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Abstract

Solar thermal power generation shares technical characteristics with tradi-
tional thermal power generation. This enables rapid adjustment of turbine
generator output to meet the demands of the power grid load for frequency
modulation. However, fluctuations in light intensity lead to variations in inter-
connected power system parameters, posing challenges for load frequency
control (LFC). In this study, we propose a Robust Distributed Model Pre-
dictive Control (RDMPC) method. This method achieves system trajectory
tracking by solving the nominal system optimization problem. It also flexibly
adjusts the weights of different Tube models to determine the optimal control
law using the standard Tube online combination with various gain values.
Additionally, we incorporate the states of adjacent areas into the feedback
control law to achieve effective coordination between these areas. Using
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MATLAB/Simulink, we simulated the power system in two areas. Compared
to standard Tube DMPC, our proposed algorithm effectively mitigates the
impact of light intensity, enhances adjustment speed, reduces frequency
fluctuation, and demonstrates superior control effectiveness.

Keywords: Robust model predictive control, load frequency control, uncer-
tain parameters.

1 Introduction

Load frequency control is crucial for maintaining the stability of power sys-
tems. Its primary function is to regulate frequency deviation within specified
limits by adjusting the power output of generator sets in response to load
changes, thus ensuring system frequency stability [1]. With the promotion
of the “double carbon” goal, the proportion of high-proportion, intermittent
and volatile new energy generation in the power system is increasing, and the
shortcomings and problems such as insufficient flexibility of frequency con-
trol and insufficient adjustment capacity of the power system are becoming
increasingly prominent. Solar thermal power plant (STPP) offers real-time
control over power output by adjusting the working state of reflectors or tur-
bine generator sets. This capability enables it to effectively manage frequency
fluctuations in the power system, offering high adjustability and flexibility.
STPPs play a pivotal role in the transition towards a new energy-centric power
system, ensuring its safe and stable operation [2].

Distributed Model Predictive Control (DMPC) has emerged as a powerful
technique for enhancing the stability, robustness, and response speed of
systems, finding extensive application in Load Frequency Control within
modern multi-area interconnected power systems [3]. DMPC divides the
entire system into multiple subsystems, each equipped with an independent
controller capable of adjusting its state autonomously. This approach enables
rapid and efficient to the distributed control needs of the power system.
NONG Huiyun [4] established a multi-regional interconnected power system
model composed of wind power, photovoltaic power and thermal power.
Using DMPC they regulated the frequency and power of interconnection lines
to remain within specified limits. However, this control strategy overlooked
the influence of changes in wind speed and light intensity on the sys-
tem, thereby exhibiting certain limitations. In another study, Liao Xiaobing
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et al. [5] proposed a collaborative distributed model predictive control algo-
rithm for LFC of power system under the access of photothermal system.
This algorithm coordinated the output power of each area to accommodate
load changes. Nevertheless, it adopted the known sequence of light intensity
changes, which had limitations in practical application. The fluctuation of
light intensity alters the LFC model parameters, reducing system frequency
stability and heightening the need for coordinated control among diverse
power generation systems. This underscores the imperative for ensuring the
safe and stable operation of the power grid.

The robust distributed model predictive control (RDMPC) has been
widely used in many engineering fields due to its robustness, effectiveness,
high flexibility, good control effect, easy implementation and expansion.
Zhang Yi et al. [6] proposes a robust distributed LFC strategy for intercon-
nected power systems with parameter uncertainty and structure uncertainty.
This strategy reformulates the optimization problem into the solution of
linear matrix inequalities, enabling global optimal control while satisfying
constraints. Liu Xiangjie et al. [7] proposes Tube DMPC control strat-
egy to address the uncertainty of wind speed. It uses the combination of
DMPC and feedback control law to limit the state change of the system
within a certain range, thereby minimizing the impact of wind speed dis-
turbance on the system and fostering effective coordination between areas.
Nonetheless, this strategy’s utilization of fixed feedback gains implies limited
flexibility, potentially leading to scenarios where viable solutions may be
elusive.

In this paper, a Robust Distributed Model Predictive Control algorithm
is designed to solve the parameter uncertainty problem in the light-thermal
interconnected power system.

(1) Based on the real-time information of the current state of the system, the
nominal system is optimized in real time under the control of DMPC so
that the system state can change around the determined state trajectory;

(2) Multiple controller gain optimization feedback control laws are
employed, enabling the flexible adjustment of weights associated with
different Tube models to identify the most effective control law;

(3) The feedback control law integrates the state of adjacent areas, facilitat-
ing inter-regional communication and coordinated control. This ensures
consistency in system states across areas and enables collaborative
responses to external disturbances.
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2 Description of the System

2.1 Load Frequency Control Model of Interconnected Power
System

The load frequency control model for the interconnected power system in the
two areas of the solar-thermal power system is established. Area 1 is com-
posed of the solar-thermal unit and the thermal power unit. The LFC model of
the solar-thermal unit is composed of the collector, the governor, the turbine
and the generator, and the output power is changed by adjusting the opening
of the turbine valve [8, 9]. Area 2 contains a thermal power unit consisting
of a governor, a reheat turbine and a generator. Each area is independently
regulated by an RDMPC, with information exchanged between areas via the
tie-line to maintain stable frequency and power exchange levels. The system
structure is shown in Figure 1, and the meanings of each parameter are shown
in Table 1.

Area 1 faces uncertainty primarily due to parameter variations resulting
from the integration of the Solar thermal generator system, where coefficient
matrix parameters fluctuate A11, B11, F11 with light intensity ∆I . In contrast,
area 2, consisting of conventional units, experiences minimal uncertainties.
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Figure 1 Load frequency control model of ST–Thermal power system.
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Table 1 The parameters and variables of power system
Parameters/ Parameters/
Variables Nomenclatures Variables Nomenclatures
∆f Frequency deviation Kc Collector gain
∆Pg Generator output power

deviation
Tc Collector time constant

∆Ptie Tie-line active power
deviation

Tt Turbine time constant

∆Xg Governor valve position
deviation

Tg Thermal governor time
constant

∆Pr Reheat output power
deviation

Ks Control area interaction gain

∆Pd Load disturbance deviation R Speed droop
∆Pe Output power deviation of

ST power plant
ACE Area Control Error

Kp Power system gain KB Frequency deviation factor
Kr Reheat gain

However, real-time communication among areas via liaison lines introduces
coupling between adjacent systems. Consequently, changes in one area affect
adjacent ones, resulting in fluctuations in the overall power system frequency.

In interconnected power systems, illumination intensity variation is intri-
cate, and uncertainties wield significant influence. To address this, multiplica-
tive uncertainty is transformed into additive uncertainty for processing [8],
forming the basis for constructing a robust distributed controller. This con-
troller is coupled with the LFC model (1) of the ST-thermal interconnected
power system, enabling the expression of the discrete system’s state space as
follows:

The LFC model for the i area can be written as:
ẋi(t) = Aii(t)xi(t) +Bii(t)uti(t) + Fii(t)wi(t)

+
∑
i̸=j

(Aij(t)xj(t) +Bij(t)uj(t) + Fij(t)wj(t))

yi(t) = Cii(t)xi(t)

(1)

where, j indicates the adjacent area. The power deviation of interregional
contact lines can be written as:

∆P ij
tie =

2π

s

∑
Ksij(∆fi −∆fj).
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Select the state variable of the ST - thermal power area as:

x1 =
[
∆f1 ∆Ptie1 ∆Pg1 ∆Xg1 ∆Pr1 ∆Pe2 ∆Xg3 ∆Ẋg3

]T
The state variables of the thermal power area is:

x2 =
[
∆f2 ∆Ptie2 ∆Pg2 ∆Xg2 ∆Pr2

]T
The input variables, disturbance variables and output variables of all

areas are:
ui = ∆Pci, wi = ∆Pdi, yi = ACEi.

The coefficient matrix of thermal power area is:

A22 =



− 1

Tp2
−Kp2

Tp2

Kp2

Tp2
0 0

K21 0 0 0 0

0 0 − 1

Tt2
0

1

Tt2

− 1

R2Tg2
0 0 − 1

Tg2
0

− Kr

R2Tg2
0 0

1

Tg2
− Kr

Tg2
− 1

Tr2


,

B22 =

[
0 0 0

1

Tg2
0

]T
F22 =

[
−Kp2

Tp2
0 0 0 0

]T
, C22 =

[
KB2 1 0 0 0

]
The coefficient matrix of the ST-thermal power area is:

B11(t) =

[
0 0 0

1

Tg1

Kr1

Tg1
0 0

Kc∆I(t)

TcTg2

]T
,

F11(t) =

[
Kp2

Tp2
0 0 0 0 0 0 0

]T
,

C11(t) =
[
KB1 1 0 0 0 0 0 0

]T
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A11(t) =



− 1

Tp2
−Kp2

Tp2

Kp2

Tp2
0 0

Kp2

Tp2
0 0

K12 0 0 0 0 0 0 0

0 0 − 1

Tt1
0

1

Tt1
0 0 0

− 1

R1T g1
0 0 − 1

Tg1
0 0 0 0

Kr1

R1T r1
0 0 a2 − 1

Tr1
0 0 0

0 0 0 0 0 − 1

Tt3

1

Tt3
0

0 0 0 0 0 0 0 1

a1 0 0 0 0 0 − 1

TcT g3
a3


where,

a1 = −Kc∆I(t)

R1TcTg3
, a2 =

1

Tr1
− Kr1

Tr1
, a3 = −Tc + Tg3

TcTg3
.

The correlation matrix is Aij(2, 1) = −Ksij , Bij = 0.

2.2 System Uncertainty Analysis

Area 1 faces uncertainty primarily due to parameter variations resulting
from the integration of the Solar thermal generator system, where coefficient
matrix parameters fluctuate A11, B11, F11 with light intensity ∆I . In contrast,
area 2, consisting of conventional units, experiences minimal uncertainties.
However, real-time communication among areas via liaison lines introduces
coupling between adjacent systems. Consequently, changes in one area affect
adjacent ones, resulting in fluctuations in the overall power system frequency.

In interconnected power systems, illumination intensity variation is intri-
cate, and uncertainties wield significant influence. To address this, multiplica-
tive uncertainty is transformed into additive uncertainty for processing [8],
forming the basis for constructing a robust distributed controller. This con-
troller is coupled with the LFC model (1) of the ST-thermal interconnected
power system, enabling the expression of the discrete system’s state space as
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follows:
xi(k + 1) = (Âii +∆Âii)xi(k) + (B̂ii +∆Bii)(k)uii(k) + Fiiwi(k)

+
∑
i̸=j

(Aijxj(k) +Bijuj(k) + Fijwj(k))

yi(k) = Ciixi(k)
(2)

where Aii = Âii+∆A,Bii = B̂ii+∆B, Âii, B̂ii represents the mean value
of the uncertain parameters, while ∆A, ∆B denotes the deviation resulting
from uncertainty at k specific moments.

3 Tube-based Distributed MPC

“Tube” can be thought of as a zone delimited by upper and lower limits.
It centers on the state trajectory of the nominal system and the actual sys-
tem [10]. The error in the state variable of the nominal system serves as the
radius determining the deviation of the actual system’s state within this zone,
as illustrated in Figure 2. In this method, all uncertainties are separated from
the actual system. From this, the remaining deterministic part is defined as
the nominal system. The optimal control sequence is obtained by solving
the optimization problem of the nominal system. Thus, the control problem
of the actual system is transformed into the control of the nominal system;
The feedback control law is designed to guide the state of the actual system
to the desired location [11, 12].

The Tube-based Distributed Model Predictive Controller consists of two
main components: DMPC and the distributed feedback control law. Serv-
ing as the core controller group, the distributed model predictive controller
focuses on solving the optimization control problem of the nominal system
online [13]. By leveraging real-time information about the current system
state, DMPC can generate optimal control sequences dynamically. This
enables the system to adjust its state trajectory in response to changes, thereby
achieving dynamic system adjustments. The distributed feedback control law
compensates for deviations between the nominal and actual trajectories. Its
components include the system error feedback signal and feedback values
from state quantities in adjacent areas. This design facilitates communication
and coordinated control between areas, ensuring consistency in system states
and coordinated responses to external disturbances. Subsequently, the DMPC
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Nominal 
trajectory Actual 

trajectory

Original 
constraint

Tightened 
constraint

Figure 2 The concept diagram of Tube.

algorithm and the distributed feedback control law for the nominal system are
described separately [14].

3.1 Design of DMPC Algorithm for Nominal System

The nominal system encompasses all identified components of the actual
system. In the ST-thermal power interconnection system, the sources of
uncertainty comprise the system parameter variation term, and the coupling
effect of adjacent power generation areas: To simplify, all uncertain compo-
nents within the system are disregarded, and the average value of the system
parameter matrix is selected. The nominal system model can be expressed as
follows:

zi(k + 1) = Âiizi(k) + B̂iivi(k) + Fiiwi(k) (3)

where, zi(k) is the nominal system state variable, vi(k) is the nominal system
control variable, zi(k) ∈ X ′

i, vi(k) ∈ U ′
i , X

′
i, U

′
i is a tightened set of con-

straints, wi(k) is the nominal system disturbance variable. In interconnected
power systems: wi(k) = ∆Pdi(k).

The DMPC algorithm is employed to solving the Load Frequency Control
issue within the nominal system. The optimization goal of the local controller
within the system is to regulate the output of the generator set in the local
area to accommodate load fluctuations and uphold the system frequency at
the designated value. The objective function of the nominal system for each
area can be defined as follows:

min Ji(k) =

Np∑
p=1

∥zi(k + p|k)∥2Qi
+

Nc∑
q=1

∥vi(k + q|k)∥2Ri
(4)
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where, Qi, Ri, Si is weight matrix. By resolving the DMPC optimization
problem of the nominal system, the optimal control magnitude of the nominal
system can be acquired devoid of any uncertainty, thereby ensuring the
system state steadily attains the desired value.

The error system delineates the deviation in state quantity between the
actual system and the nominal system:

ei(k) = xi(k)− zi(k) (5)

3.2 Distributed Feedback Control Law

The distributed feedback control law compensates for the error between the
real trajectory and the nominal trajectory by using the system state deviation
and adjacent area information, so as to realize the real-time monitoring
and adjustment of the system state. Simultaneously, integrating the states of
adjacent areas into the feedback control law facilitates effective coordination
between areas.

The algorithm framework of standard Tube DMPC is depicted in Figure 3.
It employs a blend of nominal system and fixed feedback control law, inte-
grating state information from adjacent areas into the feedback term. Under
the standard Tube DMPC policy, the input to the actual system is:

ui(k) = vi(k) +Kiiei(k) +
∑
j ̸=i

Kijxj(k) (6)

Nominal System 
Model for area i

Nominal System 
Controller for area i

Actual system
 Model for area i

iiK

iz

ix

riz

jx
ijK

iv

iu

Tube DMPC

ie

Figure 3 Standard Tube DMPC algorithm framework.
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According to formula (4), (5) and (8), it can be obtained that under the
control of standard Tube DMPC, the error system at the time is as follows:

ei(k + 1) = xi(k + 1)− zi(k + 1)

= (Âii + B̂iiKii)ei(k) + ∆Axi(k) + ∆Bui(k)

+
∑
j ̸=i

(Aij + B̂iiKij)xj(k)

Thus, the dynamics of the error system can be described as:

ei(k + 1) = Φiiei(k) + ωi(k) (7)

where, ei(k) ∈ Ei, Φii = Âii + B̂iiKii, Φij = Aij + B̂iiKij , ωi(k) =
∆Axi(k) + ∆Bui(k) +

∑
j ̸=iΦijxj(k), ωi(k) is the disturbance of the

error system, contains all the uncertain parts of the system. For ST-thermal
interconnected power systems:

area 1: ωi(k) = ∆Axi(k) + ∆Bui(k) +
∑

j ̸=iΦijxj(k)

area 2: ωi(k) =
∑

j ̸=iΦijxj(k)

The feedback gain value Kii affects the stability of the system, which can
be obtained by solving the following formula:

Kii = (Ri +BT
ii P̂iBii)

−1
BT

ii P̂iAii

P̂i = AT
iiP̂iAii +Qi −AT

iiP̂iBii(Ri +BT
ii P̂iBii)

−1
BT

ii P̂iAii (8)

Under the combined influence of DMPC and the feedback control law,
the system’s dynamic error can be constrained within a Robust Positively
Invariant Set: Ei, thereby confining the actual system’s state within a Robust
Positively Invariant Set with the nominal system’s state trajectory as its center
and size. To alleviate the conservatism of standard Tube DMPC, according
to Equation (7), the disturbance variable of the error subsystem needs to
be updated at each instance based on the state and input variables from the
previous instance. Consequently, the disturbance set is updated. Set the initial
time error system Wi(k) = ∆AXi +∆BUi.

To streamline the solution process for the Robust Positively Invariant
Set amidst parametric uncertainties in interconnected power systems, a
multiplication-variable-addition transformation is implemented. While this
transformation simplifies the construction of the robust invariant set, it also
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enlarges the uncertainty set. Due to the fixed-gain feedback control law
employed in standard Tube DMPC, the expanded uncertainty set dimin-
ishes the controller’s performance, and in some cases, renders finding a
feasible solution unattainable, thereby hindering the achievement of control
objectives. Additionally, the operational requirements of power systems are
intricate, particularly when there are frequent fluctuations in light intensity,
necessitating coordinated output adjustments between solar thermal units
and thermal power plants to regulate frequency. Conversely, during minimal
fluctuations in light intensity, greater power output from photothermal units
is required to accommodate load changes, thereby reducing the output of
thermal power units and lowering carbon emissions. To address these chal-
lenges, a Hybrid Multi-Tube DMPC algorithm is proposed to enhance control
performance and bolster system stability.

Hybrid Multi-Tube DMPC is a strategy that combines multiple standard
Tube DMPC to more comprehensively adapt to the dynamic characteristics
of the controlled object. Its algorithm framework is shown in Figure 4.
In this control strategy, the error system is decomposed into multiple error
subsystems. By designing distributed feedback control laws with different
gain values, robust positive invariant sets satisfying different control require-
ments are constructed, and the weights of different tubes are flexibly adjusted
according to the operating characteristics of the system, so as to achieve more
accurate control of the controlled object.

Nominal System 
Model for area i

Nominal System 
Controller for area i

Actual system
 Model for area i

[1]
iiK

iz

ix

riz

jx
ijK

iv

iu

Tube DMPC

ie

[1]
ii

[2]
ii

[ ]j
ii

[2]
iiK

[ ]j
iiK

[ ]j
i

[1]
i

[2]
i

[1]
ii

[ 2]
ii

[ ]j
ii

Figure 4 Hybrid Multi-Tube DMPC algorithm framework.
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The error system is ei(k) decomposed into multiple error subsystems with

weight coefficients of λ[j]
ii :

ei(k) =

M∑
j=1

λ
[j]
i ε

[j]
i (k) (9)

where 1 ≤ j ≤ M ,
∑M

j=1 λ
[j]
i = 1 Select M different feedback controller

gains K
[1]
ii ,K

[2]
ii , . . .K

[M ]
ii , each K

[j]
ii corresponding to an error subsystem

ε
[j]
ii (k), the dynamic model of the error subsystem can be written as:

ε
[j]
i (k + 1) = (Âii + B̂iiK

[j]
ii )ε

[j]
i (k) + ωi(k) (10)

The feedback control law comprises a standard online combination of
tubes with various gain values. To optimize the control effectiveness, the
weights of different Tube models can be adjusted flexibly to identify the most
suitable control law. The input to the actual system is:

ui(k) = vi(k) +

M∑
j=1

λ
[j]
i K

[j]
ii ε

[j]
i (k) +

∑
j ̸=i

Kijxj(k) (11)

Hybrid Multi-Tube DMPC customizes various feedback controller gains
to suit diverse control needs, dynamically tunes the weights of different Tube
models based on the system’s operational state, fully exploits the benefits of
Hybrid Multi-Tube approaches, enhances the system’s flexibility to adapt to
real-world changes, and fortifies the robustness of the control algorithm in
the power system.

As per the stability theorem, it’s essential to ensure the stability of
the error subsystem under various feedback control laws, necessitating that
K

[j]
ii ,Kij meets the requirements [15]:

∑
j ̸=i

∞∑
r=0

∥(Âii + B̂iiK
[j]
ii )

r
iiΦij∥∞ < 1 (12)

Solving the Robust Positive Invariant Set
The specific process for solving robust invariant sets is as follows:

First, the perturbation set of the error system is transformed into the follow-
ing: Wi ≜ {ωi ∈ Rn|fT

i ω = gi}. According to the definition of the robust
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positive invariant set approximation, α depends on s. For any s, α(s) =

max sup
(Φs

ii)
T fi

gi
. Then, let α = 0 be such that it attains the minimum value

of s satisfying the approximation of the robust positive invariant set. When
the values of the two satisfy ⊕s−1

j=0Φ
j
iiWi ⊆ αs(1− α)Bp(η), α, s represents

the solution of the robust positive invariant set. The final robust invariant set is
obtained by substituting them into Equation (11), where Bp(η) = {∥xi∥p =

η} and η are preset parameters reflecting the approximation accuracy of the
invariant set.

According to Equations (11) and (12), it can be obtained that under
mixed multi-tube DMPC control, the robust positive invariant set of system
error is [16]:

Ei = (1− α)−1
s−1⊕
j=0

Φj
iiW

E
[j]
i = (1− α)−1

s−1⊕
m=0

(Âii + B̂iiK
[j]
ii )

mW (13)

where E′
i is the robust positive invariant set of the regional system, ⊕

represents the set Minkowski and where Θ represents the Pontriagin set
difference.

3.3 Algorithm Flow

The control goal of the nominal system becomes to solve the appropriate v, λ
so that the cost function is minimized:

zi(k + 1) = Âiizi(k) + B̂iivi(k) +D∆Pdi

zi(k) = xi(k)

zi(k + p|k) ∈ X ′
i = XiΘE′

i

vi(k + q|k) ∈ U ′
i = UiΘ

(
j=1M⊕

K
[j]
ii λ

j
iiE

[j]
i ⊕KijXj

)
(14)

The algorithm flow of Hybrid Multi-Tube distributed model predictive
control is as follows:

Offline section:
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The weight coefficient matrix Qi, Ri is given, M gains Kii are obtained for
each area, and Kij satisfying the condition is calculated.

Online section:

(1) Set the initial parameters of the initial moment: zi(0) = xi(0)
(2) Each subsystem exchanges information about each other xi, zi
(3) According to the disturbance wi of each subsystem at this time, the

corresponding robust invariant set E′
i is obtained, and the optimization

problem (14) is solved to obtain the control quantity vi(k) and the
appropriate λ of the nominal system

(4) According to the feedback control law, the control quantity of the actual
system ui(k) is obtained and input into the system. At the next moment
k + 1, repeat the above steps.

4 Simulated Analysis

In the proposed light-heat-thermal interconnected power system, illustrated
in Figure 1, Tube DMPC is employed for simulation research. The proposed
control algorithm is compared with DMPC and standard Tube DMPC to
validate its effectiveness.

Referring to the actual fluctuation of light intensity, the following simu-
lation scenarios are set:

Case 1: With constant light intensity and load disturbances occurring in the
system, the load frequency of the interconnected power system is controlled.
This case verifies that robust distributed predictive control can maintain
effective control even when parameters remain unchanged.

Case 2: The load frequency control process of the interconnected power
system when light intensity fluctuates randomly within a certain range and
load disturbances occur in the system.

The sampling time is set to Ts = 0.01s, and the prediction and control
time domains are set to Np = 5, Nc = 3. The values of other param-
eters are detailed in Table 2, with weighted matrices Qi and Ri:Q1 =
diag(1000 10 0.001 0.001 0.001), R1 = R2 = 0.01

Q2 = diag(1000, 10, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001).

The gain value of the standard Tube DMPC feedback control law can
be obtained by Equation (10), and the nominal system solves the following
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Table 2 Parameters and values of the power system
Kpi = 120Hz/p.u.MW,Tpi = 20s, Tgi = 0.08s, Tti = 0.3s

Kri = 0.5Hz/p.u.MW,Tri = 10s,Ri = 2.4Hz/p.u.MW

Kc = 1.8Hz/p.u.MW,Tci = 1.8s,Ksij = 0.545p.u.MW

optimization problems:

min Ji(k) =

Np∑
p=1

∥zi(k + p|k)∥2Qi
+

Nc∑
q=1

∥vi(k + q|k)∥2Ri

zi(k + 1) = Âiizi(k) + B̂iivi(k) + Fii∆Pdi(k), zi(k) = xi(k)

zi(k + p|k) ∈ X ′
i = XiΘEi

vi(k + q|k) ∈ U ′
i = UiΘ(⊕KiiEi ⊕KijXj)

Ei = (1− α)−1
s−1⊕
m=0

(Âii + B̂iiKii)
mW (15)

The Hybrid Multi-Tube DMPC provides three distinct sets of controller
gain values, denoted as K [j]

ii ,Kij . The value K [1]
ii , derived from formula (11),

is applicable to standard scenarios where each system adjusts unit output
in the area to accommodate load changes. The value K

[2]
ii is suitable for

scenarios with frequent changes in light intensity, where the system needs
to promptly adjust the output of the solar thermal unit to mitigate frequency
fluctuations and coordinate thermal power output to maintain grid frequency
stability. On the other hand, the value K

[3]
ii is appropriate for releasing more

power from the photothermal unit in response to minor fluctuations in light
intensity. Refer to Table 3 for the gain matrix values in each area. In various
scenarios, the nominal system solves the control problem (14), adjusting
different Tube weights online to dynamically adapt to the power system’s
characteristics.

By utilizing the MPPT toolbox in MATLAB to solve formula (14), the
corresponding robust positive invariant set can be obtained, which is then
integrated into the feedback controller (11) to facilitate system control.

4.1 Constant Light Intensity

With constant light intensity, a load disturbance of 0.01p.u. is applied to
area 1 at t = 30s, and a load disturbance of −0.015p.u. is applied at



Load Frequency Control Strategy of Interconnected Power System 651

Table 3 Values of the power system gain matrix

K
[1]
11 = [−0.1585, 0.5238,−0.1705, 0.4141,−0.3607,−0.3324,−0.5345,−0.0427]

K
[2]
12 = [−0.1900, 0.5757,−0.2514, 0.4209,−0.3250,−1.8280,−1.4698,−0.8938]

K
[3]
13 = [−11.3595,−1.8527, 2.0845, 0.1421,−0.2158, 2.0349,−2.6191,−12.8840]

K12 = [−0.0099, 0.0099,−0.0099, 0.0094,−0.01,−0.01, 0.0094, 0.0099]

K
[1]
22 = [−655.79 301.16 −283.47 5.16 −40.11]

K
[2]
22 = [−25.14 24.06 −10.02 6.04 −1.00]

K
[3]
22 = [−1.00 6.04 −10.02 24.06 −25.14]

K21 = [−0.0099 0.0099 −0.0099 0.0094 −0.01]

t = 80s. DMPC and Hybrid Multi-Tube DMPC are employed to control
the load frequency of the interconnected power system. The effectiveness of
load frequency control in the power system is verified while ensuring that the
design of the Hybrid Multi-Tube does not influence parameter determination.
The frequency response process of each area is outlined below.

With constant light intensity, the power output of the photothermal unit
remains stable, resulting in zero frequency deviation across each area of the
power system. However, at 30 seconds, an increase in the load of area 1
causes a system power imbalance, leading to significant frequency fluctua-
tions in area 1. This imbalance also triggers frequency deviations in area 2
due to inter-area connections via liaison lines. Concurrently, units in each
area coordinate their actions to collectively respond to the load change.

As depicted in Figures 5 and 6, under the Hybrid Multi-Tube DMPC
strategy, the system’s frequency deviation stabilizes at ±0.006Hz. This
demonstrates an equivalent control effectiveness to DMPC, ensuring the sta-
bility of the power system. In essence, Hybrid Multi-Tube DMPC maintains
optimal control effectiveness even when parameters remain unchanged.

4.2 Light Intensity Varies Randomly

The random variation curves of light intensity are illustrated in Figure 7.
At t = 30s, a load disturbance of 0.01p.u. is applied to area 1, followed by
a load disturbance of −0.015p.u. at t = 80s. These disturbances were intro-
duced to area 1 to assess the superior control efficacy of Hybrid Multi-Tube
DMPC when power system parameters undergo changes.

Figures 8 and 9 depict the comparison of frequency response curves
across different areas of the mixed multi-tube DMPC and standard Tube
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Figure 5 Frequency response curve of area 1 with no change in light intensity.

Figure 6 Frequency response curve of area 2 with no change in light intensity.

DMPC under parameter variations. Throughout the interval from 0 to 30 sec-
onds, the loads in each area remain constant. However, due to the non-
empty disturbance invariant set of the error system, which is continuously
updated based on the system state, the system frequency deviation undergoes
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Figure 7 Random variation curve of light intensity.

Figure 8 Frequency response curve of area 1 under random changes in light intensity.

continuous changes. The regional controllers collaborate to regulate the out-
put power in each area and collectively participate in frequency modulation
to meet the load demand.

At t = 30s, the load in area 1 experiences a 0.01p.u. increment, leading to
a significant fluctuation in the power grid frequency. Through inter-regional
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Figure 9 Frequency response curve of area 2 under random changes in light intensity.

communication facilitated by the liaison line, the output of the thermal power
area also increases proportionally. Collaboratively suppressing the impact of
disturbances with the output of the light-thermal power area, the frequency
deviation of each area is controlled within ±0.005. Notably, as depicted in
Figures 8 and 9, the system frequency exhibits frequent fluctuations under
the control of standard Tube DMPC, with significant fluctuations observed
during the latter stages of the frequency modulation process.

In contrast, the frequency response curve of the Hybrid Multi-Tube
DMPC control strategy proposed in this paper exhibits less fluctuation, faster
adjustment speed, and better tracking effect, thereby enhancing the robustness
of the control algorithm in the interconnected power system.

5 Conclusion

This paper proposes a load frequency control strategy based on Tube DMPC
to address the uncertainties in system parameters arising from changes in
light intensity. Initially, the LFC model for the interconnected power system
spanning two areas, namely photothermal and thermal power, is established.
The photothermal system governs output power by adjusting the turbine
valve opening and actively participates in system frequency modulation. The
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variations in model parameters resulting from fluctuations in illumination
intensity are treated as uncertainty disturbances.

To mitigate solving complexity, parameter uncertainties are transformed
into additive uncertainties by estimating the mean value and maximum devi-
ation of the parameters. The controller adopts a combination of DMPC and
feedback control law: DMPC handles the control of the undisturbed system
and determines the optimal solution in response to load variations in the
power system. The feedback control law employs a standard Tube online
combination with varying gain values, allowing for flexible adjustment of
the weights of different Tube models to identify the optimal control law.
Furthermore, the design includes a state feedback component for adjacent
areas to facilitate inter-regional communication, enabling the actual system
state to continually track the set value.

Simulation results demonstrate that the Hybrid Multi-Tube DMPC
effectively mitigates frequency fluctuations in the power system, resulting
in smoother frequency response curves and demonstrating strong control
efficacy.
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