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Abstract

The stochastic and intermittent nature of photovoltaic (PV) generation brings
a series of scheduling problems to the power system. An effective prediction
of PV power is essential to minimize the impact of uncertainty. Therefore,
this paper presents an integrated prediction model with complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN), the arti-
ficial hummingbird algorithm (AHA), and the BP neural network (BPNN)
for predicting power generation from PV power plants, and a methodology
for uncertainty analysis by using the nonparametric kernel density estimation
(NPKDE). First, one month of PV power is decomposed into an array of
components using CEEMDAN. Then, the weights and thresholds of the
BPNN are optimized by using AHA. These components are trained using
the BPNN. Finally, the final prediction results are obtained by superimposing
the components, and NPKDE is employed to compute the probability density
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and confidence interval of the prediction error. The proposed prediction
method demonstrates superior predictive performance in comparison with
other models. Also, the NPKDE approach better describes the accuracy of
the probability density distribution.

Keywords: PV power prediction, CEEMDAN, artificial hummingbird algo-
rithm, BP neural network, Kernel density estimation, confidence interval.

1 Introduction

Recently, the escalating inclination to mitigate fossil fuel consumption and
address ecological issues has propelled technological innovations aimed at
the development and utilization of renewable energy sources [1, 2]. PV
power generation reduces the usage of traditional energy sources through-
out the energy transition and, at the same time, brings challenges to grid
power distribution [3]. However, weather variations and seasonal changes
can change unpredictable meteorological factors such as temperature, humid-
ity, irradiance, etc., resulting in the stochastic and intermittent behaviour
observed in PV power generation [1, 4]. The unpredictability inherent in this
stochastic characteristic can have an immense effect on the power system’s
reliability.

Under the time scale of prediction, numerous theories and techniques
for PV power prediction are currently being researched. These are catego-
rized into three categories: long-term, medium-term, and short-term predic-
tions [5]. For real-time scheduling and operations management of renewable
energy generation systems, short-term PV prediction is the most appropriate
among the methods. This prediction provides a more precise estimate of PV
power generation over a short period of time, which helps to optimize the
charging and discharging strategies of photovoltaic-energy storage systems
(PV-ESS) to cope with fluctuations in power demand and changes in market
prices, thus improving energy efficiency and reducing operating costs [6, 7].
Such short-term PV prediction holds immense importance in the scheduling
of traditional power systems as well as PV-ESS [8, 9].

In the PV prediction problem, the mainstream methods for predicting
PV power consisted of indirect prediction utilizing physical models and
direct prediction relying on historical data [10]. The historical data-based
forecasting methods consist of neural networks, time series and support
vector machines. The neural network has been recognized as an excellent
prediction method, and its extensive use in the power prediction field has
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become increasingly crucial. Most of the existing research focused on two
major areas: one is the use of neural network algorithms themselves for
power prediction, and the other one is the optimization of neural networks
using algorithms [11]. Neural networks possess significant self-learning capa-
bilities. However, they are susceptible to converging on local optima [12].
The application of optimization algorithms can effectively address this issue.
In [13], for enhanced precision, the weights and thresholds of the BP neural
network (BPNN) were optimized using the genetic algorithm (GA) and
particle swarm optimization (PSO). These algorithms optimize the BPNN
to reduce the prediction model’s error level significantly.

With science and technology developing at a rapid pace, many new
algorithms have emerged. The artificial hummingbird algorithm (AHA) [14],
an emerging bioinspired optimization algorithm, has been widely noticed and
applied for its broad applicability and fast search speed. In [15], this paper
takes advantage of the long-time memory artificial hummingbird algorithm
(LMAHA) to optimize the energy management of wind-energy storage sys-
tems. The findings indicate the method can actively cope with the forecasting
challenges regarding load and power uncertainty. In addition, the algorithm
can not only enhanced prediction accuracy [16], but also optimized the opti-
mal current allocation of the power system, resulting in stable and efficient
operation [17]. Hence, this paper employs the AHA to enhance the predictive
model.

However, the BPNN prediction results are not satisfied when dealing
with stochastic fluctuation signals. While the empirical modal decomposition
(EMD) method can decompose stable signals to improve prediction accuracy,
it often faces the signal decomposition issue of modal aliasing [18, 19].
In order to tackle this issue, the complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) method features an achievable
solution for mitigating the modal aliasing phenomenon. In [20], the wind
power data was decomposed using CEEMDAN. Based on the properties
of the decomposed data, a grey wolf optimization-bidirectional long short-
term memory network (GWO-Bi LSTM) prediction model was established.
The results show the model is superior at predicting short-term wind power
prediction.

Although PV power prediction has been of interest to researchers and
scholars in this field, PV power generation is weather-dependent, which
leads to a certain degree of uncertainty in PV power. Thus, it is imperative
to comprehend the uncertainty of PV changes and to predict and assess
them with precision. Uncertainty analysis of PV power prediction can be
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done using parametric and nonparametric methods [21]. The parametric
method requires assumptions about the prediction error distribution, such
as Gaussian distribution and Beta distribution [22]. Nonparametric methods
include kernel density estimation (KDE) [23], Bootstrap, etc. Among them,
KDE can flexibly adapt to various data types and complexity and generate
intuitive and precise density estimation curves for visualization and anal-
ysis, which is widely used. The nonparametric kernel density estimation
(NPKDE)can be utilized to compute the distribution of PV power prediction
errors without assuming error distribution, which can provide a more com-
prehensive understanding of the stability and reliability of the outcomes of
the prediction [24]. Therefore, the nonparametric method is chosen for this
paper.

This present study introduces an innovative approach for PV power
prediction and uncertainty analysis methods based on CEEMDAN, AHA, BP,
and NPKDE. This paper has the following main contributions:

• A CEEMDAN-based PV power prediction model which decomposes
and reconstructs the single to improve the accuracy of the prediction;

• A BPNN model optimizes its thresholds and weights using the AHA
algorithm, which raises the prediction model’s accuracy;

• Uncertainty in PV power prediction is analyzed with NPKDE.

The remainder of this study is structured below. In Section 2, the AHA-BP
structure is introduced along with the theoretical foundation of CEEM-
DAN. After analyzing the data, Section 3 presents the evaluation indexes
and parameter setting of the prediction model, and validates the proposed
model. Section 4 analyzes the uncertainty of PV power prediction. Finally,
conclusions and shortcomings are drawn.

2 Theoretical Background

2.1 CEEMDAN

EMD is a time-frequency preprocessing analytical method [25], which is
widely used in many projects such as earth dam health monitoring [26],
irradiance prediction [27] and carbon price prediction [28]. The single is
decomposed into a series of intrinsic mode functions (IMF) and a residual
signal (RES) that represents the trend of the sequence. Since EMD generates
a mixed-modal problem, the CEEMDAN can provide an effective way to
overcome this problem [29]. The major steps of decomposition are listed
below:
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1. Add the Gaussian white noise to the original signal x(t):

xi(t) = x(t) + ε0ωi(t) i = 1, 2, 3, . . . . . . k (1)

where εk is the signal to noise ratio (SNR), and ωi(t) represents
Gaussian white noise, i is the ith addition of white noise.

2. The signals after adding noise were decomposed by using the EMD to
obtain the first IMF 1 and RES .

RES 1(t) = x(t)− IMF 1(t) (2)

3. Add noise to the first RES and continue to use EMD to obtain the new
IMF .

4. Finally, the following can be used to express the result of CEEMDAN’s
decomposition:

IMFn(t) =
1

k

k∑
i=1

E1(rn−1(t) + ε1En−1(ωit)) n = 2, 3, . . . , k (3)

RESn(t) = RESn−1(t)− IMFn(t) (4)

x(t) =

n∑
i=1

IMFn(t) + RES (t) (5)

where, n is the total amount of components, En−1(·) is the n−1th IMF.

2.2 AHA

The main focus of the AHA algorithm is to imitate the behaviour of hum-
mingbirds feeding on nectar. The fitness function, which indicates the quality
of the food source, can be used to describe the nectar filling rate of the
food source [30]. Hummingbirds foraging behaviour consists of three stages:
guided foraging, territorial foraging, and migration foraging [31]. Humming-
birds have three types of flight: axial, diagonal and omnidirectional, as shown
in Table 1.

Where randi([1, d]) represents the generation of a random integer
between [1, d], rankperm(k) represents the generation of a random k
integers between [1, d], r1 represents a random number in (0, 1).

Hummingbirds will utilize three flight skills during their foraging. The
following are the three foraging behaviours of hummingbirds, as shown in
Table 2.
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Table 1 Three types of flight
Type Formula

Axial Flight D(i) =

{
1 i = randi([1, d])

0 else
i = 1, . . . , d (6)

Diagonal Flight D(i) =


1 if i = P (j)j ∈ [1, k]P

= rankperm(k)k ∈ [2, [r1 · (d− 2)] + 1]

0 else

(7)

Omnidirectional
Flight

D(i) = 1 i = 1, ...., d (8)

Table 2 Foraging behaviours
Type Formula
Guided Foraging vi(t+ 1) = xi,tar(t)+a ·D · [xi(t)− xi,tar(t)] (9)
Territorial Foraging vi(t+ 1) = xi(t) + b ·D · xi(t) (10)
Migration Foraging xwor(t+ 1) = Low + r · (Up− low) (11)

Where xi(t) represents the location of the target food source at the tth
iteration; xi,tar (t) is the target food source location that the ith hummingbird
plans to visit; and a is a bootstrapping factor obeying a standard normal
distribution; b is the flight step length; xwor is the deprived food source in
the population, Up represents the upper boundary, while Low represents the
lower boundary.

When the food is scarce, the hummingbird will fly farther away to search
for new food sources. If hummingbirds reach a tiny food source and the
iteration time surpasses the pre-established migration coefficient value. The
hummingbirds will give up on that food source and randomly select a new
one in the search space.

2.3 AHA-BP

The BPNN consists of three layers: input, hidden and output[32]. Figure 1
illustrates the model’s unique procedure and steps:

• Determine the BPNN structure: initialize the weights and thresholds of
the BPNN. Initialize the relevant parameters of AHA, the population and
construct the visit table;

• Select hummingbird’s behaviour: select hummingbird’s flight mode and
foraging mode and calculate candidate food source fitness;

• Update hummingbird’s position and visit table: according to the for-
aging rules and the current position of hummingbirds, the position
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Figure 1 AHA-BP flow chart.

of hummingbirds and visit table are updated, and if the condition of
migratory foraging is reached, migratory foraging is carried out. Repeat
the calculation of adaptation until the maximum number of iterations is
achieved;

• Output the best result: for each hummingbird location, calculate the
value of the fitness function, which is measured by the error of BPNN
on the training data. After reaching the number of iterations, the current
optimal fitness is assigned to the BPNN;

• Train the neural network: based on the optimal weights and thresholds
obtained by AHA, train the neural network to predict the samples. The
prediction results are output when the cutoff conditions are satisfied.

2.4 CEEMDAN-AHA-BP Hybrid Prediction Model

This study suggests a technique for predicting PV power by integrating
CEEMDAN with AHA-BP. The CEEMDAN decomposes the PV power
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Figure 2 Predictive model flow chart.

into multiple IMFs components from high to low frequency and RES. And
AHA-BP processes each component of the CEEMDAN.

The steps of the model are displayed in Figure 2:

• Collect the historical data pertaining to the PV plant. Since PV plant
does not generate electricity throughout the day, the time period of PV
generation is selected;
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• Decompose into IMF components and RES using CEEMDAN;
• Split the results of each component into a training and test set, and input

the meteorological factors into the AHA-BPNN model to train;
• The ultimate prediction values are derived by summarizing the pre-

diction outcomes of each component and comparing them with other
prediction models to confirm the accuracy of the prediction of this
hybrid model;

• Calculate the prediction error distribution of the prediction model using
NPKDE and confirm its efficiency.

To emamine the prediction model, various assessment metrics are typi-
cally employed. In this paper, three indicators coefficient of determination
(R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are
used [33]. The formulas for R2, RMSE, and MAE are shown by the following
Table 3.

Table 3 Concept of assessment indicators
Measure Formula Judgment

R2 R2 = 1−
∑

i(ŷi − yi)
2∑

i(ȳi − yi)2
The higher its value is, the better it is.

RMSE RMSE =

√√√√ 1

m

m∑
i=1

(ŷi − yi)2 The larger the error, the larger the value.

MAE MAE =
100%

m

m∑
i=1

|ŷi − yi|

where ŷi is the predicted value, yi is the true value, ȳi is the mean value.

3 Case Study

3.1 Data Collection Platform

The data came from a PV power plant of an industrial user in Xiamen, Fujian
Province, China. The meteorological data are obtained from the weather
station of the PV power plant. Figures 3 and 4 display the user interface of
the PV power station and the interface of the environmental platform.

The installed capacity of this PV plant is 309.32 kWp. In this paper,
the historical PV power and irradiance for the month of December 2022
is selected as a case study. Considering the characteristic of the PV power
plant that the output power is zero at night, the prediction time period is
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Figure 3 User interface.

Figure 4 Environmental monitoring interface.
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Figure 5 Comparison between PV power generation and irradiance curves.

limited to 7:00 to 18:00 every day. Figure 5 illustrates the collected data for
the PV power and irradiance profiles for various weather conditions over a
one-month period.

3.2 CEEMDAN Decomposition

The power series of the selected dataset are decomposed using CEEMDAN.
And the IMF and RES are displayed in Figure 6.

The data presented in Figure 6 reveals that the frequency decreases, the
individual component signal curves behave more stably, and their periodicity
becomes clearer. Among them, IMF1 to IMF4 show non-periodic variations,
while they exhibit higher frequency and relatively sharp fluctuations, which
reflects the stochastic character of PV power. In addition, the changes from
IMF5 to IMF10 show a certain periodicity. These components with periodic
patterns have a high impact on the prediction accuracy, and their amplitude
varies greatly, leading to a more pronounced effect on the final prediction
outcomes.

3.3 Comparative Analysis of Prediction Models

All of the models presented in this research are implemented using MATLAB
2022b. The results of IMFs and RES components after using CEEMDAN
are separated into training and test sets. The meteorological factors are input
into the AHA-BPNN model to make a prediction, and the total of each
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Figure 6 Decomposition result of CEEMDAN.

component’s prediction outcomes is the final prediction result. The results
are shown in Figure 7 below.

From Figure 7, it is observed that compared with other prediction models,
the CEEMDAN-AHA-BP prediction model has a better fit to reality, under-
scoring the exceptional level of accuracy of the integrated prediction model.
The integrated prediction model outperforms the single prediction model as
compared to the BPNN model. This demonstrates that the prediction model
incorporating signal decomposition outperforms the BPNN prediction model
optimized using the optimization algorithm and also highlights the superiority
of the AHA over the PSO. It is worth noting that it can be effective in
decreasing the fluctuation of PV power generation signals, while CEEMDAN
performs better in terms of decomposition effect compared to EMD.

By comparing and analyzing these indicators, the predictive performance
of the models can be assessed more comprehensively, and thus, the optimal
model can be identified. Table 4 describes the performance the performance
evaluation between the various models as well as the results of MAE, RMSE
and R2. It also shows the performance of EMD-AHA-BP, AHA-BP, PSO-BP
and BP.
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Figure 7 Final forecasting results.

Table 4 Predicted indicator results
Prediction Model R2 RMSE MAE
BP 0.9627 9.110 6.321
PSO-BP 0.9686 8.402 5.954
AHA-BP 0.9697 8.361 5.474
EMD-AHA-BP 0.9717 8.156 5.249
CEEMDAN-AHA-BP 0.9738 7.636 4.670

According to Table 4, the CEEMDAN-AHA-BP model produces the
maximum R2 value, while the minimum values for the other evaluations.
This shows the best performance of the CEEMDAN-AHA-BP model. The
change from BP to PSO-BP to AHA-BP shows that the use of algorithms can
enhance the performance of predictive models. Meanwhile, the use of signal
processing techniques such as EMD can also improve the model’s accuracy.

4 Uncertainty Analysis

4.1 Nonparametric Kernel Density Estimation

This study quantifies the probability distribution of predicted PV power using
NPKDE and confidence intervals. This accurate prediction and uncertainty
analysis helps to realize the effective use of clean energy and promotes the
development of energy systems in a more sustainable direction. The NPKDE
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does not require the assumption of a distribution, but it does need to select
a kernel function. Different kernel functions have different distributions. The
Gaussian kernel function has a wide range of applicability and high accuracy,
so this kernel function is employed in the study.

The Gaussian kernel function is described in Equation (13):

g(x) =
1√
2πσ

exp

(
−(x− u)

2σ2

)
(13)

where u is the average of the PV prediction error and σ is the standard
deviation.

The NPKDE calculates the probability distribution of the prediction error
as follows:

f(x) =
1

N

N∑
i=1

g

(
x− xi

h

)
(14)

where N means the amount of data points in the PV power prediction error
interval, xi donates the ith sample, and h means the bandwidth coefficient.

4.2 NPKDE-based Confidence Intervals Comparative Analysis of
Prediction Models

In this work, the NPKDE is utilized to generate the probability density of PV
power forecasts, and then confidence intervals are established based on the
probability density distribution for quantitative analysis. The following is the
PV power error e.

e = Ppre − Pact (15)

where Ppre is the power prediction value and Pact is the actual value.
According to PV power error, the confidence level calculated below:

P (elow < e < eup) = 1− θ (16)

where P (elow < e < eup) represents the confidence interval, 1 − θ is the
confidence level, eup and elow stand for the confidence interval’s upper and
lower bounds, respectively. Due to the above equation, the upper and lower
limits of the prediction interval are [Ppre − eup, Ppre − elow ].

4.3 Probability Density Estimates and Confidence Intervals for
Prediction Errors

The uncertainty analysis of the predicted power is discussed according to
three different types of weather: sunny, cloudy, and rainy. The prediction
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Figure 8 Probability density distribution chart: (a) Sunny; (b) Cloudy; (c) Rainy.
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Figure 9 Confidence interval diagram: (a) Sunny; (b) Cloudy; (c) Rainy.
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error of the CEEMDAN-AHA-BP model is analyzed using NPKDE. To test
the reliability of the method, normal and logistic distributions are selected
for comparison. The distribution of the probability density curves of three
methods for the prediction error of this model is illustrated in Figure 8.

From Figure 8, the probability density curve of KDE most closely approx-
imates the actual distribution under the three weather conditions. The normal
distribution has the worst-fitted effect. The prediction errors for the three
weather conditions are mainly concentrated in the range of −10 kW to 10 kW.
However, there are also a small number of points with large errors, and
there are points with absolute errors up to 30 kW on cloudy days. When the
probability density distribution of the prediction error is computed utilizing
NPKDE, the confidence intervals are used to quantify the uncertainty distri-
bution of PV power prediction. The distribution of confidence intervals for
the proposed prediction model at 95%, 90% and 80% confidence levels are
shown in Figure 9.

According to the analysis of Figure 9 above, as can be seen, some of the
actual data points are not included in the confidence interval under different
weather conditions, especially under cloudy conditions. However, the overall
probability of the actual PV power is higher with respect to the confidence
level.

The evaluation indicators for uncertainty analysis of PV predicted power
are Prediction Interval Coverage Probability (PICP) and Prediction Interval
Average Width (PINAW). In this paper, only one of the PICP is selected for
assessment, and the formula is as follows:

PICP =
1

N

N∑
i=1

λi × 100% (17)

If a point of the actual value falls within the confidence interval, λi is 1,
otherwise it is 0. Table 5 displays the coverage of confidence intervals under
various weather conditions. The table verifies the accuracy of the NPKDE for
quantitative analysis of confidence intervals.

Table 5 Confidence level results
Confidence Level

Weather Conditions 80% 90% 95%
Sunny 80.00% 93.33% 97.78%
Cloudy 80.00% 86.67% 93.33%
Rainy 84.44% 91.11% 95.56%
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5 Conclusions

As the variability behaviour of PV power generation impacts the stability
of the power system, short-term PV forecasts are of great significance for
scheduling in conventional power systems as well as in PV-ESS. In the work,
a PV power prediction model is introduced with CEEMDAN decomposition
and AHA-BP, and the accuracy in predicting is confirmed by taking one
month of meteorological data and historical PV power as an example and
comparing it with other models. The conclusions of this article can be
summarized as below:

(1) The utilization of CEEMDAN method improves the accuracy of the
AHA-BP model in PV power prediction. PV power prediction model
performance can be improved with a combination of optimization
algorithms and signal processing techniques.

(2) The AHA has a stronger global search capability than the PSO. In addi-
tion, by combining the optimization algorithm with the neural network,
it can help the model from being trapped in the local optimal solution,
thus enhancing its stability.

(3) NPKDE provides an accurate calculation of the probability density
distribution of prediction error.

Since the CEEMDAN-AHA-BP model involves signal decomposition,
optimization algorithms, and neural network models, the algorithm has high
complexity and requires high computational resources and time costs. The
training of the algorithm takes a lot of historical data and requires extremely
precise and superior information, which may be difficult to fulfill in some
cases. In the future, the performance of the CEEMDAN-AHA-BP model in
PV power prediction can be further strengthened by the optimization and
improvement of the algorithm, combined with other prediction techniques,
and by improving the quality of data through data processing methods. It
provides more accurate support for the real-time dispatch of renewable energy
generation systems.
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