generation, energy storage, and flexible load
management, is considered a crucial component of future energy systems [2].
However, the design and optimization of such systems face challenges stem-
ming from the uncertainty in energy demand, making performance analysis
and decision-making more intricate.

The uncertainty in energy demand arises from various factors, including
climate change, energy price fluctuations, changes in user behavior, and the
interplay of these factors makes accurate predictions of future energy demand
highly challenging [3]. Hence, to ensure the reliability and cost-effectiveness
of PEDF systems under different scenarios, detailed description and analysis
of these scenarios are essential [4, 5]. It is in response to this need that
scenario generation methods have become an effective approach to address
energy demand uncertainty.

Numerous scholars have proposed various scenario generation methods
and achieved successful applications in different fields. In the domain of
energy system optimization, Monte Carlo simulation is often employed to
generate probabilistic distribution scenarios, effectively considering various
sources of uncertainty [6, 7]. The Latin Hypercube method, on the other
hand, provides better coverage of the entire possibility space with relatively
fewer scenario samples. Furthermore, building performance simulation meth-
ods can more realistically model system performance in different scenarios,
offering a more precise foundation for system optimization.
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To delve into the practical effects of these scenario generation methods,
this study adopts two optimization models: independent scenario optimiza-
tion and two-stage stochastic programming, aiming to minimize the annual
total cost of the PEDF system [8]. By comparing the optimization results of
four different scenario generation methods under these two models, we can
uncover the impact of different methods on system design and performance,
providing more decision support for system design [9].

The paper’s research motivation is to address the challenge of energy
demand uncertainty in the design of PEDF systems. This is important because
the intermittency and uncertainty of renewable energy sources pose chal-
lenges to stable operation and optimization of these systems. The objective
is to examine the impact of different scenario generation methods on PEDF
system optimization, with the goal of minimizing annual total costs while
addressing uncertainties. The research aims to provide valuable insights for
future decision-making in dynamic energy systems.

The paper makes significant contributions in multiple dimensions, bring-
ing forth novel insights and advancements to the field. Firstly, a ground-
breaking Two-Stage Stochastic Programming (TSSP) model is introduced,
revolutionizing the analytical approach to optimizing PEDF systems. This
innovative model allows for a thorough exploration of the intricacies involved
in optimizing PEDF systems under the challenging conditions of load
uncertainty.

Secondly, the paper stands out through its meticulous and comprehensive
comparative analysis. It critically evaluates the impact of four distinct uncer-
tainty research methods on the optimization outcomes of a specific PEDF
system. This exhaustive examination not only sheds light on the performance
characteristics of these methodologies but also provides a deeper under-
standing of their implications within the broader context of energy system
design.

Furthermore, the study delves into a detailed examination of the anti-risk
capabilities exhibited by diverse equipment components within the PEDF
system when subjected to load uncertainty. This aspect of the research uncov-
ers discernible trends and strategic guidelines, offering invaluable insights
for effective system configuration. The findings are particularly tailored to
managing various types of load uncertainty risks, thereby enhancing the
overall resilience and reliability of PEDF systems.

In summary, these noteworthy contributions collectively propel the
understanding of optimal PEDF design under uncertainty to new heights.
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The research not only fills gaps in existing knowledge but also provides
substantial guidance for informed decision-making in the dynamic realm
of energy systems. The incorporation of the TSSP model, the in-depth
comparative analysis, and the exploration of anti-risk capabilities contribute
significantly to the advancement of the field, making this paper a key
reference for researchers and practitioners alike.

2 Model Formulation

As shown in Figure 1, the target system consists of four primary energy
components: energy storage systems, photovoltaic systems, flexible loads,
and other loads. These four components collaborate to make the entire energy
system more efficient, flexible, and sustainable. The role of the energy storage
system is to release stored electrical energy during periods of insufficient
sunlight or peak electricity demand, ensuring the stable operation of the
system. The photovoltaic power generation system converts solar energy into
direct current electricity through solar panels, providing renewable energy
to the entire system. The flexible load can adjust real-time power demand
based on the grid’s condition, helping to balance power supply and demand
and improve the stability of the power system. Other loads include traditional
power loads such as household appliances and factory equipment. Through
the optimized configuration and coordinated operation of these four com-
ponents, the target system can maximize the utilization of renewable energy,
reduce dependence on fossil fuels, decrease environmental pollution, and pro-
mote energy transition and sustainable development. The primary objective
of the PEDF system pertains to the determination of optimal energy device
capacities with the aim of minimizing the annual total cost of the energy

Figure 1 A PEDF system.
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system [10, 11]. In contrast to many existing PEDF optimization frameworks
that incorporate multi-objective functions, encompassing objectives such as
carbon emissions reduction, this study adopts a more focused approach
by considering solely economic indicators within the optimization model’s
objective function. This selective focus is motivated by factors such as the
need for enhanced model generality and computational efficiency, particu-
larly relevant when dealing with intricate and large-scale energy systems.
It should be recognized that the exclusion of broader environmental and
energy efficiency indicators in this specific analysis is a deliberate choice
intended to streamline the investigation and ensure practicality, but it does
not encompass the full spectrum of sustainability considerations. Future
research endeavors should carefully address these dimensions to provide a
more comprehensive view of PEDF system optimization.

When it comes to the optimization of PEDF system, the accurate con-
struction and effective solution of the model are crucial to address the
challenges posed by energy demand uncertainty. This study incorporates
the Independent Scenario Optimization (ISO) model and the Two-Stage
Stochastic Programming (TSSP) model as integral methodologies aimed
at minimizing the annual total cost within the PEDF energy system [12].
A comprehensive exposition of these models follows, elucidating their struc-
tural frameworks, methodological underpinnings, and their specific utility
in addressing the intricate challenges arising from uncertain factors within
the PEDF system [13]. The detailed examination of the principles and
capabilities of ISO and TSSP serves to contribute not only to the complex-
ities of PEDF system design but also to the broader discourse on robust
decision-making in dynamic energy systems amidst uncertainty. Through
this rigorous analysis, our study facilitates a deeper understanding of these
models, enhancing their applicability and guiding decision-makers in navi-
gating the intricacies of dynamic energy system optimization under uncertain
conditions.

2.1 ISO Model

A deterministic optimization model is a particular instance within the broader
framework of stochastic models, characterized by a scenario that comprises
a single scenario with a probability of 1 [14]. In this study, we introduce
the term “Independent Scenario Optimization” to underscore the salient
distinction arising from the discrepancy in scenario quantity as compared
to traditional stochastic models. Within the context of Independent Scenario
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Optimization, each scenario effectively represents a deterministic scenario,
thereby aligning with the principles of deterministic optimization. Conse-
quently, the Independent Scenario Optimization approach can be construed as
a specific manifestation of deterministic optimization, wherein the objective
function is formulated as a composite sum of investment and operational
costs, denoted as Equation ((1)). This elucidation serves to enhance our
comprehension of the nuanced interplay between deterministic and stochastic
optimization, thereby providing a robust foundation for analytical inves-
tigation and decision-making in the realm of the PEDF energy system
optimization.

min f ISO = Invest +Oper (1)

Oper =
∑
t

ρtP
buy
t (2)

Invest =
∑
i

capicost i
IR(IR + 1)lti

(IR + 1)lti − 1
(3)

The model’s objective function (f ISO ) encompasses both investment
(Invest) and operational (Oper ) costs, playing a pivotal role in determining
the optimal configuration of the PEDF energy system in (1). In function
(2), parameters underpinning this optimization process include ρt (denoting
energy price), cost i (representing the linear investment cost per unit of
capacity for the i-th component), P buy

t (indicating grid electricity procure-
ment), and capi (an integer variable signifying the capacity of the i-th energy
device). Moreover, in function (3), the terms IR and lt i respectively stand for
the interest rate and the assumed uniform lifetime (Scenario at 20 years) of
the i-th energy technology. It is essential to note this simplification of lifes-
pan calculations for computational feasibility while retaining a reasonable
approximation of long-term system dynamics.

Operational constraints serve as essential components within the model,
imbuing it with a comprehensive framework that embraces critical facets,
including electricity energy balance and technical constraints [15]. By incor-
porating energy balance considerations, the model ensures coherence
between energy generation and demand, underpinning the stability and reli-
ability of the intricate PEDF system. These constraints act as essential gate-
keepers, forestalling the emergence of unrealistic or impractical scenarios that
may lead to infeasible solutions. Furthermore, technical constraints encom-
pass a multifaceted spectrum of factors, ranging from device operational
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limits to voltage stability, thermal restrictions, and stringent grid interface
prerequisites [16]. The integration of such constraints within the model
encapsulates the intricate realities of operational scenarios, affirming that
the optimal system configuration aligns harmoniously with both operational
requisites and technical viability, thus rendering it a potent decision-making
tool in the ever-dynamic milieu of energy systems.

Energy balance constraints. The electricity demand is provided by the
power grid, PV and energy storage system. The energy balance constraint per
timestep t are formulated as Equation (4).

P buy
t + P pv

t + PESS .d
t − PESS .c

t ≥ Dflex
t +Dnon-flex

t (4)

Comprehensive component-level modeling is crucial to capture the intri-
cate interdependencies between input-output relationships in each energy
technology while upholding essential capacity constraints. This approach
enhances the feasibility and accuracy of the PEDF system’s design and opti-
mization, offering nuanced insights into operational dynamics and facilitating
informed decision-making in energy system design.

P pv
t = P pv ,fore

t cappv (5)

capmin
pv ≤ cappv ≤ capmax

pv (6)

Equation (5) links the maximum active PV power to installed capacity and
solar irradiation, while Equation (6) sets capacity limits for each PV power
plant, crucial for effective system design. Parameter Ppv,fore

t is per unit PV

power output. capmin/max
pv is Minimum/maximum PV power capacity.

EESS
t+1 = EESS

t + PESS .c
t − PESS .d

t (7)

EESS .min
t ≤ EESS

t ≤ capess (8)

Energy storage systems (ESS) are vital enhancing reliability and stabi-
lizing renewable energy fluctuations. Equation (7) accounts for conversion
losses via charging and discharging efficiency. Equation (8) ensures non-
negativity and power limits for charging and discharging, crucial for system
stability. Parameter EESS.min

t is minimum storage level of ESS. variable
cappv is Installed capacity of ESS.

Dflex .min
t ≤ Dflex

t ≤ Dflex .max
t (9)
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The constraints of the decision variable of flexible load (such as electric
vehicle charging load, air conditioning load) are shown in (9). Parameter
D

flex.min/max
t is Minimum/maximum limits for flexible demand.

2.2 TSSP Model

The paradigm of the two-stage stochastic model offers a structured methodol-
ogy for navigating decision complexities within uncertain environments [17].
It delineates between pre-variables (first-stage decision variables), discerned
proactively in advance of uncertainty realization, and post-decision variables
(second-stage decision variables), adjusted in response to revealed uncertain
parameters [18]. This framework proves particularly pertinent in contexts of
design quandaries, wherein pre-variables orchestrate equipment selection and
sizing, while ensuing post-decision variables orchestrate operational refine-
ments. Notably, the model’s objective function, as denoted by Equation (10),
bifurcates into investment and operational components, mirroring the bifo-
cal nature of the two stages. This architectural duality adeptly harmonizes
anticipatory prudence with adaptive finesse, culminating in a comprehensive
strategy for judicious decision-making.

min fTSSP = Invest + Es(Opers) (10)

In objection function (10), the first-stage costs encapsulate the financial
commitments associated with annualized investments in crucial system com-
ponents, offering a comprehensive perspective on initial capital deployment.
In contrast, the second-stage costs encompass variables intricately linked
with the operational intricacies of energy generation, capturing the ongoing
operational expenses and complexities that shape the system’s temporal
performance. This dichotomy departs from deterministic modeling where
singular values are computed for variables in each time step; instead, in the
stochastic context, these variables necessitate recalibration for each scenario
within discrete time intervals. This adaptive approach acknowledges the
inherent uncertainty and variability within real-world scenarios, enabling a
more holistic assessment of potential outcomes. By accommodating diverse
scenarios at each time step, the stochastic model provides a more comprehen-
sive representation of the intricate interplay between variables and scenarios
pertinent to the energy generation domain.

The variable of the model in the second stage needs to be added with
corner mark s, is each scene has a set of operation scheme. Therefore, the
model of the second stage of two-stage stochastic programming is based on
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(2) and (4)–(9).

Oper =
∑
t

ρtP
buy
t,s (11)

P buy
t,s + P pv

t,s + PESS .d
t,s − PESS .c

t,s ≥ Dflex
t,s +Dnon-flex

t (12)

P pv
t,s = P pv ,fore

t,s cappv (13)

capmin
pv ≤ cappv ≤ capmax

pv (14)

EESS
t+1,s = EESS

t,s + PESS .c
t,s − PESS .d

t,s (15)

EESS .min ≤ EESS
t,s ≤ capess (16)

Dflex .min
t ≤ Dflex

t,s ≤ Dflex .max
t (17)

The objective function represents operational costs in Equation (11).
Energy balance constraints for each timestep t are formulated in Equa-
tion (12). Equation (13) establishes a link between the maximum active
PV power, installed capacity, and solar irradiation, while Equation (14)
imposes capacity limits on each PV power plant – an essential factor in
effective system design. Accounting for conversion losses via charging and
discharging efficiency, Equation (15) is introduced. To ensure non-negativity
and power limits for charging and discharging, vital for system stability,
Equation (16) is applied. Constraints on the decision variable of flexible load,
encompassing electric vehicle charging load and air conditioning load, are
detailed in Equation (17).

3 Scenario Generation Method

3.1 Probability-based Method

Probabilistic Modeling of Energy Demand: To address uncertain parameters,
a robust probability model is pivotal [19, 20]. This involves defining the
probability distribution for these uncertainties and generating random vari-
ables based on it. The energy demand distribution, as outlined in Section 1, is
treated as time-independent. Thus, each time point requires separate sampling
for time series scenarios. Typically following a normal distribution this proba-
bility density distribution effectively characterizes short-term energy demand
variability.
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Monte Carlo Sampling (MCS) vs. Latin Hypercube Sampling (LHS):
The focal point of comparison lies in their respective sampling method-
ologies. In MCS, the samples are allocated across the input distribution,
often converging in regions of elevated likelihood. Through iterative gen-
eration of new random values within the cumulative distribution, MCS
effectively reconstructs the input distribution, albeit potentially encountering
aggregation challenges with limited iterations. In contrast, LHS introduces a
more sophisticated sampling approach, characterized by enhanced precision
despite employing a reduced sample size [21]. A distinguishing attribute
of LHS is its capacity to furnish a broader coverage of samples within the
parameter space, engendering a reduced sample standard deviation in relation
to MCS.

3.2 Simulation-based Method

Difficulties in Energy Consumption Data Collection: Obtaining energy con-
sumption data for buildings, especially newer ones lacking historical data,
can be challenging. Traditional methods, like using probability distributions
for energy demand scenarios, ignore temporal autocorrelation, leading to
irrational energy use curves. To address this, the MCBPS approach stands
out as a preferred choice. This method effectively incorporates uncertainty
from input parameters into output parameters for generating diverse energy
demand scenarios.

MCBPS Approach for Energy Demand Scenarios: The MCBPS approach
involves several steps to generate energy demand scenarios. It starts by
assigning probability distributions to input parameters of a BPS tool, such
as EnergyPlus. Multiple input files are created through parameter sampling,
and these inputs are used for running multiple simulations. This approach
ensures that temporal autocorrelation of energy demand is taken into account,
resulting in more realistic energy demand scenarios.

Uncertainty Handling and Climate Impact: The treatment of uncertainty
in input parameters within BPS is orchestrated through the application of
diverse distribution types. Fundamental attributes like wall, window, and roof
properties are characterized by normal distributions, while parameters such as
occupant density and installed capacity for lighting and electrical equipment
are characterized by triangular distributions [22]. Furthermore, the integration
of the morphing method facilitates the incorporation of climate change effects
on building energy consumption. To execute this, BPS input samples are
systematically generated utilizing the Python programming language.
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Through the enactment of N simulations, the capacity to generate N
samples of building energy demand is realized [23]. Each sample assumes
the form of a discrete uniform distribution, thus ensuring that all potential
outcomes are endowed with equal probability. This comprehensive approach
enables a holistic exploration of the potential energy demand landscape,
accounting for a spectrum of uncertainties encompassing both parameter
variability and climatic influences.

4 Case Study

4.1 Case Settings

This study undertakes a comprehensive and systematic comparative inves-
tigation of various methodologies for generating scenarios, encompassing
Monte Carlo Sampling (MCS), Latin Hypercube Sampling (LHS), Multi-
Climate Building Performance Simulation (MCBPS), and Building Perfor-
mance Simulation with Monte Carlo (BPSMC). The underpinning scenario
is derived from EnergyPlus and aligns with established energy efficiency
design principles, utilizing representative weather data from the year 2005 to
simulate an office building in Shanghai. The research design seeks to ensure
robust comparisons by selecting 600 scenarios, thus accommodating the vari-
ability inherent in different scenarios and across multiple years. The scenarios
are characterized by a discrete uniform distribution. The methodologies are
discerned as follows: the Basic Scenario entails singular scenario generation
through EnergyPlus; Scenario 1 MCS involves the application of Monte Carlo
Sampling across 600 discrete time steps within the foundational scenario;
Scenario 2 LHS employs Latin Hypercube Sampling to meticulously sample
the foundational scenario over 600 time steps; Scenario 3 MCBPS integrates
200 input parameter samples with climate files (epw-2020 and epw-2050)
to yield 600 simulations; and Scenario 4 BPSMC simulates energy demand
documents for three distinct climate years and then employs MCS on these
documents [19]. This rigorous examination offers critical insights into the
relative efficacies and limitations of the diverse methodologies for enhancing
the precision of building energy demand predictions.

In the ISO model, independent scenario optimizations were conducted
for each scenario, resulting in 600 optimizations for each Scenario and a total
of 2400 optimizations. In the TSSP approach, similar to ISO, 600 indepen-
dent scenario optimizations were performed for each scenario. However, the
excessive number of scenarios led to an increase in model variables, causing
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challenges in achieving reasonable computation time. To address this issue,
scenario reduction techniques were employed in the stochastic programming
model, a well-established method. Additionally, clustering algorithms were
investigated for scenario reduction in previous studies.

Our investigation encompasses 600 scenarios, each encapsulating elec-
tricity, cooling, and heating demands across 8760 hours. The intricacies
of the dataset’s dimensionality preclude the direct application of clustering
algorithms, prompting the adoption of the feature-based k-medoids clustering
approach. This strategy involves generating a simplified Scenario defined by
key statistical features that succinctly characterize the original time series.
The ensuing clustering algorithm operates on these condensed feature Sce-
narios, alleviating computational challenges associated with the original data.
Our method employs six statistical features – sum, standard deviation, max-
imum, mean, kurtosis, and skewness – to represent each time series within a
scenario. This results in an 18-feature representation for each scenario. This
judicious selection optimizes computational efficiency and precision, offering
a pragmatic solution to high-dimensional clustering complexities.

4.2 Results

Energy demand scenarios encompass conventional time series data, exhibit-
ing variability when generated through different methods. This study under-
takes a comprehensive comparative analysis of energy demand time series
generated by distinct scenario generation techniques. Dynamic time warping
(DTW), a prominent approach for assessing temporal sequence similarity, is
harnessed here to quantify the likeness between two temporal sequences.

DTW operates by identifying an optimal alignment path within the dis-
tance matrix of two time series, minimizing cumulative element value
summation along the path. Lower DTW values indicate greater sequence
resemblance. The study draws on Andhini’s methodology for DTW
implementation. Two DTW variants are examined: absolute DTW, which
accounts for both absolute distance and temporal offset, and shape DTW,
which gauges shape similarity while ignoring absolute metrics.

Table 1 displays the average absolute DTW values between the basic
scenario and each scenario, offering a measure of the numerical dissimilarity
in energy demand. In Scenario 1, the electricity energy average absolute
DTW is 306.25, indicating significant differences in magnitude compared
to the basic scenario. Scenario 2 shows a smaller average DTW of 265.25,
suggesting a relatively smaller numerical variance. In contrast, Scenario 3 has
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Table 1 The results using the average absolute DTW
Scenario 3 Scenario 4

Scenario 1 Scenario 2 2005 2020 2050 2005 2020 2050
Average
absolute
DTW of
electricity
energy

306.25 265.25 45.26 52.32 165.25 362.30 519.32 825.30

Table 2 The results using the average absolute DTW
Scenario 3 Scenario 4

Scenario 1 Scenario 2 2005 2020 2050 2005 2020 2050
Average
shape
DTW of
electricity
energy

3.25 4.26 0.02 2.62 3.28 10.25 20.39 22.59

a remarkably low average DTW of 45.26, reflecting a close match in numer-
ical values with the basic scenario, especially for the 2050 data. Conversely,
Scenario 4 exhibits higher DTW values: 52.32 (2005), 165.25 (2020), and
362.30 (2050), indicating substantial differences in energy demand between
the basic scenario and Scenario 4. Table 2 focuses on average shape DTW
values, assessing the similarity in time series patterns regardless of absolute
differences. Scenario 1’s average shape DTW for electricity energy is 3.25,
showing minor shape variation compared to the basic scenario. Scenario 2 has
a slightly higher average shape DTW of 4.26, indicating a bit more noticeable
shape variation. Remarkably, Scenario 3 records an average shape DTW
of 0.02, indicating nearly identical time series shapes, particularly for the
2050 data. Scenario 4’s shape DTW values are notably higher: 2.62 (2005),
3.28 (2020), and 10.25 (2050) highlighting shape differences in the energy
demand time series between the basic scenario and Scenario 4. These tables
provide insights into the nature and degree of divergence in energy demand
scenarios across different sets and timeframes, considering both numerical
and shape aspects. The probabilistic method generates time series scenarios
with noticeable differences in trends and values compared to the original
scenario, especially during peak demand periods, reinforcing the disregard
for energy demand autocorrelation. On the other hand, the simulation method
aligns closely with the original scenario in both shape and value, but it may
not capture extreme events as well, and it requires more computation time.
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Table 3 The results of each scenario using the TSSP model

ESS (kW) PV (kW) Objective Value (Million CNY/a)

Basic scenario 66.95 205.41 9.87

Scenario 1 TSSP 63.65 250.05 4.28

ISO 61.52 229.61 5.37

Scenario 2 TSSP 58.63 260.26 5.38

ISO 59.51 232.97 4.20

Scenario 3 TSSP 63.34 205.18 2.15

ISO 58.44 194.97 4.92

Scenario 4 TSSP 61.62 261.19 0.74

ISO 61.76 213.72 5.20

Table 3 presents the TSSP model’s optimization outcomes for various sce-
nario sets, encompassing the optimal equipment capacities within the energy
system and the model’s objective value. In this study, the expected value
represents the mean of the optimization outcomes, considering a uniform
distribution of scenarios within each scenario.

In Table 3, the optimization results offer valuable insights into the impact
of diverse scenario sets on the optimal capacities of ESS and PV installations.
Additionally, the objective values, measured in million CNY per annum,
provide a comprehensive evaluation of the financial implications for each
scenario. Analyzing the table, we see a clear distinction between the basic
scenario and the subsequent scenario sets. The ESS and PV capacities, as well
as the objective values, vary notably across different scenarios, demonstrating
the sensitivity of the energy system design to different input conditions.
This variance highlights the need for a flexible approach that can adapt to
changing scenarios. Furthermore, the comparison between the TSSP and ISO
approaches adds another layer of insight. We can observe how these two
methods yield different optimal outcomes for each scenario. This contrast
underscores the importance of the chosen optimization method, as it can
significantly impact the final design of the energy system and, consequently,
the financial implications. The findings in this table also hint at the trade-offs
between optimal equipment capacities and financial objectives. For example,
some scenario sets may lead to higher or lower optimal capacities of ESS and
PV, and these decisions directly influence the overall financial performance of
the system. This level of analysis not only provides a deeper understanding of
the optimization process but also underscores the importance of considering
multiple scenarios in energy system planning. It allows decision-makers to
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assess the resilience and efficiency of the designed system under different
conditions and make informed choices that align with long-term objec-
tives. In summary, Table 3 unveils the dynamic nature of energy system
optimization, showcasing how varying scenarios and different optimization
approaches can significantly impact the outcome. It emphasizes the need for
adaptive strategies that can handle uncertainties, ensure robustness, and align
with financial objectives in the complex domain of energy system design.

5 Conclusion

This study systematically undertook a comprehensive comparative analysis
of diverse energy demand scenario generation methodologies and evaluated
their implications within the context of Power and Energy Demand Fore-
casting (PEDF) optimization. Employing four distinct scenario generation
approaches, the generated scenario sets were subjected to both isolated
scenario optimization and the more intricate two-stage stochastic optimiza-
tion process. Notably, the outcomes illuminated that scenario derived from
inherent demand uncertainties lead to discernible elevations in peak load
conditions, consequently precipitating amplified optimized system costs as
juxtaposed with the baseline, unaltered system. This finding suggests an
enticing equilibrium in design rationalization that thoughtfully considers the
ramifications of demand uncertainty, providing valuable insights for enhanc-
ing the efficiency and cost-effectiveness of PEDF optimization in real-world
applications.

Of particular significance was the methodological deployment of the
Multi-Climate Building Performance Simulation (MCBPS), which exhibited
a notable degree of temporal correspondence to the original scenario. This
phenomenon was tangibly measured through notably reduced Dynamic Time
Warping (DTW) values, distinguishing it from alternative methods. More-
over, when coupled with the Two-Stage Stochastic Optimization (TSSP)
paradigm, MCBPS demonstrated the least pronounced escalation in costs,
thus presenting an alluring equilibrium in design rationalization that thought-
fully contemplates the ramifications of demand uncertainty.

To enhance practical application, future work should refine the TSSP
model by incorporating dynamic load profiles and more sophisticated equip-
ment behaviors. Extended validation studies across diverse PEDF systems
and conditions will strengthen the model’s robustness. Additionally, integra-
tion with emerging technologies, like advanced data analytics and machine
learning, holds promise for improving predictive capabilities and adaptability
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to evolving energy system dynamics. Addressing these areas will contribute
to a more realistic and widely applicable framework for optimizing PEDF
systems in real-world scenarios, aligning with the broader goals of advancing
sustainable and resilient energy systems.
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