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Abstract

This research proposes a combined approach for predicting photovoltaic
power by integrating variational modal decomposition (VMD), an improved
gray wolf optimization algorithm (IGWO), and long- and short-term memory
neural network (LSTM) techniques. The model takes into account the impact
of varying environmental factors on photovoltaic power and aims to enhance
prediction accuracy. Firstly, the four environmental factors constraining the
PV output power are decomposed into eigenfunctions (IMFs) through vari-
ational modal decomposition; then the improved gray wolf optimization
algorithm is used to optimize the long and short-term memory neural net-
work; finally, the dimensionality-reduced dataset is inputted into the LSTM
neural network, and the dynamic temporal modeling and comparative anal-
ysis on the multivariate feature sequences are carried out. The results show
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that the VMD-LSTM model optimized by the improved Gray Wolf algorithm
predicts better than the comparison models LSTM, VMD-LSTM and VMD-
GWO-LSTM, and achieves the accurate prediction of time-volt power in the
external environmental changes.

Keywords: Photovoltaic power prediction, gray wolf optimization algo-
rithm, long- and short-term memory neural networks, variational modal
decomposition.

1 Introduction

The randomness and intermittent nature of PV power generation neces-
sitates the forecasting of PV for grid management. Because the output
of photovoltaic power generation is affected by weather conditions, its
power generation fluctuates greatly, which may pose challenges to the stable
operation and safe dispatching management of the power grid. Through
photovoltaic forecasting, the power output of photovoltaic power plants can
be obtained in advance, so as to better predict and cope with the volatility of
photovoltaic power generation. In this way, the power grid manager can carry
out reasonable scheduling and operation according to the forecast results
to ensure the stable operation of the power grid. Predictive models and
algorithms can be modeled by taking into account factors such as historical
data, weather forecast data, and PV cell module characteristics to improve
the accuracy of forecasts. Such forecasts can help grid managers better
plan and manage power supply, improving grid reliability and efficiency
[1–5]. Domestic and foreign research in PV power generation prediction
is more active, mainly in the following aspects: Modeling: Currently, the
methods used mainly include physically based models and machine learning
based models. Machine learning-based models have been widely used in
recent years. Data preprocessing: The data needed for PV power gener-
ation prediction mainly include meteorological data, solar radiation data,
power station information data, etc. In order to improve the accuracy of
data prediction, the data need to be processed and analyzed. In order to
improve the prediction accuracy, the data need to be processed. Aspects of
prediction accuracy: The prediction accuracy is improved by means of model
fusion, feature selection, parameter optimization and so on. Literature [6]
selected environmental historical data such as solar radiation intensity, tem-
perature, relative humidity and barometric pressure, and carried out PV
power prediction by Long Short Term Memory (LSTM) neural network,
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which proved that the LSTM model has the ability to predict PV power.
Literature [7, 8] uses Deep Belief Networks (DBN) for load prediction and
LSTM learns faster and has better global convergence compared to LSTM
model. It shows that the LSTM model is more robust in predicting PV power
compared to other models. Literature [9] Empirical Mode Decomposition
(EMD) used to process the raw data, and the processed data are input into
the training model, which effectively improves the prediction accuracy [10].
The analysis discusses the advantages of Variational Mode Decomposition
(VMD) over EMD in terms of mode mixing and decomposition of data,
which improves the smoothness of PV series. [11] analyzes and discusses
the advantages of Variational Mode Decomposition (VMD) over EMD in
terms of modal aliasing and data decomposition, which improves the sta-
tionarity of PV sequences. The advantage of CEEMDAN is that there is
no averaging error when decomposing. In literature [12], researchers used
Particle Swarm Optimization (PSO) to optimize the weights and biases of
neural networks. By this method, the drawbacks of time-consuming and poor
accuracy faced by the traditional manual selection methods are overcome,
thus reducing the prediction time and error. Literature [13], researchers
used the Sparrow Search Algorithm (SSA) to optimize the LSTM model
to better match the input data with the network structure. To this end,
this paper proposes a model that introduces an improved heuristic opti-
mization algorithm, Improvement Grey Wolf Optimizer (IGWO), into PV
power prediction, which is able to achieve parameter optimization of the
LSTM model under the premise of guaranteeing the prediction accuracy, and
it has a better performance compared to Grey Wolf Optimizer (GWO) in
terms of its global optimization. Compared with the Grey Wolf Optimizer
(GWO), it has a stronger global optimization capability, higher accuracy,
and is easy to implement and adjust [14, 15]. It is easy to implement and
adjust.

2 Rationale and Methodology

Using the Pearson correlation coefficient, it is possible to analyze the extent
to which various environmental factors affect PV power generation [16].

In Table 1, solar irradiance has the greatest impact on PV power, relative
humidity and atmospheric pressure are negatively correlated with the power
data and have some impact on power output, and the relative impact of air
temperature is relatively small, so they are chosen as the four environmental
factors that constrain PV power output.
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Table 1 Environmental factors and photovoltaic power correlation coefficient
Environmental Solar Relative Atmospheric
Factor Irradiance Temp Humidity Pressure
Ratio 0.96 0.12 −0.38 −0.11

Firstly, the four environmental factors constraining the PV output power
are decomposed into eigenfunctions (IMFs) by means of variational modal
decomposition (vmd); then, IGWO was used to optimize the control variables
of the LSTM model; finally, the dimensionality-reduced dataset is inputted
into LSTM model, and the multivariate single-output feature sequences are
modeled to achieve the short-term prediction of the PV power. In this test, the
IGWO-optimized PV power prediction method has better prediction perfor-
mance compared to the unoptimized LSTM model and the GWO-optimized
LSTM model.

2.1 Specific Steps of Variational Modal Decomposition

VMD is highly efficient in handling non-stationary sequences [17]. By adap-
tively estimating the mode shapes and frequencies, VMD can effectively
separate different mode shapes in a signal, providing valuable representa-
tions for further analysis or processing. Its core concept revolves around
constructing and solving variational problems. Through an iterative opti-
mization process, VMD successfully extracts the modal components and
their frequency information from the signal, enabling a meaningful repre-
sentation for subsequent analysis or processing. Compared with traditional
signal decomposition techniques such as Fourier decomposition, wavelet
decomposition, and empirical mode decomposition. Aliasing and artifacts
of the signal can be effectively suppressed to provide more accurate signal
decomposition results, and an appropriate number of eigenfunctions (IMFs)
can be selectively selected according to the characteristics of the signal,
so as to better adapt to the frequency and amplitude changes of the sig-
nal. Eigenfunctions (IMFs) have a good physical meaning, and each IMF
represents a transient mode of the signal, which can better understand and
interpret the characteristics of the signal. In terms of running speed, compared
with other signal decomposition methods, VMD has lower computational
complexity and faster running speed. It achieves this by adaptively estimating
the mode shapes and frequencies present in the signal, and through an itera-
tive optimization process, the VMD separates out the different mode shapes
to provide a meaningful representation for further analysis or processing,
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and this flexibility makes the VMD a powerful tool for working with non-
stationary sequences and extracting valuable information from the signal.
Through VMD, the signal can be down-weighted, i.e., decomposed into
different modes, so as to better understand and analyze the characteristics
of the signal. The raw power time series of a photovoltaic power plant is
a non-stationary signal f(t), and it is assumed that the raw power time
series is decomposed into k modal components with a fixed center frequency
and a finite sum of bandwidths minimized. By combining these constraints,
the VMD achieves a decomposition that accurately represents the signal
characteristics of the different modes, a method that effectively separates
the different frequency components while maintaining the overall energy
distribution of the original signal. The constraints are as follows:

min
{uk,ωk}

{∑
k

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}

s.t.
∑
k

uk(t) = f(t)

(1)

Where: uk is the set of all modes obtained from the decomposition of the
original signal; ωk is the fixed center frequency corresponding to uk; t is the
time variable; δ(t) is the Dirac function; uk(t) is the decomposed sequential
modal AM and FM signals; f(t) is the PV prediction data.

2.2 Long Short-Term Memory Neural Network (LSTM)

LSTM is a type of control with three key control mechanisms: forgetting
gates, input gates and output gates, in addition to this, LSTM uses a memory
cell called cell state to transfer and store long-term memory information.
Through these gate control mechanisms, LSTM can effectively deal with the

Figure 1 LSTM neural network structure.
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long-term dependency problem and capture long-term contextual information
in the sequence data [18]. LSTM is an improvement on the Recurrent Neural
Ntworke (RNN), which solves the problem of long-term series and gradient
dispersion of RNNs by introducing a gate mechanism and an internal memory
cell. The long time series and gradient dispersion problems of RNN are
solved by introducing the gate mechanism and internal storage unit. The
LSTM neural network cell consists of input gate it, output gate ot, forgetting
gate ft and cell state ct. The structure of LSTM neural network is as follows:

The data transfer formula in the LSTM neural network cell is:

ft = σ(Wfhht−1 +Wfxxt + bf )

it = σ(Wihht−1 +Wixxt + bi)

ot = σ(Wohht−1 +Woxxt + bo)

C̃t = tanh(Wchht−1 +Wcxxt + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(2)

2.3 Gray Wolf Optimization Algorithm (GWO)

GWO [19] is an algorithm for objective optimization based on how wolves
behave in hunting. In wolf packs, there are four social hierarchies, which
are the head wolf (α), the secondary wolf (β), the sub-sub-sub-wolf (δ),
and the wolf at the bottom (ω). In this case, β wolves are subordinate to
α wolves, δ wolves are subordinate to β wolves, and wolves at the bottom are
subordinate to wolves at other levels. By mimicking this social hierarchy, the
GWO algorithm optimizes the objective.

Building a mathematical model: Expressing the predatory behavior of
the realized wolves in a mathematical formula, we define the three optimal
wolves in the pack as α-wolf, β-wolf, and δ-wolf, which act as the comman-
ders of the pack. They renew themselves through iterative updates of the three
wolves in the lead.

2.3.1 Wolf hunting modeling
Gray wolf hunting model{

D⃗ = |C⃗ ∗ X⃗P (t)− X⃗(t)|
X⃗(t+ 1) = X⃗P (t)− A⃗D⃗

(3)
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t denotes the iteration, D⃗ denotes the distance hunted, X⃗(t + 1) denotes
the gray wolf’s position update formula, X⃗p(t) denotes the current optimal
prey location, C⃗ denotes the vector of coefficients controlling the indentation
distance, and A⃗ denotes the gray wolf’s attack behavior.

Coefficient vectors whose formulas are respectively:{
A⃗ = 2a⃗ • r⃗1 − a⃗

C⃗ = 2r⃗2
(4)

r⃗1, r⃗2, are two random one-dimensional vectors taking values between [0, 1].
The coefficient vector A⃗ is used to model the attack behavior of the gray wolf
on its prey. The value of convergence factor a⃗ is [0,2]. The coefficient vector
C⃗ provides a random weight for the prey to change the distance between the
gray wolf and the prey, which is determined by the random number r⃗2, so the
value range of the random coefficient is [0.2].

2.4 Improved Gray Wolf Optimization Algorithm (IGWO)

The convergence factor of the gray wolf algorithm is usually controlled by
adjusting the parameters. In the gray wolf algorithm, there are some key
parameters that need to be set, such as the number of gray wolf individuals,
the number of iterations, and the scope of the search domain. The choice
of these parameters affects the convergence speed of the algorithm and the
quality of the solution. For the gray wolf algorithm, there is no fixed and most
suitable convergence factor, because the characteristics and requirements of
different problems are different, and they need to be selected according to
the specific situation. In general, a smaller convergence factor can speed up
the convergence of the algorithm, but it may also cause the algorithm to fall
into a local optimal solution prematurely, while a larger convergence factor
may cause the algorithm to converge slowly. Therefore, when using the gray
wolf algorithm, you can try different convergence factor values, and evaluate
the convergence factor according to the convergence speed of the algorithm
and the quality of the solution, and gradually adjust the convergence factor to
select the best value. In addition, it can also be combined with the setting of
other parameters, such as the number of gray wolves and the number of iter-
ations, to perform comprehensive optimization to achieve better optimization
results [20].

When GWO is |A⃗| > 1, the three wolves in the lead can conduct random
search to areas other than the target value, which reflects the global search
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capability of GWO. When |A⃗| < 1, α Wolf, β Wolf and δ Wolf continu-
ously indent towards the target value, reflecting the local search ability of
GWO. Therefore, the monotone decreasing convergence factor in the original
algorithm cannot fully reflect the search process of GWO algorithm, so it is
necessary to improve the convergence factor [21].

In practice, the optimization process needs to constantly reduce the
Search space. In order to achieve this indent search process, the Golden
Section Search method is adopted in this paper. GSS combines the golden
section coefficient with the sine function to optimize the search operator of
GWO [22]. At the same time, the Euclidean distance calculation method
based on step size is introduced.

2.4.1 Elite reverse learning mechanisms
Jumping out of the local optimum, random features can be added or pertur-
bations can be added in practical applications. Opposition-Based Learning
(OBL) can increase the diversity and quality of gray wolf populations.
Reverse learning strategies have been used to improve many kinds of algo-
rithms. Elite Opposition-Based Learning (EOBL) is the improvement of OBL
to solve that the reverse solution generated by OBL in the actual application
process is not necessarily better than the current search space. In evolutionary
algorithms, the use of elite individuals can improve the quality and speed
of population convergence, while EOBL helps to introduce more diversity.
By combining these two groups, the algorithm can increase the exploration
ability of the solution space.

Assuming that the average individual in the current wolves corresponds
to its own extreme point as the elite individual, Xi(t), (i = 1, 2, 3, . . . , n)
a solution at the tth iteration in dimension i. The inverse solution is xi(t),
(i = 1, 2, 3, . . . , n).

Defined as:
xi(t) = k(ai(t) + bi(t))−Xi(t) (5)

Xi(t) denotes the information of the solution in dimension i before reverse
learning, xi(t) the information of the solution in dimension i after reverse
learning, k is a number on the interval [0.1], and ai(t) and bi(t) are the upper
and lower bounds of the decision variables in dimension i.

2.4.2 Improving the convergence factor
Traditional convergence factors do not reflect the actual optimization search
process. This is because the convergence speed can vary at different stages of
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Figure 2 Convergence factor iteration plot.

the optimization search process. In this paper, the convergence factor a⃗ based
on the change of cosine’s law is used, which can better adapt to the actual
convergence situation, and its modified expression is as follows:

a⃗ = 2− 1− [cos((t− 1)π/(tmax − 1))]n

t ≤ 1

2
tmax

a⃗ = 2− 1 + |cos((t− 1)π/(tmax − 1))|n

1

2
tmax ≤ t ≤ tmax

(6)

t is the current iteration number, tmax indicates the max number of iterations,
and n denotes the decreasing exponent, 0 < n ≤ 1. See Figure 2 for the
change chart.

As can be seen from Figure 2, compared with the image of the original
convergence factor, the improved convergence factor a⃗, which can balance
the global and local search ability of GWO, makes A⃗ decrease slower at
the beginning of the iteration to make up for the defects of GWO so that the
model has a better global search performance, and decreases faster at the later
stage of the iteration to improve the algorithm’s search accuracy.

2.4.3 Golden sine algorithm (Gold-SA)
The unit circle embrace has a special relationship with the sine function, the
gray wolf algorithm, r⃗1, r⃗2, are two one-dimensional random number vectors
taking values in the interval of [0,1], Combining the circle and sinusoidal
relations with these two random vectors, r⃗1, r⃗2 r1 is indicates that an arbitrary
number in [0.2π], r2 is indicates that an arbitrary number in [0.π]. By using
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sinusoidal function paths, the Gray Wolf algorithm can explore the search
space in a curvilinear fashion, rather than simply moving in a straight line
direction. This can increase the algorithm’s diversity in the solution space and
improve global search. The use of sinusoidal function paths allows the GWO
to better avoid falling into local optima and increase the chances of finding a
globally optimal solution. In addition, the indentation factor calculated using
the golden section coefficient is used as a fixed step to update the direction
and distance. The golden section coefficient is a commonly used parameter
in optimization algorithms to help balance the trade-off between global and
local search. By using a fixed step size, the algorithm can update at a certain
rate during the search process to avoid a search process that is too fast or too
slow. The golden sine algorithm combined with the gray wolf algorithm as a
global operator updates the position of the wolves after each iteration.

The following is a model of the gray wolf algorithm for wolf trapping
optimized by the golden sine function

X⃗(t+ 1) = X⃗(t) • | sin(r1)| − sin(r2) • |m1 • X⃗P (t)−m2 • X⃗(t)| (7)

where r1 is indicates that an arbitrary number in [0.2π], r2 is indicates that
an arbitrary number in [0.π] m1 and m2. The indentation coefficients are
computed to be 0.764 and 0.236.

2.4.4 Introducing a dynamic weighting strategy

W1 =
|X1|

|X1|+ |X2|+ |X3|

W2 =
|X2|

|X1|+ |X2|+ |X3|

W3 =
|X3|

|X1|+ |X2|+ |X3|

X(t+ 1) =
X1 •W1 +X2 •W2 +X3 •W3

3

(8)

where W1, W2, and W3 represent the learning rates of ω wolves against α,
β, and δ wolves, respectively. The method of calculating Euclidean distance
based on step size is simple and easy to implement. By calculating the
distance between each gray wolf and the gray wolf of the leadership layer,
a relatively simple distance matrix can be obtained, which simplifies the
calculation process of the learning rate Wi. It is able to reflect the relative dis-
tance between gray wolves, so as to dynamically adjust the learning rate
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Wi during algorithm iteration. This dynamic adjustment helps to maintain
the dynamic balance of the wolf pack in the search process, and improves
the search efficiency and convergence speed of the algorithm. It is also
possible to dynamically adjust the learning rate Wi based on the number
and relative position of the gray wolves in the pack. This makes the GWO
algorithm highly adaptable when dealing with problems of different scales
and complexities. It can also cause competition between gray wolves in the
pack. This competition helps to stimulate the wolf’s ability to explore and
innovate, so as to find better solutions in the search process.

3 VMD-IGWO-LSTM Modeling

3.1 Model Building

For photovoltaic power prediction, a photovoltaic prediction model based
on VMD-IGWO-LSTM was proposed. The reliability of model prediction
is highly correlated with the model structure setting and the selection of
hyperparameters of the neural network. In this paper, IGWO is selected to
optimize the LSTM model. The optimized target hyperparameters include the
number of hidden layers, initial learning Xi rate, training time, batch size, and
drop rate [15]. The steps to optimize an LSTM neural network using IGWO
are as follows.

(1) Preprocess the data to be input, and for missing or anomalous data, use
the average of the seven data before and after as a substitute.

(2) The PV sequence dataset is passed through vmd to obtain the imf of
each component of the PV sequence dataset.

(3) Optimize the number of hidden layers, the initial learning rate, the
number of training times, the batch size, and the discard rate of the
LSTM model using the gray wolf optimization algorithm. The upper
parameter limit [256 0.01 300 128 0.9] and the lower parameter limit
[16 0.0001 100 16 0]. The model training process was optimized using
Adam’s algorithm.

(4) The data decomposed by variational modal decomposition is fed into
LSTM model optimized by the GWO.

3.2 Evaluation of Forecasting Models

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Abso-
lute Percentage Error (MAPE), were selected as the criteria for evaluating the
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accuracy of each prediction model [23] and its expression is:

ERMS =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

EMA =
1

n

n∑
i=1

|yi − ŷi|

EMAP =
100%

n

n∑
i=1

|yi − ŷi|

(9)

Where: yi is the actual power value at the ith point and ŷi is the predicted
power value at the ith point.

RMSE measures the difference between the predicted and true values of
the model, which takes into account both the magnitude and the positive and
negative direction of the error. Therefore, RMSE is more sensitive to outliers,
and the smaller the value of RMSE, the better the model fit. MAE measures
the average absolute difference between the predicted and true values of the
model, which is more concerned with the absolute value of the prediction
error. Unlike RMSE, MAE is relatively insensitive to outliers because it uses
the absolute difference rather than the squared difference. the smaller the
value of MAE, the smaller the average error in the model’s predictions. MAE
measures the average percentage error of the model’s predicted values relative
to the true values, which is more comparable for data of different sizes.
Because of the percentage error, MAPE is normalized for data of different
sizes, making comparisons between different data more fair. MAPE is usually
used for forecasting tasks with high business demands, and can better reflect
the business impact of the model.

4 Model Testing

4.1 Data Sources

The four environmental data of irradiance, ambient temperature, relative
humidity and atmospheric pressure in the measured power of a photovoltaic
power plant in Inner Mongolia from January 1 to December 31, 2019, as well
as the data acquired by the sensors of this power plant, are selected, and the
abnormal data in the data are smoothed and replaced by taking the average of
the seven data before and after the abnormal data. The sampling time period
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was from 6:45 to 19:30, the sampling interval was 15 min, and there were 52
sampling points in total, and the data of sunny day on July 4 and cloudy day
on July 12 were used as the test data.

4.2 Predicted Results

Four models and the accuracy of the same models in predicting PV power for
different weather conditions were compared. The four models include:

Model 1: Traditional LSTM neural network. This model uses a conventional
LSTM network for PV output power prediction.

Model 2: VMD-LSTM neural network. In this model, a VMD decomposition
of the training set is first performed and the subsequences obtained from the
decomposition are used as inputs to the LSTM network for prediction.

Model 3: VMD-GWO-LSTM neural network. This model decomposes the
PV output power data into VMD, then use a GWO to optimized LSTM
network to predict each subsequence and superimposes the predictions to get
the final prediction.

Model 4: VMD-IGWO-LSTM neural network. Unlike the Model 3. The
subsequences obtained by VMD decomposition of PV data are used as data,
then the LSTM model is optimized by using the IGWO algorithm, which can
obtain more accurate prediction results.

An experimental comparison of these four models was conducted through
simulations. The results show that compared with the other models, Model 4
has the best prediction effect under the same conditions, which is closest
to the actual power mention. Overall, the VMD-IGWO-LSTM model has a
better accuracy improvement effect in PV output power prediction, which
provides an effective method to optimize the performance of PV power
generation system.

Through Figures 5, 6, Tables 2, 3 and 4 it can be observed that that by
substituting each intrinsic modal component obtained after the decomposition
of the variational modes into the optimized combination model for training
combination, each component can be predicted more accurately than the
original sequences by the optimized combination model. A single predic-
tion model LSTM, GWO algorithm and IGWO algorithm optimized LSTM
neural network model are compared, there will be a phenomenon of over-
prediction. In terms of prediction accuracy, the accuracy of the LSTM neural
network optimized with the GWO and the IGWO is greatly improved,
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Figure 3 Algorithm flowchart.

indicating that the optimization of the GWO and the IGWO improves the
prediction accuracy of the model. Compared with the traditional method
of manually adjusting the parameters, optimization using the GWO and
the IGWO can explore the parameter space more comprehensively and can
find better parameter combinations, which makes the neural network model
more adapted to the characteristics of the PV power prediction task, can
avoid the prediction error caused by the inaccuracy of manually adjusting
the parameters, and can significantly improve the accuracy of the PV power
prediction.

Tables 2, 3 and 4 show the prediction evaluation metrics of the four
models, which are selected as root mean square error (RMSE), mean absolute
error (MAE) and prediction error (MAPE). Based on the comparison of the
prediction metrics, it can be seen that the VMD-LSTM optimized by IGWO
has the highest overall prediction accuracy, and the prediction model using
decomposed sequences does not exhibit obvious error transfer phenomena.
From the actual data, the PV prediction has a certain lag because there is
a certain time delay between the PV power generation prediction process
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Figure 4 Exploded view of the VMD.
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Figure 5 Comparison of four model predictions in different weather.
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Figure 6 Comparison of prediction errors of four models in different weather.
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Table 2 Four model prediction errors for sunny days
Mould ERMS/MW EMA/MW EMAP/MW
LSTM 2.6405 2.2578 7.2007%
VMD-LSTM 1.8466 1.6634 5.3654%
VMD-GWO-LSTM 1.3189 1.0723 4.3622%
VMD-IGWO-LSTM 0.62152 0.48874 1.5334%

Table 3 Four model prediction errors for cloudy days
Mould ERMS/MW EMA/MW EMAP/MW
LSTM 2.9238 2.2178 16.6838%
VMD-LSTM 0.8577 0.66672 5.8907%
VMD-GWO-LSTM 0.50491 0.41188 3.436%
VMD-IGWO-LSM 0.31815 0.26585 2.1998%

Table 4 Four model prediction errors for rain days
Mould ERMS/MW EMA/MW EMAP/MW
LSTM 4.856 3.621 21.6%
VMD-LSTM 3.11 2.532 15.8%
VMD-GWO-LSTM 1.49 1.282 5.8%
VMD-IGWO-LSM 1.15 0.881 4.9%

and the actual power generation and the predicted value. This may be due to
weather changes, sunshine intensity and other factors that affect the efficiency
of PV power generation. That is, changes in actual power generation are
not immediately reflected in the forecast. The PV output power on a sunny
day is less affected by environmental factors and is more stable and can be
predicted according to a regular pattern. On the other hand, the environmental
factors on cloudy days change more rapidly, which leads to an increase in
the difficulty of PV power prediction. As can be seen from Figure 5, the
error between the test results of the model and the prediction results of the
actual junction compared with the sunny day is relatively large in the case of
cloudy weather conditions, partly because the sampling time interval is too
large, and the data changes due to the change of cloudy clouds blocking the
sun, resulting in a decrease in solar radiation. Therefore, it is necessary to
reduce the sampling interval and improve the smoothness of the data, thereby
improving the accuracy of the prediction.

In addition, a prediction model using decomposed sequences can decom-
pose the PV sequences into intrinsic modal components and utilize these
components for prediction. This approach can better capture the vibration
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modes with different frequencies and amplitudes, thus improving the accu-
racy of the prediction. At the same time, due to the use of a model that
decomposes the sequence, the transfer of errors between the different compo-
nents is not obvious, which helps to maintain the precision of the prediction.
Judging from the data of photovoltaic power stations, the PV output power
on sunny days is more stable less affected by environmental factors and
can be predicted based on the law. The environmental factors change faster
on cloudy days, which leads to an increase in the difficulty of PV power
prediction. From Figures 3a and 3b. It is clear that that the model’s prediction
results differ greatly in the case of large changes in weather conditions on
cloudy days, partly because the sampling interval is too large and the shading
of the sun by cloud cover on cloudy days leads to a decrease in the solar
radiation caused by the changes in the data, so it is necessary to reduce the
sampling time and improve the smoothing degree of the data so as to increase
the accuracy of the prediction.

5 Conclusions

In this paper, a VMD-IGWO-LSTM prediction algorithm model is proposed,
and after simulation using real data, the established model exhibits smaller
values of RMSE, MSE, and MAE for short-term prediction of PV output
power compared to the three prediction models, LSTM, VMD-LSTM, and
VMD-GWO-LSTM. This indicates that the proposed model has a certain
improvement in the short-term prediction accuracy of PV output power,
which is of reference significance for the practical application.

Acknowledgments

This research was supported by Hunan Provincial Natural Science Founda-
tion (2022JJ50122).

Conflict of Interest

We all declare that we have no conflict of interest in this paper.

Availability of Data and Materials

All data generated or analysed during this study are included in this article.



526 Z. Xu et al.

References

[1] Xue, Yang, Li, Jinxing, Yang, Jiangtian, Li, Qing, Ding, Kai. Short-
term prediction of photovoltaic power based on similar day analysis and
improved whale algorithm for optimizing LSTM network model [J/OL].
Southern Power Grid Technology, 1–9 [2023-11-23].

[2] Xue, Yang, Li, Jinxing, Yang, Jiangtian, Li, Qing, Ding, Kai. Short-
term prediction of photovoltaic power based on similar day analysis and
improved whale algorithm for optimizing LSTM network model [J/OL].
Southern Power Grid Technology, 1–9 [2023-11-23].

[3] Dai Jing, Wang Jianxiao, Zhang Zhaohua et al. Morphological charac-
teristics and key technologies of electrically new power systems [J/OL].
New Power System, 2023, 1(2):161–183.

[4] Liu, Chen, Huang, Yihu. Research on maximum power point tracking
technology for locally shaded photovoltaic [J]. Electrical Automation,
2023, 45(05): 64–66+71.

[5] Shi Y. Application of energy storage system in new energy generation
system [J]. Industrial Innovation Research, 2023, (20): 96–98.

[6] Xu Libin, Cheng Ruofa, Yang Jiajing, Liu Lubing. Improved INC
algorithm for rapid change of light intensity[J]. New Technology of
Electrical Engineering and Electricity, 2020, 39(08): 56–65.

[7] Alaas Zuhair, Eltayeb Galal eldin A., Al Dhaifallah Mujahed, Latifi
Mohsen. A new MPPT design using PV-BES system using modi-
fied sparrow search algorithm based ANFIS under partially shaded
conditions [J]. Neural Computing and Applications, 2023, 35 (19):
14109–14128.

[8] Guo Jinzhi, Pan Zijun, Yuan Shaojun, et al. A variable step-size
MPPT algorithm based on improved conductivity increment method[J].
Electrical Drives, 2022, 52(20): 50–56.

[9] Liu Bangyin, Duan Shanxu, Liu Fei, Xu Pengwei. Maximum power
point tracking of photovoltaic array based on improved perturbation
observation method[J]. Journal of Electrotechnology, 2009, 24(06):
91–94.

[10] Wang Jinyu, Wang Yuxin, Wang Haisheng. Photovoltaic maximum
power point tracking based on quantum CS-P&O algorithm[J]. Power
Technology, 2022, 46(07): 789–792.

[11] Chepuri Venkateswara Rao; Rayappa David Amar Raj; Kanasottu Anil
Naik. A novel hybrid image processing-based reconfiguration with RBF
neural network MPPT approach for improving global maximum power



Study on PV Power Prediction Based on VMD-IGWO-LSTM 527

and effective tracking of PV system [J]. International Journal of Circuit
Theory and Applications, 2023, 51 (9): 4397–4426.

[12] Lv GuanXi; Bai Di. Research on MPPT control strategy based on the
Perturbation observation method [J]. Journal of Physics: Conference
Series, 2023, 2474 (1).

[13] Gao, Jian, Guo, Qian, Weidong. Typical fault analysis and diagnosis of
photovoltaic modules based on their I-V output characteristics [J/OL].
China Test, 1–6 [2023-11-23].

[14] Ran Chengke, Xia Xiangyang, Yang Mingsheng, et al. Photovoltaic
power prediction by BP network based on day type and fusion theory[J].
Journal of Central South University (Natural Science Edition), 2018,
49(09): 2232–2239.

[15] Zhou Liang, Wu Meina, Hu An. Fast modeling of photovoltaic arrays
under localized shading and characterization of extreme point distribu-
tion[J]. Journal of Electrotechnology, 2021, 36(S2): 572–581.

[16] Shi Ji-Ying, Xue Fei, Qin Zi-Jian, et al. A 3-step photovoltaic maxi-
mum power point tracking algorithm[J]. Journal of Tianjin University
(Natural Science and Engineering Technology Edition), 2016, 49(05):
485–490.

[17] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in
Engineering Software, 2016, 95: 51–67.

[18] Zhao YN, Ye L, Zhu QW. Characterization and processing methods
of wind abandonment anomaly data clusters in wind farms[J]. Power
System Automation, 2014, 38(21): 39–46.

[19] Li Terrible Yong, Zhang Weibin, Zhao Xinzhe, et al. Improved whale
algorithm to optimize support vector regression for photovoltaic max-
imum power point tracking[J]. Journal of Electrotechnology, 2021,
36(09): 1771–1781.

[20] Hou Shuaihu, Zhao Hui, Yue Youjun, Wang Hongjun. MPPT tracking
study of photovoltaic system under localized shading based on IDBO-
IP&O algorithm [J/OL]. Complex Systems and Complexity Science,
1–9 [2023-11-23].

[21] Li Hongyan, Wang Lei, An Pingjuan, Yang Zhaoxu, Zhao Tianyue, Liu
Bao. Study of photovoltaic MPPT under localized shading based on
improved viscous bacteria algorithm [J]. Journal of Solar Energy, 2023,
44 (10): 129–134.

[22] Guo, Kunli, Liu, Luyu, Cai, Weizheng. Research on photovoltaic multi-
peak MPPT based on hybrid algorithm [J]. Power Technology, 2021, 45
(08): 1040–1043.



528 Z. Xu et al.

Biographies

Zhiwei Xu was born in Hunan, China, in 1978. He received the M.S. and
Ph.D. degrees in 2006 and 2014, respectively, from the College of Elec-
trical and Information Engineering, Hunan University (HNU), Changsha,
China. He is currently a associate Professor of Mechanical Engineering with
the Hunan Institute of Engineering, Xiangtan, China. His current research
interests include wind power generator and its control, power electronic
transformer system, special motor and control.

Kexian Xiang was born in 2000 in Hunan, China. He graduated from the
School of Applied Technology of Hunan University of Engineering in 2022
and is now a graduate student at Hunan University of Engineering. His current
research interests include power electronic transformer systems and photo-
voltaic power forecasting.



Study on PV Power Prediction Based on VMD-IGWO-LSTM 529

Bin Wang was born in Xiangtan, Hunan in 1997 and graduated with a
bachelor’s degree from Hunan Institute of Engineering. His main research
direction is new energy and smart grid.

Xianguo Li was born in Shandong, China, in 1999. He is a Master’s student
at Hunan University of Engineering, Xiangtan, China in 2023. His supervisor
is Zhiwei Xu, Associate Professor, Department of Mechanical Engineering,
Hunan University of Engineering, Xiangtan, China, and his research interests
are in the area of new energy and smart grids.




	Introduction
	Rationale and Methodology
	Specific Steps of Variational Modal Decomposition
	Long Short-Term Memory Neural Network (LSTM)
	Gray Wolf Optimization Algorithm (GWO)
	Wolf hunting modeling

	Improved Gray Wolf Optimization Algorithm (IGWO)
	Elite reverse learning mechanisms
	Improving the convergence factor
	Golden sine algorithm (Gold-SA)
	Introducing a dynamic weighting strategy


	VMD-IGWO-LSTM Modeling
	Model Building
	Evaluation of Forecasting Models

	Model Testing
	Data Sources
	Predicted Results

	Conclusions

