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Abstract

With the installed capacity of the renewable energy power generation is grow-
ing at a high speed, a large number of the renewable energy is connected to
the grid, the energy problem has been solved to a large extent, but the ensuing
problems can not be ignored, the first is the consumption of the renewable
energy, which is followed by the stability problem of the power system, and a
multi-regional integrated energy system (MRIES) is constructed to solve the
problem. In view of the wind power uncertainty, the absorption treatment is
carried out by the equipment layer and the optimization layer respectively. A
hybrid energy storage system (HESS) is introduced in the equipment layer
to suppress the influence of the wind power uncertainty on the system sta-
bility. A combination of the convolutional filtering algorithm, the Improved
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
algorithm and the fuzzy control algorithm is introduced in the optimization
layer to develop the charging and discharging strategy of the HESS. With the
strategy, the impact of the electric power fluctuations on the power system
during the optimization process can be reduced largely. Then, on the basis of
fully considering the energy coupling in different equipments, a collaborative
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optimization model of the MRIES is constructed. And the integrated demand
response model considering the time-of-use electric price is introduced in
the load side. Finally, the improved Beluga optimization(IBWO) algorithm
is developed to optimize the model. The optimization results show that the
IBWO algorithm plays a good optimization effect both in the participation
of energy supply equipments and the economy, plays a collaborative opti-
mization role in the MRIES and ensures the stability of the whole power
system.

Keywords: Multi-regional integrated energy system, wind power uncer-
tainty, hybrid energy storage, collaborative optimization, improved beluga
whale optimization algorithm.

1 Introduction

In today’s situation of the rapid development, the energy shortage problem
and the renewable energy consumption problem has become more important
that needs to be solved in our country, and the integrated energy system
(IES), as a research hotspot of the domestic and foreign experts, has become
the key to solve energy problems [1]. Since the output of the renewable
energy is random and intermittent, we must pretreat it firstly, and only in this
way can the stability of the IES be guaranteed [2]. Considering the spatial
correlation of the wind power uncertainty, an adaptive robust collaborative
optimization method for energy reserve was developed [3]. The study in
Ref. [4] used the chance constraints to cope with the wind power uncertainty.
And a method that described the multiple uncertainties of the wind power
was proposed in Ref. [5].

Of course, in addition to ensuring the stability of the energy output power,
we should also regulate the user’s energy on the load side as much as possible,
so as to avoid the imbalance. The study in Ref. [6] analyzed the typical
seasonal multi-energy load curve of various functional zones in a compre-
hensive energy system in North China, fully explored the independent energy
demand and energy use characteristics of each region in the system and
the complementary relationship between regions, and designed differentiated
multi-energy equipment planning alternatives in different regions, so as to
reduce the scale of the multi-regional collaborative planning effectively. And
a demand response model concluding the incentive price and the demand
response coefficient was proposed in Ref. [7]. The study in Ref. [8] pro-
posed a new unified spatio-temporal cooperative scheduling framework for
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trans-regional IESs, which could cope with the renewable energy uncertainty.
And a risk assessment method of the IES planning scheme considering the
conditional risk value was developed [9].

With the study of the source-load uncertainty, more and more studies
begin to consider source-load uncertainty comprehensively [10]. To describe
the probability distribution of the wind output power accurately, the sce-
nario analysis method in stochastic optimization was developed to cope
with the uncertainty of the load at first, and then the two-stage robust
optimization method was developed to deal with the uncertainty of the
price-type demand-side response to realize the cooperative scheduling of
the source, the load and the storage [11]. And a nonlinear interval number
method was used to characterize the source-load uncertainty effectively in
Ref. [12]. In order to coordinate the flexible demand response and the
multiple renewable energy generation uncertainty, a double-layer model for
a community IES was proposed in a multi-stakeholder scenario [13]. And
a hybrid robust interval optimization method was developed for the IES
planning with uncertainties in Ref. [14]. Aiming at the uncertainties of multi-
operator behaviors in a regional IES, the fuzzy parameters were introduced
to estimate the source-load uncertainty considering the fuzzy opportunity
constraint programming [15]. To solve the renewable distributed energy
generation uncertainty effectively, opportunity constraints were used and a
quantile prediction method was developed based on the gradient enhanced
regression tree [16]. Considering the load forecasting uncertainty, a multi-
objective stochastic optimization method was proposed based on multiple
uncertainties [17].

Besides, there were some literatures to study the correlation between
the source uncertainty and the load uncertainty. In Ref. [18], by using the
scene tree structure, 32 probabilistic random scenarios were generated to
simulate the correlation and uncertainty among photovoltaic generator sets,
wind turbines and multiple energy loads. And the study in Ref. [19] proposed
a method that considerd the uncertainty relationships between the source and
the load, besides, the Wasserstein deep convolution generation was used to
capture the correlation between uncertainties.

It is the so-called collaborative optimization of the multi-regional inte-
grated energy system(MRIES) that carries out the power distribution of the
load for multiple systems and multiple energy equipments to achieve a good
control effect. The study in Ref. [20] proposed an improved multi-agent depth
deterministic strategy gradient method, which used the centralized training
and the decentralized execution framework to improve the stability of the
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MRIES effectively. A cooperative optimization strategy of the regional IES
was developed based on the multi-agent consistency, which could cope with
the uncertain effects of various energy generation and demand flexiblies [21].
In order to improve the operation flexibility of the IES, a collaborative
operation optimization strategy of the IES was developed [22]. And a multi-
agent operation strategy was proposed in Ref. [23], including energy retailers,
suppliers and users. The study in Ref. [24] introduced a low-carbon operation
strategy of the MRIES based on the mixed game theory, and established
an interactive mechanism of the multi-agent low-carbon economy operation.
The cascaded storage system and multi-time scale operation strategy were
developed to promote the coordinated control capability of the IESs [25].
The study in Ref. [26] proposed an operation optimization strategy based on
the non-dominated sorting genetic algorithm to achieve the efficient energy
utilization better. And a multi-time scale coordinated control strategy was
adopted in Ref. [27], it can be well coupled with the system, and solve the
problem effectively that the cold cogeneration equipments, energy storage
equipments and power storage equipments need to operate under different
time scales. The study in Ref. [28] designed a differential evolution algorithm
based on the reinforcement learning, so that the optimal mutation strategy
and the related parameters could be determined adaptively. And a two-layer
cooperative optimization method consisting of upper optimization configu-
ration and lower optimization operation was proposed in Ref. [29]. Besides,
a multi-layer control strategy based on component response state partition-
ing system was proposed in Ref. [30]. The study in Ref. [31] developed
an adaptive adjustment strategy considering the time characteristics, which
greatly improved the optimization reliability and the ability to manage the
wind power uncertainty in the IES. The study in Ref. [32] adopted a multi-
scale optimization strategy based on the the source and the load forecasting,
which improved the energy utilization rate of the regional IES significantly.
The study in Ref. [33] proposed a multi-time scale optimization operation
strategy of the IES considering the demand response mechanism. And a
Stackelberg dynamic price strategy was established in Ref. [34] in which the
IES is the upper leader, the mixed charging station is the lower follower, and
the electricity price is the sole interactive information. The study in Ref. [35]
introduced a unified spatio-temporal cooperation framework for the IESs, in
which the coordination of the multi-energy coupling and the multi-agent sys-
tem energy sharing took into account. The study in Ref. [36] developed a new
two-layer stochastic optimization framework considering multiple scenarios
to optimize the IES capacity and operation. A carbon capture device operation
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strategy based on the stepped carbon penalty response was proposed, which
solved the economic problem of the carbon capture in the IES [37]. The study
in Ref. [38] established a distributed multi-agent collaborative optimization
model, and adopted the alternating direction multiplier algorithm to solve
its two sub-problems, thus protecting the privacy of each agent effectively.
And the study in Ref. [39] proposed an improved action selection strategy to
enhance the local optimization by introducing the “offset” according to the
probability in the training process.

This paper constructs a MRIES including electricity, gas, cold, thermal
and storage. Firstly, different devices are classified according to their energy
coupling characteristics, and then the different energy subsystems are mod-
ularized according to their classifications. Secondly, in view of the wind
power uncertainty, a new approach is carried out both in the equipment layer
and the optimization layer respectively. In the equipment layer, the hybrid
energy storage system (HESS) is introduced to suppress the influence of the
wind power uncertainty on the system stability. In the optimization layer, the
convolutional filtering algorithm, the Improved Complete Ensemble Empiri-
cal Mode Decomposition with Adaptive Noise (ICEEMDAN) algorithm and
the fuzzy control algorithm are combined to formulate the charging and
discharging strategy of the HESS. Finally, under the circumstance of fully
considering the energy coupling in different devices, a collaborative opti-
mization model of the MRIES is constructed. On the load side, a integrated
demand response model considering the time-of-use (TOU) electricity price
mechanism is introduced. At last, the Improved Beluga Whale Optimization
(IBWO) algorithm is adopted to optimize the model. Compared with the
Beluga Whale Optimization (BWO) algorithm, the improved strategies is as
follows:

(1) The Tent chaotic mapping strategy is adopted to improve the quality of
the initial solution of the population.

(2) The adaptive T-distribution mutation strategy is adopted to improve
population diversity and optimization ability.

(3) The Gaussian walk strategy is adopted to further improve the global
search ability of the algorithm and avoid the algorithm falling into the
local optimal solution.

The structure of this paper is as follows: Section 2 constructs the MRIES
model including the electric system, the thermal system, and the cold system,
makes constraints on the different energy power of the MRIES and introduces
a integrated demand response model. Section 3 proposes a hybrid energy
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storage solution strategy to solve the wind power uncertainty. Section 4
studies a collaborative optimization strategy based on the MRIES and uses
the IBWO algorithm to coordinate it, Section 5 are the results and discussion
and the Section 6 is the conclusion.

2 Model of the MRIES

As the most important energy system and structure in the future energy field,
the modular and fine modeling of the electric-thermal-cold IES is the basis for
realizing the energy utilization, the energy saving and the emission reduction.
And all of the energy supply equipments are modeled from three aspects:
electricity, thermal and cold. And a comprehensive model of the electric-
thermal-cold energy system will be built by fully reflecting its characteristics.

In this chapter, in addition to the five kinds of electric load power supply
devices including the wind turbines, the photovoltaic cells, the fuel cells,
the gas turbines and the ORC waste thermal generation devices, three kinds
of thermal load power supply devices including the thermal pumps, the
gas boilers and the gas turbines, and two kinds of cold load power supply
devices including the absorption refrigerators and the electric refrigerators
are modeled, various power constraints of the whole MRIES, including the
electric power, the thermal power, the cold power, the energy networks
interaction power and the grid interaction power, are modeled as well. Finally,
an integrated demand response model based on the TOU electricity price
mechanism is established. The load power supply structure of the IES in each
region is shown in Figure 1:

2.1 Electric System Model

2.1.1 Wind turbine model
The wind turbine work by capturing kinetic energy in the air through the
blades and converting mechanical energy into electricity through the wind
turbine. When the wind wheel coefficient, blade area and air density are
unchanged, the fan output power is only related to the wind speed. The
simplified mathematical model is as follow:

Pwt(v) =


0, 0 ≤ v < vci

Pr
v2 − v2ci
v2r − v2ci

, vci ≤ v ≤ vr

Pr, vr < v ≤ vco
0, vco < v

(1)
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Figure 1 Load power supply structure diagram of IES in each region.

In formula (1): v represents the wind speed at the height of air blower hub,
vci, vco, vr represent the cut in, cut out and rated wind speed respectively, and
Pr represents the rated power. And in this paper, the value of vci, vco, vr is 3,
15, and 6, in m/s. The Pr value is 1500, in MW.

The power constraint of the wind turbine is as follow:

Pwt ≤ Pwt(v) ≤ Pwt (2)

In formula (2), Pwt, Pwt represent the upper and lower power limit of the
wind turbine respectively.

2.1.2 Photovoltaic cell model
The power of the photovoltaic cell is affected by the temperature of the
photovoltaic panels and the light intensity, the output power formula of
photovoltaic panels is as follow:

Pst = AstRstηst (3)
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In formula (3), Ast represents the area of the photovoltaic power genera-
tion panel, which is 25000 in this paper, ηst represents the power generation
efficiency coefficient of the photovoltaic cell, and the value in this paper is
0.16, Rst represents the light intensity of the photovoltaic power generation
panels at different times, it can be obtained by the following formula:

Rst = R/1000 (4)

In formula (4), R represents the actual light intensity at different times.
The power constraint of the photovoltaic cell is as follow:

P st ≤ Pst ≤ P st (5)

In formula (5), P st, P st represent the upper and lower power limits of the
photovoltaic cell respectively.

2.1.3 Fuel cell model
The fuel cell consumes hydrogen to produce electricity, and the power
expression is:

PFC
t = α · V FC

H2
(6)

In formula (6), PFC
t , V FC

H2
represent the electric output power and the

hydrogen volume respectively, and α is the energy conversion coefficient.
The power constraint of the fuel cell is as follow:

0 ≤ PFC
t ≤ 3500 (7)

2.1.4 Gas turbine model
In addition to meeting the electric energy demand, the gas turbine need to
serve as an auxiliary energy source to meet the thermal energy demand. The
mathematical model is shown as follow:

PGT
t = V GT

t ηGTβ/∆t (8)

HHRB
t = PGT

t ηHRB (1− ηGT )/ηGT (9)

In formula (8) and (9), PGT
t represents the electric output power, V GT

t

represents the gas consumption, and ηGT represents power generation effi-
ciency, which is 0.3 in this paper, β represents the calorific value of the natural
gas, which is 9.97 kWh/m3 in this paper. HHRB

t represents the thermal output
power of the waste thermal boiler, and ηHRB represents the waste thermal
recovery efficiency, the value in this paper is 0.8.
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The power constraint of the gas turbine is as follow:

0 ≤ PGT
t ≤ 5500 (10)

2.1.5 ORC waste thermal power generation device model
Compared with the conventional steam Rankine cycle, the ORC waste ther-
mal power generation device has a higher efficiency in recovering the waste
thermal, which can be converted into more electrical energy. The power
expression is as follow:

PORC
t = HORC

t ηORC (11)

In formula (11), PORC
t and HORC

t represent the electrical output power
and thermal output power of the ORC waste thermal power generation device
respectively, ηORC is the thermal-electric energy conversion coefficient,
which is 0.18 in this paper.

The power constraint of the ORC waste thermal power generation device
is as follow:

0 ≤ PORC
t ≤ 1200 (12)

2.2 Thermal System Model

2.2.1 Thermal pump model
In this paper, the air source thermal pump is selected as a comprehensive
energy system thermal pump device, and the air is used as the thermal source
of the thermal pump, which has multiple advantages: inexhaustible, unlimited
and free access. In addition, the air source thermal pump is more convenient
in both the installation and the use. The working characteristic of the air
source thermal pump device is as follow:

HEHP
t = PEHP

t λCOP (13)

In formula (13), HEHP
t and PEHP

t represent the thermal output power
and the electric input power of the thermal pump device respectively, and
λCOP is the electric-thermal energy conversion coefficient of the thermal
pump device, which is 2.5 in this paper.

The value of the thermal pump is that when the IES has superfluous
renewable energy power, the gas turbine power can be reduced, and the
thermal pump device is used to compensate for the partial reduction, while
consuming part of the electric energy. By using a thermal pump device to
change the ratio of electrical load and thermal load, the problem of wind
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curtailment in the IES is solved, and the purpose of reducing the energy
storage devices’ repeated charging and discharging behaviors and saving the
natural gas consumption is also achieved.

The power constraint of the thermal pump is as follow:

0 ≤ HEHP
t ≤ 3500 (14)

2.2.2 Gas-fired boiler model
The gas-fired boiler obtains the hot water or the high-temperature water vapor
by burning natural gas, which provides part of the thermal energy. Under
normal operating conditions, the thermal efficiency is very stable and can
reach the 90% above. Its mathematical expression is as follow:

HGB
t = V GB

t ηGBβ/∆t (15)

In formula (15), HGB
t represents the thermal output power of the gas

boiler, V GB
t represents the intake air value, ηGB represents the thermal

efficiency under normal operating conditions, and the value in this paper is
0.8, β represents the calorific value of the natural gas.

The power constraint is as follow:

0 ≤ HGB
t ≤ 4000 (16)

2.3 Cold System Model

2.3.1 Absorption refrigerator model
In this paper, the lithium bromide absorption refrigerating machine is used as
the absorption refrigeration equipment, it can convert the thermal energy into
cold power, and the thermal-cold conversion efficiency is generally between
(1,2). The mathematical model is shown as follow:

CLB
t = HLB

t COPLB (17)

In formula (17), CLB
t represents the cold output power of the absorption

refrigerator, HLB
t represents the thermal input power, and COPLB refers to

the thermal-cold conversion coefficient, which is 1.5 in this paper.
The power constraint of the absorption refrigerator is as follow:

0 ≤ CLB
t ≤ 3500 (18)
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2.3.2 Electric refrigeration unit model
In this paper, the same type of electric chillers are used in the electric
refrigeration unit, the mathematical model is shown as follow:{

CEC
t = ηecP

EC
t

PEC
min ≤ PEC

t ≤ PEC
max

(19)

In formula (19), PEC
t represents the electric input power of the electric

refrigerator unit, CEC
t represents the cold output power, ηec is the electric-

cold energy conversion coefficient, which is 2.8 in this paper, and PEC
min and

PEC
max represent the minimum value and the maximum value of the electric

power respectively.
The power constraint of the electric refrigeration unit is as follow:

0 ≤ CEC
t ≤ 2200 (20)

2.4 Power Constraints of MRIES

2.4.1 Electrical power constraints
The IES of each region carries out the load supply through five parts mainly:
wind power, photovoltaic power, fuel cell power, gas turbine power and ORC
waste thermal generation power, and at the same time the thermal pump
devices and the electric refrigeration units consume the electric power. The
electrical power constraints are as follows:

Eload = PGT
t + PFC

t + PORC
t + Pwt + Pst + Pgrid

+ Pmult − PEC
t − PEHP

t (21)

PEC
t = CEC

t /ηEC (22)

PEHP
t = HEHP

t /λCOP (23)

Formula (21) represents the power balance constraint, Eload represents
the electrical load demand, PGT

t represents the gas turbine electric power,
and PFC

t represents the fuel cell electric power, PORC
t represents the ORC

waste thermal power generation device electric power, Pwt represents the
wind power, Pst represents the photovoltaic power, Pgrid represents the grid
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interaction power between each regional IES and the power grid, and in
this paper, it represents the power which is purchased by each regional IES
from the power grid, Pmult represents the interactive power, PEC

t represents
the electric input power of the electric refrigeration unit, PEHP

t represents
the thermal pump power, CEC

t represents the refrigeration power of the
electric refrigeration unit, ηEC represents the electric-cold energy conversion
efficiency of the electric refrigeration unit, HEHP

t represents the thermal
output power of the thermal pump and λCOP represents the electric-thermal
energy conversion efficiency of the thermal pump device.

2.4.2 Thermal power constraints
In the IES of each region, the thermal load in each region is mainly supplied
through three parts: the thermal pump power, the gas boiler power and the
gas turbine power, meanwhile, the ORC waste thermal power generation
devices and absorption chillers consume the thermal power. The thermal
power constraints are as follows:

Hload = HHRB
t +HEHP

t +HGB
t −HORC

t −HLB
t (24)

HHRB
t = PGT

t ηHRB (1− ηGT )/ηGT (25)

HORC
t = PORC

t /ηORC (26)

Formula (24) represents the thermal power balance constraint, Hload

represents the thermal load demand, HHRB
t represents the waste thermal

boiler power in the gas boiler, HEHP
t represents the thermal pump power,

HGB
t represents the gas boiler power, HORC

t represents the thermal con-
sumption power of the ORC waste thermal generation, and HLB

t represents
the absorption refrigerator power. PGT

t denotes the electric power of the gas
turbine, ηHRB denotes the recovery efficiency of the waste thermal boiler,
and ηGT denotes the generation efficiency, HORC

t and PORC
t represents the

thermal consumption power and the generation power of the ORC waste
thermal power generation device respectively.

2.4.3 Cold power constraint
In the IES of each region, the cold load in each region is mainly supplied by
two parts: the absorption refrigerator and the electric refrigerator. The cold
power constraint is as follow:

Cload = CLB
t + CEC

t (27)
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Formula (27) represents the cold power balance constraint, CLB
t rep-

resents the absorption refrigerator power, and CEC
t represents the electric

refrigerator unit power.

2.4.4 Constraint on the energy grid interactive power
In addition to the energy interaction between the equipments in each regional
IES, the energy interaction between the energy networks in each regional IES
also exists. Due to the different characteristics of each energy source, this
paper considers the electricity interaction between the energy networks, and
the constraint of the energy network interactive power is as follow:

−5000 ≤ Pmult ≤ 2000 (28)

Formula (28) represents the energy networks interaction power con-
straints of the IES in each region, Pmult represents the electricity interaction
power between energy networks.

2.4.5 Constraint on the interactive power of the power grid
In addition to the energy interaction between the equipments in each regional
IES and the energy interaction between each regional IES, when the renew-
able energy surplus or the power load is too large, the entire MRIES has
excess or insufficient power, the entire MRIES requires to interact with the
power grid, supplying power to the power grid or purchasing power from the
power grid, the constraint on the interactive power of the power grid is as
follow:

−5000 ≤ Pgrid ≤ 2000 (29)

Formula (29) represents the electric power interaction constraint, Pgrid

represents the interactive power between the entire MRIES and the power
grid.

2.5 Integrated Demand Response Model

The load of different energy systems has its own unique characteristics.
According to the different characteristics of the load, we can formulate the
corresponding demand response mechanism. There are three kinds of the
energy loads in the IES of each region. Since the thermal load and the cold
load are not easy to transmit and save, we have developed the TOU electricity
price mechanism according to the energy characteristics of the electricity
load and the historical load data, we have developed the corresponding
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Figure 2 TOU electricity price.

TOU electricity price mechanism. Through the integrated demand response
mechanism, we can promote the users to change their reducible load demand.
The reducible load refers to a class of the loads that are more sensitive to
the changes of the electricity price. When the electricity price changes, the
user’s reducible load demand will change greatly. When the electricity price
become high, the demand of the load will be greatly reduced, so it is called the
reducible load. The TOU electricity price in the integrated demand response
is shown in Figure 2:

3 Hybrid Energy Storage Solution Strategy

The wind power data which is used in this paper is from the IES simulation
platform of Tsinghua University, and the data comes from the typical day of
a large wind farm in a southwest region in 2023, and the typical days are
70 days. Therefore, it is taken as a data reference to carry out the simulation
experiment in this section. The simulation results are shown below.

First, the convolutional filtering algorithm is used to smooth the wind
power data, the difference value between the wind power data before and
after smoothing is the upper power limit that the HESS needs to undertake,
we takes region three as the example and its specific results are shown in
Figures 3 and 4 below:

As shown in Figure 3 above, the wind power data after smoothing is more
stable than that before smoothing, so that the wind power will not destroy the
stability of the system when it is connected to the IES. By making a difference
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Figure 3 Region three wind power data smoothing before and after comparison.

Figure 4 Region three upper power limit diagram of the HESS.

between the wind power data before and after smoothing, the power which
the HESS need to undertake can be obtained in Figure 4 above.

3.1 Power Distribution of the HESS

The power which the HESS need to undertake, is taken as the input data of
the ICEEMDAN algorithm in this section. First, the Empirical Mode Decom-
position method is used to decompose the original signal of the power which
the HESS need to undertake into multiple Intrinsic Mode Functions (IMF),
and then the noise in each IMF is removed by the adaptive noise algorithm.
Finally, the de-noised IMF is integrated fully, and then the decomposed signal
is obtained. The specific results are shown in Figures 5 and 6 below:
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Figure 5 The power decomposition signal assumed by the hybrid energy storage devices.

As shown in Figure 5, the signals of the HESS after power decomposition
can be divided into four kinds according to their frequencies, which are IMF1,
IMF2, IMF3 and IMF4 respectively from low to high. And then the signals
of the different frequencies are allocated to different energy storage devices
according to their characteristics. In order to make the power of different
frequency bands corresponding to these signals be distributed to the two
energy storage devices reasonably in the HESS, namely the lithium battery
and the supercapacitor. The four signals are shown in Figure 6 respectively,
and the above decomposed data is divided into two kinds of the frequency
components, in which the high one is borne by the supercapacitor and the low
one is borne by the lithium battery. With the frequency IMF2 as the dividing
point, the wind power which the lithium battery and the supercapacitor
undertake can be obtained respectively, we take region one as the example
and the specific results are shown in Figures 7 and 8 below:

3.2 Power and Charge State Correction of the Hybrid Energy
Storage Devices

However, the above power has not considered the power and charge state of
the energy storage devices, so the fuzzy control algorithm is used to regulate
the HESS. The membership functions can be seen in Figure 9 below.
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Figure 6 The frequency division diagram of the power decomposition signal assumed by
the hybrid energy storage devices.

In addition to establishing the corresponding membership function for
the input and output values, it is also necessary to establish the corresponding
fuzzy control rule table according to different energy storage characteristics
of the devices in the HESS. In this way, the HESS can be regulated more
accurately, the power and charging state of the devices in the HESS can be
maintained within a reasonable range of values.

According to the above membership functions, weighted average method
(gravity center method) is used to clarify the fuzzy set of the output, and the
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Figure 7 Region one lithium battery power diagram.

Figure 8 Region one supercapacitor power diagram.

real-time power correction coefficient can be obtained as follow:

kx(t) =

∑
i

∑
j µεx(t),iµηx(t),j∆kx(t)∑
i

∑
j µεxµηx(t),j

(30)

In formula (30): i and j can be NB, NS, ZO, PS, PB, and µεx(t),i and
µηx(t),j represent the corresponding membership values of the input εx(t)
and ηx(t) respectively.

After obtaining the correction factor, the initial correction value of the
devices power can be obtained as follow:

∆Px(t) =

kx(t)
⌢
P

+

x

⌢
P

+

x≥ 0

kx(t)
⌢
P

−
x

⌢
P

−
x< 0

(31)
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Figure 9 Input and output value membership function diagram.

And Figure 10 shows the SOC states of the lithium battery and the
supercapacitor which are optimized by the fuzzy control algorithm:

According to the above results, it can be seen that the combination of the
convolutional filtering algorithm, the ICEEMDAN algorithm and the fuzzy
control algorithm can develop the charging and discharging strategy of the
HESS better. Besides, the phenomenon of the overcharge and overdischarge
does not occur in the HESS, the states of charge (SOC value) matain in (0.2,
0.8), and the overall action strategy is also good, which can give full play to
the synergy of the HESS in the IES.

4 Collaborative Optimization Strategy

4.1 Collaborative Optimization Model of the MRIES

In this section, the entire MRIES is modeled. And the MRIES has the
characteristics that a variety of heterogeneous energies are couplied and many
equipments are involved in the energy exchange. Considering the operation
characteristics of the equipments in the MRIES, combined with the actual
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a) Region one Comparison of the ultracapacitor SOC before and after correction 

b) Region one Comparison of lithium battery SOC before and after correction 

Figure 10 Region one SOC comparison diagram of the hybrid energy storage devices before
and after correction.

production requirements, the objective function of the MRIES is established,
which is composed of the energy cost, the carbon emission and the renewable
energy utilization rate. And the objective functions consists of two parts, one
is the internal objective function of each regional IES, and the other is the
overall objective function of the MRIES.
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The internal objective functions of the IES in each region are as follows:

MinF = (F1, F2,−F3) (32)

F1 =

T∑
t=1

|Km,t ∗ Pm,t| (33)

F2 =

T∑
t=1

Cgas,co2 ∗ Pm
gas,t +

T∑
t=1

Cgrid ,co2 ∗ Pm
grid ,t (34)

F3 =

T∑
t=1

(Pwind ,t + Psolar ,t)

/ T∑
t=1

(P theory
wind ,t + P theory

solar ,t) (35)

In formula (32), F1 represents the energy cost, F2 represents the carbon
emission, and F3 represents the renewable energy utilization rate in each
region. In formula (33), Pm,t and Km,t represent the power output value and
the energy consumption price of different units respectively. The unit price
of the gas turbine is 2.5, the unit price of the gas-fired boiler is 2.2, and
the unit price of the fuel cell is 1.8. Besides, the electricity price refers to
the TOU electric price mentioned in Chapter 2. In formula (34), Pm

gas,t and
Cgas,co2 represent the power output value of each gas-consuming unit and
the amount of CO2 production per unit of the gas-consuming power, which
is 0.62 in this paper, Pm

grid ,t and Cgrid ,co2 represent the electric power which
is from the power grid and the amount of CO2 production per unit of the
power-purchasing power respectively, which is 1.15 in this paper, In formula
(35), Pwind ,t和 Psolar ,t represent the wind power and the photovoltaic power
respectively which are consumed in the IES of each region, P theory

wind ,t and

P theory
solar ,t represent the total wind and photovoltaic power in the IES of each

region.
Combined with the above each regional IES objective functions, the

overall objective functions of the entire MRIES are as follows:

MinMG = (MG1,MG2,MG3) (36)

MG1 = w1 ∗ F one
1 + w2 ∗ F one

2 − w3 ∗ F one
3 (37)

MG2 = w1 ∗ F two
1 + w2 ∗ F two

2 − w3 ∗ F two
3 (38)

MG3 = w1 ∗ F three
1 + w2 ∗ F three

2 − w3 ∗ F three
3 (39)
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In formula (36), MG1, MG2 and MG3 represent the objective functions
of the energy networks in the three IESs respectively, In formula (37), (38)
and (39), w1, w2, w3 represent the weight values of the three evaluation
indexes in each regional IES respectively. F one

1 , F one
2 , F one

3 represent the
energy cost, the carbon emission and the renewable energy utilization rate in
the region one IES. And so on as F two

1 , F two
2 , F two

3 and F three
1 , F three

2 , F three
3 .

Since the three evaluation indexes are regarded as equally important in this
paper, w1, w2, w3 can be obtained by the analytic hierarchy process and they
are all 1/3.

4.2 BWO Algorithm

The BWO algorithm is inspired by the daily life behaviors of the beluga
whales. Beluga whales are known for their unique pure white appearance and
color, and they are highly social mammals. They live in groups generally, with
2 to 25 members in a group, and the number of group members is generally
around 10. Similar to other meta-heuristic optimization algorithms, the BWO
algorithm includes an exploration phase which is established by considering
the beluga whales’ swimming behaviors and a development phase which is
inspired by the beluga whale predation behaviors, as well as the whale drop
phenomenon that exists in the nature.

5 Results and Discussion

In the optimization process of the MRIES, we should not only consider
the load power distribution and optimization of each regional IES, but also
consider the energy exchange among three IESs. Therefore, in addition to the
optimization results of the whole MRIES, we also need to conduct in-depth
studies for each region separately. Considering the uncertainty of the opti-
mization results, an optimization result with the best effect among multiple
optimization results is selected for the presentation. Besides, the optimized
power distribution results of the electric, hot and cold loads before and after
the algorithm improvement are compared. This chapter also compares the
optimization results of the energy cost, the carbon emission and the renewable
energy utilization rate of the whole MRIES before and after the algorithm
improvement. The optimization results of using different optimization algo-
rithms as the collaborative optimization strategies for the MRIESs are shown
below.
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Figure 11 Region three electric load power balance diagram optimized by the BWO algo-
rithm.

Figure 12 Region three electric load power balance diagram optimized by the IBWO
algorithm.

5.1 Comparison of the Collaborative Optimization Results of
Each Region Between the BWO and the IBWO Algorithm

Taking the optimization results of the region three IES as the example, the
optimization ability of the BWO and IBWO algorithm can be felt more
intuitively by comparing the optimization results. The power balance opti-
mization results of the cold, hot and electric loads in the region three IES
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Figure 13 Region three thermal load power balance diagram optimized by the BWO
algorithm.

before and after the algorithm improvement are shown in Figures 11 to 16
below:

As shown in Figure 11, it is obvious that the optimization results of
the BWO algorithm only include four kinds of the power supply and loss
components, including the power supply of the renewable energy, the inter-
active power of the energy networks and the power loss of the electric
refrigerator, which is obviously unreasonable extremely. In Figure 12, the
result after the IBWO algorithm optimization include the gas turbine power
supply, the fuel cell power supply, the electric refrigerator power loss, the
ORC power generation power supply, the renewable energy power supply,
the energy networks interaction power supply and the thermal pump power
loss. Compared with the optimization result in Figure 11, the equipments that
participate in the power supply and loss is more diverse, which make full
use of various equipments in the region three IES, avoiding the waste of the
resources.

As can be seen in Figure 13, in the optimization results of the region
three thermal power with the BWO algorithm, only the gas boiler and the
absorption device exist, and the total thermal power in the region three IES
fails to meet the demand of its thermal load from 7 o ’clock to 11 o ’clock.
Therefore, the region three IES needs to buy electricity from the grid and then
converts it into the thermal power to meet its thermal load demand, obviously
this will greatly increase the energy cost of the region three IES, resulting in
huge energy waste, which is undesirable. In contrast, as shown in Figure 14,
in the optimization results of the IBWO algorithm, not only do all devices
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Figure 14 Region three hot load power balance diagram optimized by the IBWO algorithm.

Figure 15 Region three cold load power balance diagram optimized by the original algo-
rithm.

participate in the power balance of the thermal load, but the IBWO algorithm
also ensures that the power requirment of the thermal load can be satisfied
within 24 hours all day.

As shown in Figures 15 and 16, in the region three IES, since the cold
load power demand is only provided by the absorption devices and the electric
refrigerators, both refrigeration equipments participate in the cold load supply
in the region three IES, ensuring the balance of the cold load supply in the
final optimization result.

All results above show that the BWO algorithm does not show a good
optimization effect when dealing with the power balances of the electric
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Figure 16 Region three cold load power balance diagram optimized by the improved
algorithm.

load and the thermal load in the region three IES. In contrast, the IBWO
algorithm shows a better optimization effect in the power distribution with
various equipments. Not only all the corresponding equipments participate in
the energy power balances of the electricic and thermal load, but also meet the
power requirments of the electricic and thermal load in the region three IES.

5.2 Comparison of the Overall System Results Between the
BWO and the IBWO Algorithm

In addition to the above optimization results of the power distribution which
need to meet the cold, hot and electric loads in region three, this section
also considers three indexes of the energy cost, the carbon emission and
the renewable energy utilization rate as the evaluation indexes of the system
optimization effect. Finally, the fitness value of the system which is optimized
by the algorithm can be obtained after linear addition of the three indexes
above, and that is, the total cost of the entire MRIES. By comparing the
optimization results of the BWO and IBWO algorithm, the superiority of the
IBWO algorithm can be more understood intuitively.

The BWO and IBWO algorithm fitness values are shown in Figure 17
below:

As shown in Figure 17, the IBWO algorithm fitness value is far lower
than the BWO algorithm fitness value, which means that the IBWO algorithm
performs better than the BWO algorithm in the MRIES.

As can be seen in Table 1, although the IBWO algorithm optimization has
no significant promotion in the index of the iterations and the time, the total
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Figure 17 Comparison of the BWO and IBWO algorithm fitness values.

Table 1 Comparison of the BWO and IBWO algorithm optimization results
Name Iterations Cost Time
BWO 339 348733.4141 81
IBWO 281 173435.7392 63

Table 2 Comparison 2 of the BWO and IBWO optimization results
Name Energy cost Carbon emission Utilization rate
BWO 154362.3711 194371.0430 100%
IBWO 91357.5263 82078.2099 100%

cost is reduced by about half, which saves great cost for the entire MRIES.
Through the collaborative optimization strategy of the MRIES, the total cost
of the whole MRIES is greatly reduced.

As shown in Table 2, the optimization result with the IBWO algorithm
are much better than that with the BWO algorithm, and the equipments
which particpate in the power supply of the electricity and thermal load are
too single in the BWO optimization result, it will lead to the reduction of
the energy efficiency in the entire MRIES, which will not only lead to the
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increase of the energy cost, but also greatly increase its carbon emission.
And the collaborative optimization strategy which is based on the IBWO
algorithm can greatly reduce the total cost of the whole MRIES. In the results
of the two algorithms optimization, the renewable energy utilization rates
are both 100%, because the MRIES gives priority to the renewable energy
consumption and the renewable energy power is fully utilized.

6 Conclusion

The MRIES is taken as the research object, including electricity, thermal,
cold, gas and the storage. After considering the renewable energy uncertainty,
the collaborative optimization strategy of the MRIES based on multiple
models and constraints is studied. The main research results are as follows:

(1) Aiming at the uncertainty of the wind power in the IES, a hybrid energy
storage solution strategy is proposed. Firstly, the convolutional filtering
algorithm is used to smooth the data. And the power difference of the
wind power data before and after smoothing is taken as the power which
is borne by the HESS, and it is also used as the input data of the ICEEM-
DAN algorithm to obtain the decomposed wind power data, and then the
decomposed data is divided into two kinds of the frequency components,
in which the high one is borne by the supercapacitor and the low one
is borne by the lithium battery. And the fuzzy control algorithm is
used to regulate the HESS. The optimization results show that with the
help of the convolutional filtering algorithm, the ICEEMDAN algorithm
and the fuzzy control algorithm, we can better develop the charging
and discharging strategy of the HESS. Besides, the phenomenon of the
overcharge and overdischarge does not occur in the HESS, the states of
charge (SOC value) matain in (0.2,0.8), and the overall action strategy
is also good, which can give full play to the synergy of the HESS in
the IES.

(2) To realize the collaborative optimization of the MRIES, the IBWO
algorithm is proposed, which takes the energy cost, the carbon emission
and the renewable energy utilization rate as the optimization objectives
of the IES. The collaborative optimization scheme ensures the stability
of the whole MRIES, and realizes the optimization reasonly.

Although this paper has made some achievements in the research of
MRIES, there are still many shortcomings. In the future, further research on
the IES can be considered from the following aspects:
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(1) As the system control performance requirements become higher and
higher, most of the current research is carried out from the scheduling
aspect, although this paper studies the IES from the modeling aspect,
but the modeling of each energy subsystem is not enough. In the future,
more in-depth research on modeling can be considered.

(2) This paper deals with the uncertainty of the wind power mainly, and
does not deal with the photovoltaic power generation specifically. In
the future, different targeted treatments can be considered for the cor-
responding renewable energies which have different characteristics to
solve the access problem of the renewable energy better.

(3) An integrated demand response model based on the TOU electricity
price mechanism is established on the load side, which is not enough
obviously to mobilize the reducible load demand of the users fully. In the
future, more integrated demand response methods need to be considered
to regulate the load.

(4) The collaborative optimization strategy which is adopted in this paper
only uses the IBWO algorithm, which has a good effect. In the future,
more optimization methods can be considered to participate in the
collaborative optimization of the MRIES, so as to increase the diversity
of the strategies and achieve better collaborative optimization effects.
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