
Optimal Operation Strategy of Electric
Vehicle Cluster in the Electricity

Spot Market Considering
Scheduling Capability

Wen Wang1, Ye Yang1, Fangqiu Xu2,∗, Yulu Zhong1,
Chunhua Jin2, Xinye Zhong2, Jian Qin1

and Mingcai Wang1

1State Grid Smart Internet of Vehicles Co., Ltd, Beijing 100032, China
2Beijing Information Science and Technology University, Beijing 102206, China
E-mail: xufangqiu@yeah.net
∗Corresponding Author

Received 01 December 2023; Accepted 14 December 2023;
Publication 31 January 2024

Abstract

The widespread use of electric vehicles (EV) has put a strain on the stable
operation of power grid. Therefore, the potential of EV cluster power load
regulation has been paid attention. In the cluster, the electric vehicle aggrega-
tor (EVA) can gather a large number of EVs and participate in the electricity
spot market by optimizing the charging/discharging power. In this study, a
bi-objective optimization model for V2G enabled EV cluster operation is
proposed to determine the optimal load of EV cluster considering the elec-
tricity spot market. First, the scheduling capability of EVs is modelled and
aggregated considering the EV user willingness. Then, the demand response
and electricity spot trade for EVA are analyzed. Based on the capability
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constraints and the market rules, an optimization model is established with
two objectives of maximizing EVA profits and EV user satisfaction. Finally,
a case study in Beijing, China is implemented to prove the feasibility of the
proposed model. The results show that the EV user willingness for orderly
charging/discharging is distributed in the range of 0.26 and 0.94 with an
average value of 0.85. In addition, the proposed EV cluster operation strategy
can improve the EVA daily profits by 81.27% and increase the EV user
satisfaction by 70% compared with normal charging strategy.

Keywords: Electric vehicle cluster, operation optimization, electricity spot
market, V2G, scheduling capability.

1 Introduction

1.1 Background

In recent years, sustainable development goals and new energy markets have
been continuously improved worldwide. The global demand for sustainable
transportation solutions has propelled electric vehicles (EV) into the spot-
light [1]. China leads this trend, contributing 40% of the 10 million global
EV registrations. While this rapid EV adoption reduces carbon emissions,
it strains the power grid [2]. Integrating numerous EVs escalates power
demand, posing challenges for grid stability [3]. Managing the unpredictable
charging patterns burdens grid operators and may lead to voltage fluctuations,
imbalances, and infrastructure strain. Hence, devising strategies to optimize
EV load utilization becomes vital in addressing these pressing challenges and
ensuring grid reliability.

An effective approach to optimizing EV load management involves
clustering vehicles and centralizing control and coordination, aligned with
vehicle-to-grid (V2G) technology [4]. Grouping EV loads as clusters enables
strategic control over charging and discharging based on load characteristics.
Centralization enhances regulation of timing, duration, and power levels
in EV activities, improving grid stability and maximizing EV efficiency
while minimizing system impact. V2G technology offers opportunities for
bidirectional energy flow, allowing EVs to consume electricity and serve
as mobile energy storage units. This study will explore the optimal EV
cluster operation strategy with the application of V2G technology, contribut-
ing to grid management knowledge and proposing strategies for successful
implementation.
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1.2 Literature Review

1.2.1 Research on V2G technology
V2G is a technology that connects EVs with the power network, allowing
them to participate in the two-way flow of electric energy as a resource of
the grid. EVs equipped with V2G technology have a high-capacity energy
storage battery system for storing electrical energy and providing power. The
V2G system relies on the smart grid communication and control system to
enable real-time information and energy interaction between the EVs and
the power grid, enabling the scheduling and control of charging and reverse
energy supply.

V2G technology enables EVs to not only receive electric energy charging
but also reversely output stored electric energy to the grid, supporting the
balance of grid load demand [4, 5]. It can be used for energy management
and power dispatching, leveraging EVs as grid resources to achieve load
balancing and energy dispatching [7]. By integrating large-scale renewable
energy sources like solar and wind into the power system, V2G technology
can charge when there is a surplus of renewable energy and supply stored
electricity back to the grid, addressing the volatility and instability of renew-
able energy [8, 9]. The EV’s energy storage battery system can serve as a
backup power source, providing emergency power supply during grid black-
outs or emergencies [10]. V2G technology also enables frequency regulation
and power quality control, balancing grid load fluctuations through EV charge
and discharge, thereby improving power system stability and quality [11].
Moreover, V2G technology allows EVs to participate in energy markets and
trading, empowering EV owners to independently decide whether to supply
stored energy to the grid based on electricity prices and market demand,
thereby obtaining economic returns [12, 13].

However, there are challenges associated with the application of V2G
technology. Frequent charging and discharging processes may impact the
battery life of electric vehicles [14]. Hence, it is crucial to research and
develop optimized charging and discharging strategies for extended battery
life and improved performance. The application of V2G technology involves
extensive data exchange and sharing, including energy usage records and
user information, necessitating enhanced data protection and cybersecurity
measures to ensure privacy and security [15, 16]. Furthermore, supporting the
development and application of V2G technology requires appropriate market
mechanisms and regulatory norms, entailing electricity market reforms such
as price policies, energy trading mechanisms, and interaction rules between
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electric vehicles and the grid [17]. Additionally, implementing V2G technol-
ogy requires the establishment of corresponding charging facilities and com-
munication networks, which requires a comprehensive and reliable infrastruc-
ture to support the connection and interaction between EVs and the grid [18].
In this study, it is assumed that the EVs in the cluster are all V2G enabled.

1.2.2 Research on EV cluster in electricity market
As a mobile power storage load, EVs can be charged and discharged based
on the grid’s demand, thereby helping to balance the supply and demand rela-
tionship. The participation of EV clusters in the electricity market provides a
flexible approach to energy consumption, enabling charging and discharging
activities that can mitigate the volatility of renewable energy sources and
reduce the power system’s operational instability [19–21]. EV clusters have
the capability to adjust their charging and discharging strategies in response
to market signals and incentive mechanisms, allowing them to charge and
discharge based on market prices and demand [22]. This flexibility aids in
optimizing and improving the efficiency of the power market. Through intel-
ligent energy scheduling and management, EV clusters can align the storage
and utilization of electrical energy with grid demands, resulting in maximized
energy utilization efficiency and potential economic returns through energy
trading. This optimization of energy resources contributes to overall cost
savings [23, 24]. Furthermore, in situations of abnormal conditions or emer-
gencies in the power system, EV clusters can be dynamically scheduled to
provide backup power supply or load regulation capacity, thereby enhancing
the stability and reliability of the power system [25, 26].

The EV clusters commonly employ market models to engage in the elec-
tricity market, including the energy market and energy dispatch market. The
energy market constitutes the trading platform where EV clusters either pro-
vide or obtain electrical energy from the power system [27]. Conversely, the
energy dispatch market focuses on coordinating the charging and discharging
behavior of EV clusters to achieve load balance and energy optimization in
accordance with supply and demand [28, 29]. EV clusters can interact with
the power market through EV cluster aggregators, portable charging devices,
or on-board charging devices. EV cluster aggregators act as intermediaries
that negotiate transactions with the power system on behalf of a group of
electric vehicles, enabling them to schedule charging and discharging based
on market signals and demand, thus achieving a balance between supply and
demand and optimizing energy utilization [30, 31]. Alternatively, portable
charging devices or on-board charging devices facilitate direct interactions
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between EVs and the power system [32]. In this study, the EV aggregators
are considered as the main body to gather individual EVs and participate in
the electricity market.

1.2.3 Research on scheduling optimization of EVs
Reducing operating costs is a crucial objective in optimizing the operations
of EV clusters. One approach is to minimize energy purchase costs through
smart charging and energy scheduling, leveraging power price fluctua-
tions [33]. This involves optimizing the utilization rate of charging equipment
to reduce idle time and energy waste [34, 35]. According to cluster demand
and charging behaviour pattern, reasonable design and layout of charging
equipment to reduce installation and maintenance costs [36]. To meet user
needs, EV cluster operation optimization should also provide reliable charg-
ing services and ensure a high-quality user experience [37]. Additionally,
increasing the availability and coverage of charging equipment, as well as
improving charging speed and convenience, are also essential to meet the
flexible charging needs of users [38, 39]. Furthermore, the collection of user
needs and feedback through user participation mechanisms and feedback
channels can be used to optimize charging services and operational strategies
based on user input [13]. From the above literature, it is found that the
economic benefits of EV cluster operator and the EV user satisfaction are vital
indicators of EV cluster operation but they were not considered at the same
time. In addition, the behaviours of EV cluster participating in the electricity
market are not involved in the existing research.

The optimization methods for EV cluster operations include model-based
optimization methods, machine learning algorithms, and intelligent control
strategies. Model-based optimization methods utilize mathematical models
to describe charging demand [40], power supply, and system constraints.
By solving optimization problems based on these models, optimal charg-
ing scheduling schemes can be obtained. Machine learning algorithms, on
the other hand, leverage historical data and patterns to provide real-time
decision-making and scheduling strategies, offering adaptability and flexi-
bility [41]. Intelligent control strategies adjust charging speed and power in
real time to optimize charging behavior based on real-time power demand,
electricity price signals, and user demand. Model-based optimization meth-
ods [42] are suitable for scenarios with accurate constraints and well-defined
model descriptions, while machine learning algorithms and intelligent con-
trol strategies [43] are more applicable in situations that require real-time
decision-making and adaptability. In this study, multiple objectives are
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applied and therefore the intelligent algorithms are more practical to solve
the proposed problem.

1.3 Contributions

This study proposes a bi-objective operation optimization model for the V2G
enabled EV cluster in the electricity spot market considering the scheduling
capability. The main contributions of this paper are presented as follows.

• A scheduling capability model of V2G enabled EV cluster is proposed.
First, the charging and discharging behaviour of the individual V2G
enabled EV is modelled. Then, the orderly charging/discharging will-
ingness of EV users is determined by sigmoid function and entropy
weight method. Finally, the scheduling capability of EVs are aggregated
considering the EV user willingness;

• A novel bi-objective operation optimization model is proposed for elec-
tric vehicle aggregator (EVA) who controls the EV cluster. In this model,
the electricity spot trade is included. The objectives of maximizing EVA
profits and EV user satisfaction are both considered. The scheduling
capability of EV cluster is applied as constraints;

• A case study in Beijing, China is conducted to prove the feasibil-
ity of the proposed model. The Pareto front is obtained by NSGA-II
algorithm. The optimal EV charging/discharging power and the DR
strategy are determined. A scenario analysis is also implemented to
compare the results of normal charging, orderly charging and orderly
charging/discharging.

1.4 Paper Organization

The rest of the paper is organized as follows. Section 2 establishes a schedul-
ing capability model for V2G enabled EV cluster. In Section 3, the EVA
and the ways they participate in the electricity spot market are introduced.
Section 4 proposes a bi-objective operation optimization model for EVA to
obtain the optimal load and demand response strategies. In Section 5, a case
study is implemented and different scenarios are discussed. Section 6 presents
the conclusions of the paper.

2 Scheduling Capability Model of EV Cluster

In the operation optimization model of EV cluster, the large number of EVs
results in a sharp increase of number of decision variables and a heavy burden
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Figure 1 Charging model of EVs in normal charging.

of computation. Therefore, in this section, the scheduling potential of indi-
vidual V2G enabled EVs is aggregated considering the EV user willingness.
The scheduling capability, i.e., the upper and lower boundaries of power
and capacity, of the EV cluster will be used as constraints in the following
optimization model.

2.1 Individual EV Charging and Discharging Model

When a V2G enabled EV arrives at the charging station, the user has two
options to choose: normal charging and orderly charging/discharging. If the
EV user prefers normal charging, the EV will be charged immediately at the
rated power. The changes of SOC and charging power during the parking
time of normal charging is illustrated in Figure 1. The normal charging EVs
are considered as uncontrollable load.

If the second charging option is chosen, the user can set the departure time
and the expected SOC. The charging and discharging power of EV will be
adjusted by EVA to smooth the load fluctuation and achieve better economic
benefits. As shown in Figure 2, the SOC and charging/discharging power
should be constrained within the boundaries.

According to the charging and discharging pattern in Figure 2, the
individual V2G enabled EV should satisfy the following SOC boundary
constraints.

SOC i,min ≤ SOC i,t ≤ SOC i,max ti.arr ≤ t ≤ ti,dep (1)

P chr
i,rated (t− ti,arr ) ≥ (SOC i,t − SOC i,arr)Ci ti.arr ≤ t ≤ ti,dep (2)
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Figure 2 Charging/discharging model of EVs in orderly charging/discharging.

−P dis
i,rated (t− ti,arr ) ≤ (SOC i,t − SOC i,arr )Ci ti.arr ≤ t ≤ ti,dep (3)

P chr
i,rated (ti,dep − t) ≥ (SOC i,exp − SOC i,t)Ci ti.arr ≤ t ≤ ti,dep (4)

where SOC i,min and SOC i,max are the minimum and maximum of SOC of
the ith EV; ti,arr and ti,dep are the arrival and departure time of the ith EV;
P chr
i,rated and P dis

i,rated are the rated charging and discharging power of the ith
EV; Ci is the capacity of the battery of ith EV; SOC i,exp is the expected SOC
of ith EV.

In the meantime, the charging/discharging power of EV should also be
within the boundaries shown in Equations (5)–(6).

0 ≤ P chr
i,t ≤ µi,tP

chr
i,rated ti.arr ≤ t ≤ ti,dep (5)

0 ≤ P dis
i,t ≤ (1− µi,t)P

dis
i,rated ti.arr ≤ t ≤ ti,dep (6)

where µi,t is the charging/charging state of ith EV. If the EV is charging,
µi,t = 1. Otherwise, µi,t = 0.

2.2 EV User Willingness of Orderly Charging and Discharging

The EVs in the cluster are assumed to have the V2G ability and the potential
to participate in the orderly charging and discharging by the control of an
electric vehicle aggregator (EVA). Therefore, before calculating the schedul-
ing capability of the EV cluster, the willingness of the users to participate in
the orderly charging/discharging of EVA needs to be investigated.
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2.2.1 Factors influencing EV user willingness of orderly
charging and discharging

Usually, the willingness of EV users to participate in orderly charging/
discharging is related with two factors: the time adequacy and the incentive
satisfaction. The final decision of participation or not is the comprehensive
evaluation of these two factors.

If the user chooses normal charging, the time duration to reach the
expected SOC is the minimum charging time. If the parking duration of EV is
longer than the minimum duration, the user will be more willing to participate
in orderly charging/discharging. The time adequacy can be calculated by
Equations (7)–(9).

Ti,par = Ti,dep − Ti,arr (7)

Ti,min =
(SOC i,exp − SOC i,arr )Ci

ηiP chr
i,rated

(8)

Ti =
Ti,par − Ti,min

Ti,min
(9)

where Ti,arr and Ti,dep are the arrival and departure time of the ith EV; Ti,par

is the parking duration; ηi is the charging efficiency; Ti,min is the minimum
charging duration of ith EV.

If Ti < 1, the probability of the EV user participating in orderly charg-
ing/discharging is very low. Otherwise, the larger Ti is, the more willing the
EV user is.

Another factor is the incentive satisfaction of EV user which is concerned
with the price incentive determined by EVA and the expected incentive level
of EV users. The calculation of the incentive satisfaction is presented in
Equation (10).

Ii =
Iactual
Ii,exp

(10)

where Iactual is the actual incentive given by EVA; Ii,exp is the expected
incentive level of the ith EV user. Similar to the time adequacy, if Ii < 1, it
is not likely for the users to charge/discharge orderly. Otherwise, the larger Ii
is, the more willing the EV user is.

The probability of the EV user willingness is between 0 and 1 and
has a strong relationship with the time adequacy and incentive satisfaction.
Therefore, the sigmoid function is employed to map the relation between two
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Figure 3 The sigmoid function.

factors and the probability of user willingness, shown in Equations (11)–(12).

pi,1 =
1

1 + β1e−α1(Ti−1)
(11)

pi,2 =
1

1 + β2e−α2(Ii−1)
(12)

where pi,1 and pi,2 are the EV user willingness under the time adequacy of
Ti and the Ii respectively; α1, α2, β1, β2 are the coefficients of the function.
α1 = 4, α2 = 6, β1 = 0.6, β2 = 0.3. The functions are illustrated in Figure 3.

2.2.2 Weight determination of factors
In order to determine the degree of the EV user willingness, the influence of
time adequacy and incentive satisfaction should be integrated. Therefore, the
weights of two factors are calculated by the entropy weight method in this
study. The process of weight determination is as follows.

(1) Data normalization. The performance of each factor needs to be nor-
malized. In this method, it will be represented by the probability of
user willingness which is a value in [0,1] and will be calculated in the
following section. Consequently, the data normalization is not needed;

(2) Information entropy calculation. The information entropy of the jth
factor is calculated by Equations (13)–(14);

rij =
pij∑n
i=1 pij

(13)

Ej = −ln(n)−1
n∑

i=1

rijlnrij (14)
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where pij is the user willingness of the ith EV with respect to the jth
factor; n is the number of EVs.

(3) Final weight calculation. After obtaining the information entropy, the
final weights of two factors can be determined by Equation (15).

ωj =
1− Ej

m−
∑m

j=1Ej
(15)

where m is the number of factors.

2.2.3 Comprehensive evaluation of EV user willingness
After determining the weights of two factors in Section 2.2.2, the compre-
hensive willingness degree of EV user can be obtained by Equation (16).

pi = ω1pi,1 + ω2pi,2 (16)

If the total probability is more than 0.8, it can be regarded as a clear
willingness for orderly charging/discharging participation.

2.3 Aggregating EV Scheduling Capability in the Cluster

According to the statistical data of the EVs, the boundaries of SOC and
power, i.e. the scheduling capability, is obtained by summing the boundaries
of individual EVs. The step function ε(t) is used to indicate the difference of
the arriving time in the cluster. The scheduling capability of EV cluster can
be modelled by Equations (17)–(21).

n∑
i=1

SOC i,min [ε(tarr ,i)− ε(tdep,i)]

≤ SOC t ≤
n∑

i=1

SOC i,max [ε(tarr ,i)− ε(tdep,i)] (17)

SOC t ≤
n∑

i=1

(
P chr
i,rated (t− ti,arr )

Ci
+ SOC i,arr

)
[ε(tarr ,i)− ε(tdep,i)]

(18)

SOC t ≥
n∑

i=1

(
−P dis

i,rated (t− ti,arr )

Ci
+ SOC i,arr

)
[ε(tarr ,i)− ε(tdep,i)]

(19)
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SOC t ≥
n∑

i=1

(
SOC i,exp −

P chr
i,rated (ti,dep − t)

Ci

)
[ε(tarr ,i)− ε(tdep,i)]

(20)

n∑
i=1

−P dis
i,rated [ε(tarr ,i)− ε(tdep,i)] ≤ Pt ≤

n∑
i=1

P chr
i,rated [ε(tarr ,i)− ε(tdep,i)]

(21)

3 Operation Optimization Model

In this section, a bi-objective operation optimization model is established for
the EVA to participate in the electricity spot market and control the power of
the EV cluster so that the expectations of EVA and EV users are both satisfied.
The result will be used for the EVA to report in the day-ahead electricity
market.

3.1 Electric Vehicle Aggregator and Electricity Spot Market

The V2G enabled EV can be considered as a flexibly controlled and small
sized energy storage system but is not able to participate in large-scale power
system regulation individually. Therefore, in order to take full advantage of
the scheduling capability of EVs, the electric vehicle aggregator (EVA) gath-
ers and controls large-scale EV cluster, and then has the ability to compete in
the electricity spot market. In this case, the EVA can gain economic profits
from the spot market, reduce the charging cost of the EV users and smooth the
fluctuations of the utility grid. In this study, the EVA is allowed to participate
in the demand response trading and the electricity spot trading.

(1) Demand response trading

Demand response trading is an effective means to guide demand-side
resources to cut peaks and fill valleys. It will promote the adjustment ability
of power system and improve the consumption of clean energy while ensuring
the system safety. The participating EVAs will also obtain economic benefits
through optimizing energy use, achieving a win-win situation. In the market,
the power trading center posts invitations one day before the demand response
session and then the EVA responds to the invitations with the planned demand
response capacity. Based on the difference of practical operation load and the
base load, the EVA will obtain the corresponding economic subsidy;
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(2) Electricity spot trading

The EVA can purchase and sell electricity in the electricity market trans-
actions by integrating and optimizing the controllable EVs with advanced
regulation and communication technologies. The market members report the
electricity purchase and sales curves in the day-ahead market and adjust the
actual operation in the real-time market.

3.2 Optimization Objectives

In the proposed optimization model, two objectives are set: the maximum of
daily EVA profit and the maximum of EV user satisfaction. The decision
variables are the demand response capacity and the charging/discharging
power of the EV cluster in each time period.

3.2.1 Maximizing daily EVA profit
The daily EVA profit is the difference between the daily revenue and the
expenses. Through the electricity spot market, the EVA can obtain the
demand response subsidy and electricity sales income. Moreover, the charg-
ing fees of the EV users are another source of income for EVA. The expenses
of EVA are mainly from the purchase of electricity in the market and the com-
pensation to the EV users for EV discharging. The objective of maximizing
daily EVA profit is calculated by Equations (22)–(25).

f1 = maxPEVA = RDR +Rgrid +REV (22)

RDR =
T∑
t=1

SDR(P
t
chr − P t

dis − P t
base)∆t (23)

Rgrid =
T∑
t=1

(St
grid−sP

t
dis − St

grid−pP
t
chr )∆t (24)

REV =

T∑
t=1

(1− φ)(St
EV−chrP

t
chr − St

EV−disP
t
dis)∆t (25)

In the above equations, RDR is the demand response subsidy, Rgrid is
the profit of exchanging electricity with electricity market and REV is the
charging revenue from EV users. SDR, St

grid−s, St
grid−p, St

EV−chr , St
EV−dis

are the real-time unit price of demand response, electricity sales, electricity
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purchase, EV charging service and EV discharging cost. P t
chr , P t

dis are the
charging and discharging power at time t from and to the market respectively.
P t
base is base load of EV cluster at time t. φ is the discount for EV users to

participate in orderly charging/discharging.

3.2.2 Maximizing EV user satisfaction
The EV users who have a contract with the EVA to participate in the
orderly charging and discharging usually have two requirements: reaching
the expected charging capacity and reducing the charging cost as much
as possible. When the EVA responds to the demand response invitations
and transact electricity, the second objective is to maximize the EV user
satisfaction. The difference between the cost of normal charging and orderly
charging/discharging is one of the most important factors to improve the user
satisfaction. Another factor is the charging capacity expectation. When the
EVs leave the charging station, the best off-grid SOC is 100%. However,
in the orderly charging/discharging mode, he EV users usually agree on a
minimum off-grid SOC expectation with the EVA to guarantee the flexibility.
The closer the off-grid SOC gets to 100%, the more satisfied the users are.
Therefore, the second objective is calculated by Equation (26).

f2 = maxCuser = 0.5×
∑T

t=1 (S
t
EV−chrP

t
base∆t−REV )∑T

t=1 (S
t
EV−chrP

t
base∆t−Rexpected

EV )

+ 0.5×
∑T

t=1 (P
t
chr − P t

dis)∆t∑n
i=1 (100%− SOC i

arrive)Ci

(26)

where Rexpected
EV is the expected EV service fee for users. SOC i

arrive is the
SOC of the ith EV when it arrives the charging facility.

3.3 Constraints

(1) The charging/discharging power constraint

According to the model in Section 2, the charging and discharging power of
EV cluster should be within the scheduling capability. In addition, the EV
cluster cannot charge and discharge at the same time. The power constraints
are shown in Equations (27)–(29)

Pmin
chr ≤ P t

chr ≤ Pmax
chr (27)
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Pmin
dis ≤ P t

dis ≤ Pmax
dis (28)

P t
chrP

t
dis = 0 (29)

where Pmin
chr and Pmax

chr are the minimum and maximum charging power of
EV cluster; Pmin

dis and Pmax
dis are the minimum and maximum discharging

power;

(2) The EV energy storage capacity constraint

The energy storage capacity of EV cluster should satisfy the following
constraints.

Et+1 = Et + P t
chrηchr − P t

disηdis + Et
arr − Et

dep (30)

Emin
t ≤ Et ≤ Emax

t (31)

where Emin
t and Emax

t are the minimum and maximum capacity of EV
cluster. Earr and Et

dep are the initial capacity of EVs which arrive at time
t and the capacity of EVs which depart at time t.

3.4 Optimization Algorithm

In this study, the proposed bi-objective optimization is solved by Non-
dominated Sorting Genetic Algorithm II (NSGA-II) which is a widely-
applied multi-objective optimization algorithm. In this algorithm, the solu-
tions in each generation are grouped into multiple layers based on the
dominated relationship and individuals in the same layer are ranked by the
crowding distance. The individuals which do not satisfy the constraints will
have a penalty on the objective functions. After the iteration, the Parato front
where all solutions are non-dominated is obtained.

Based on NSGA-II algorithm, the process of solving the proposed model
is as follows, illustrated in Figure 4.

Step 1. Input the driving patterns of the EV cluster including the distribution
of arrival time, departure time, arrival SOC, expected SOC and expected
incentive level.

Step 2. Based on the input data, calculate the base load of EV cluster and the
limits of charging power and SOC (scheduling capability) according to the
model in Section 2.1.

Step 3. Calculate the willingness of EV users in the cluster. First calculate
the time adequacy and incentive satisfaction. Then determine the weights of
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Figure 4 The process of proposed model.
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these two factors based on entropy weight method. Finally, aggregate the
performance of two factors and obtain the final user willingness.

Step 4. Based on the user willingness, divide the base load into uncon-
trollable and controllable loads. Aggregate the scheduling capability of the
controllable EVs.

Step 5. Start the optimization iteration. Input the population size n and
maximum iteration number. Set t = 0. Initialize the population.

Step 6. Calculate the objective functions of each solution in the population.
Fast non-dominate sort the population and calculate the crowding distance of
each solution.

Step 7. If the iteration number reaches the maximum, go to step 9. Otherwise,
go to step 8.

Step 8. Select the top n solutions and generate the new population as the
parent population. Perform the selection, crossover and mutation operators.
Generate the child population and merge the parent and child population. Go
to step 6.

Step 9. Output the Pareto front. The optimal charging and discharging power
and the demand response capacity are obtained.

4 Case Study

4.1 Problem Description

An EVA in Beijing, China have aggregated a large number of EVs in a
region which have potential to participate in the orderly charging and dis-
charging. The EVA make strategies of the demand response and electricity
purchase/sales in electricity spot market one day ahead by scheduling the
charging and discharging power of EV cluster within the constraints. The
EVs in the cluster have two patterns of power utilization, shown in Table 1.
The arrival and departure time follow the normal distribution and the arrival
SOC conforms to the uniform distribution. The predicted electricity price

Table 1 The patterns of EV cluster
Arrival Time Departure Time Arrival SOC Number of EV

Cluster 1 N(19,2) N(8,2) U(0.2,0.5) 1500
Cluster 2 N(9,2) N(17,3) U(0.3,0.5) 500
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Figure 5 The predicted electricity price.

in the next day is presented in Figure 5. The peak clipping time duration is
9:00–11:00, 15:00–17:00 and 18:00–20:00, and the compensation price is 2.0
yuan/kWh. The valley filling time duration is 3:00–5:00 and 11:00–13:00,
and the incentive price is 1.2 yuan/kWh. If the EV user agrees to orderly
charging and discharging, they will have a 15% discount on the total service
fee. In NSGA-II, the population size is 50. The iteration number is 2000. The
mutation rate is 0.5.

4.2 Result Analysis

According to the patterns of EV cluster, the time adequacy and incentive
satisfaction of each EV can be simulated. For calculation simplicity, the
incentive expectation is expressed as a uniform distribution U(0.65,0.9).
Based on the entropy method, the weights of time adequacy and incentive
satisfaction are obtained as {0.53,0.47}. The user willingness function can
be illustrated in Figure 6. The user willingness is distributed in the range of
0.26 and 0.94. The average value is 0.85, which means the user willingness
of orderly charging and discharging is relatively high.

The base load of EV cluster is calculated by Monte Carlo simulation,
as shown in Figure 7. The load of EVs which do not participate in demand
response cannot be adjusted, illustrated as fixed load in Figure 7. The
other load is controllable since the users agree to the orderly charging and
discharging. In this study, only the controllable load is used to finish the
following calculation. According to the aggregation method of EV load in
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Figure 6 The user willingness function.

Figure 7 The base load of EV cluster.
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Figure 8 The scheduling capacity of EV cluster.

Figure 9 The Pareto front.

the cluster, the EV cluster scheduling capability can be presented in Figure 8.
The maximum and minimum values of the charging/discharging power and
current capacity are considered as constraints in the optimization model.

After 2000 times of iteration, the non-dominated Pareto solutions are
obtained, as shown in Figure 9. In the Pareto front, 4 solutions are generated,
in which the one with the largest crowding distance is selected as the final
optimal solution.
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Figure 10 The optimal charging and discharging power of EV cluster.

The result shows that the optimal daily profit of EVA reaches 30853.34
yuan. The profits from EV charging service are 16533.77 yuan and the DR
profits are 25194.26 yuan. The costs of purchasing electricity from the market
are 10874.69 yuan. For the EV users, the optimal user satisfaction is 0.88
with the cost satisfaction of 0.95 and the time satisfaction of 0.81. The EV
users in the cluster can save the cost of 14853.54 yuan compared with normal
charging. In addition, the charging expectations can also be satisfied.

The optimal charging and discharging power of EV cluster is shown in
Figure 10. During the valley filling and peak clipping time period, the demand
response capacity is 5166.58 kWh and 9497.18 kWh respectively, shown in
Figure 10. The amount of electricity purchased in the market is 31310.59
kWh. It is obvious that the load during peak hours is transferred to the valley
hours and then the optimal charging power is smoother than the base scenario.

4.3 Discussion

In the proposed model, it is assumed that the V2G technology can be used by
each EV and the EVs which participate in demand response can be charged or
discharged orderly. The following scenarios are set to explore the superiority
of V2G technology and orderly charging and discharging.

Case 1: normal charging.
Case 2: orderly charging.
Case 3: orderly charging and discharging (base scenario).
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Figure 11 The results of Case 1 to 3.

The objective values of Case 1 and Pareto fronts of Case 2 and 3 are
shown in Figure 11. It is shown that the best solution in Case 3 can dominate
all the solutions in Case 1 and Case 2. The optimal EVA daily profits of Case
1 to 3 are 17020.83 yuan, 29354.40 yuan and 30853.34 yuan respectively.
With respect to the objective 2, the optimal EV user satisfaction degrees of
Case 1 to 3 are 0.5, 0.87 and 0.88. It can be seen that the orderly charging and
discharging can help EVA achieve the highest economic benefits. If the EVA
participates in DR, with or without V2G technology, the EV user satisfaction
is almost equally good, which means the demand response can significantly
improve the user satisfaction.

The comparison of economic benefits among Case 1, 2 and 3 is illustrated
in Figure 12. The EV service fees in Case 1 to 3 are 31387.31 yuan,
16865.66 yuan and 16533.77 yuan respectively. Therefore, the EV users can
reduce the charging cost significantly by participating in orderly charging and
discharging. The EVA can also make the highest profits by orderly charging
and discharging because the cost of purchasing electricity from the market is
the lowest and more DR profits can be obtained. The result shows the orderly
charging and discharging can improve the EVA daily profits by 81.27% and
5.1% respectively compared with Case 1 and 2.

As illustrated in Figure 13, the total charging amount of electricity in
Case 3 is the lowest compared to Case 1 and 2 because the optimal control
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Figure 12 The comparison of economic benefits in Case 1 to 3.

Figure 13 The comparison of total charging amount and DR amount in Case 1 to 3.

of EV load sacrifices the need of fully charging and the application of V2G
technology also reduces the lower limit of SOC. The amount of DR electricity
of Case 3 is slightly higher than that in Case 2, which can help the EVA gain
more DR profits.

In summary, compared to normal charging, the orderly power scheduling
of EV cluster can help both the EVA and the EV users gain more economic
benefits in the electricity market with the charging expectation of EV users
satisfied. Moreover, compared to the normal charging, the utilization of V2G
technology can improve the EVA profits and the EV user satisfaction.
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5 Conclusions

Nowadays, the V2G enabled EV cluster controlled by EVA can participate in
the electricity spot market and can be optimized to obtain higher benefits.
This study proposed a scheduling capacity model for V2G enabled EV
cluster and established a bi-objective operation optimization model for EVA
considering the electricity spot trade. The main conclusions are given as
follows.

(1) The scheduling capability of V2G enabled EVs is modelled and aggre-
gated considering the EV user willingness. The EV user willingness
is determined by two factors: time adequacy and incentive satisfaction
whose weights were obtained as {0.53,0.47}. In the case study, the result
shows that the user willingness was distributed in the range of 0.26 and
0.94 with an average value of 0.85. Based on the user willingness values,
the limits of charging/discharging power and capacity for EV cluster
were obtained;

(2) A bi-objective operation optimization model for EV cluster in the
electricity spot market was proposed. In this model, the objectives
of maximizing EVA daily profits and EV user satisfaction were both
considered. The scheduling capability of EV cluster was utilized as con-
straints. Based on NSGA-II algorithm, the optimal EV cluster operation
and demand response strategy were determined;

(3) A case study in Beijing, China was implemented. Based on the charg-
ing patterns and orderly charging/discharging willingness of EVs in
this region, the EV load was divided into fixed load and controllable
load. The scheduling capability of the controllable load was calculated
as constraints. After 2000 times of iteration, 4 Pareto solutions were
generated. The optimal solution shows that EVA can make a daily profit
of 30853.34 yuan and the EV user satisfaction reaches 0.88. The EV
users can save the charging cost of 14853.54 yuan compared to normal
charging;

(4) The result of scenario analysis shows that the orderly charging and
discharging scenario (the proposed model) improves the EVA daily prof-
its by 81.27% and 5.1%, compared with normal charging and orderly
charging. In the base scenario, The EV users can also have the best
satisfaction degree. Moreover, the EV service fee and the electricity
purchasing cost of the base scenario were also the lowest.

The proposed model can be employed in the day-ahead market for EVA.
In the future, the real-time operation optimization model will be investigated.
Moreover, the optimization algorithm will be improved for better efficiency.
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