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Abstract

If the emergency repair prediction of power equipment is only made from
the perspective of historical spare parts inventory data, it cannot reflect the
impact of disaster-causing elements and disaster evolution on the demand
for emergency repair spare parts in the future. Therefore, this paper aims
to propose a reliable power equipment emergency repair prediction method,
and constructs a demand prediction method for emergency repair spare
parts of power equipment based on scenario analysis. Constructing a power
equipment repair system through intelligent reasoning methods to improve
the efficiency of power equipment repair. This article comprehensively uses
methods such as literature analysis, model inference, and case simulation
verification, this paper innovatively combines the adaptive neural network

Distributed Generation & Alternative Energy Journal, Vol. 39_4, 915–940.
doi: 10.13052/dgaej2156-3306.39411
© 2024 River Publishers



916 Tongtong Zhang et al.

fuzzy inference system with expert experience. This paper validates the supe-
riority of the prediction method constructed in this paper through comparative
analysis. The results show that with the increase of the amount of data, the
prediction accuracy of the method proposed in this paper will be improved,
which can provide a reference for the subsequent emergency repair prediction
of power equipment.

Keywords: Adaptive neural network, fuzzy reasoning, electrical equipment,
rush repair, prediction.

1 Introduction

Distribution network is not only the core process of connecting high and low
voltage users in the system, but also an extremely important energy supply
system in contemporary cities. Moreover, it is located in the most central
position of the load of the special power system, and has the basic charac-
teristics of relatively large power consumption scale, high load density, and
high demand for reliability and quality [1]. With the continuous development
of the times, the public’s demand for power quality has also increased sig-
nificantly, which enables power supply companies to continuously improve
their operational management literacy, achieve more ideal work efficiency,
and greatly improve the reliability of the power grid system. This has formed
relatively more requirements for subsequent fault maintenance, and has also
formed more requirements for the work level of subsequent maintenance [2].
For the actual repair link, how to realize the effective location of the fault
point has a very significant impact on the overall repair process. This is of
great value to ensure the stability of the power supply system and to control
the losses caused by power problems as much as possible.

In order to realize the accurate prediction of emergency repair spare parts
of power equipment, the primary problem is how to deal with the intermittent
demand for emergency repair spare parts of power equipment. The demand
for spare parts belongs to the intermittent demand mode, which is character-
ized by a small amount of non-zero demand interspersed in the continuous
zero demand [3], while the demand for emergency repair spare parts of
power equipment is a typical intermittent demand mode, and too many zero
values increase the difficulty of prediction the demand for emergency repair
spare parts of power equipment. Due to the uncertainty of many decision-
making factors (natural, social and human factors) before, during and after
the occurrence of emergency events, some influencing factors are difficult to
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measure quantitatively, and the resulting demand for emergency repair spare
parts of power equipment is also fuzzy. Therefore, how to solve the fuzziness
of emergency repair spare parts of power equipment demand information is
the second major problem.

The innovation of this article is as follows: based on the core scenario set
that triggers spare parts demand and spare parts demand, introducing the idea
of fuzzy theory, using an adaptive neural network fuzzy reasoning system to
mine the association rules between core scenarios and spare parts demand
from data, and optimizing the weights of scenario elements through expert
experience. Then, the Bayesian network scenario inference model trained on
the dataset is combined with fuzzy association rules to establish a scenario
analysis based prediction model for spare parts demand in power equipment
emergency repairs.

This article aims to propose a reliable method for predicting the demand
for spare parts in power equipment emergency repairs. A scenario analysis
based method for predicting the demand for spare parts in power equipment
emergency repairs is constructed, and an adaptive neural network fuzzy
reasoning system is innovatively combined with expert experience to conduct
data experiments to verify the feasibility and effectiveness of the model.
The superiority of the prediction method constructed in this article has been
verified through comparative analysis

The purpose of this paper is to propose a reliable prediction method for
power equipment emergency repair, and innovatively combine the adaptive
neural network fuzzy inference system with expert experience, and consider
the weight of different scenario elements to achieve more accurate prediction
of emergency repair spare parts of power equipment.

2 Related Work

To diagnose and predict equipment faults, it is first necessary to obtain
accurate monitoring data of the equipment’s status. Equipment monitor-
ing data usually includes two types: online data and offline data. Online
data is collected through sensor technology, which can provide real-time
status monitoring for equipment. However, it is easily affected by sensor
reliability and external environmental noise, resulting in high measurement
errors. Offline data is measured through on-site manual inspection or other
physical experiments, and the measurement results are accurate. However,
the sampling cost is too high to achieve real-time monitoring of equipment.
The complementarity between the advantages and disadvantages of the two
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types of data prompts equipment maintenance personnel to integrate them,
improve the real-time and accuracy of equipment monitoring, and reduce data
sampling costs. The main idea of the fusion method for online and offline data
is to use sparse offline data in the time dimension to estimate the overall trend
of device monitoring results. Based on the trend information, the online data
is corrected, and the missing values in the time dimension of offline data are
filled in using the corrected data [4].

In recent years, many valuable methods for fusing online and offline
data have been studied and proposed. Reference [5] proposes an online
and offline data fusion method based on Kriging interpolation analysis.
This method first establishes a connection model between offline data and
online data, calculates the system deviation coefficient of online data, and
then uses Kriging method to interpolate the obtained deviation coefficient to
estimate the overall trend of online data deviation. Finally, based on the trend
information, the online data is corrected, and the missing values of offline
data are filled in with the correction results. Reference [6] considers the
randomness of the correspondence between online and offline data, constructs
a Bayesian spatiotemporal model for the fusion of online and offline data,
estimates the probability distribution of Bayesian model parameters using the
maximum expectation algorithm, and fuses online and offline data based on
the estimation results of the model.

Quantitative analysis methods are mainly divided into two categories:
fault diagnosis methods based on statistical analysis and fault diagnosis
methods based on machine learning. Fault diagnosis methods based on
statistical analysis use feature dimensionality reduction techniques to map
multi-dimensional features of equipment to a low dimensional space (called
the main variable space). Based on the distribution characteristics of the
main variable, statistical measures are constructed to measure the degree of
deviation between equipment operating characteristics and normal features.
The corresponding statistical measures are calculated using the monitoring
data of the tested equipment for fault diagnosis. Common feature dimen-
sionality reduction methods include Principal Component Analysis (PCA),
Partial Least Squares (PLS), Independent Component Analysis (ICA), and
others [7]. The principal component analysis method decomposes the multi-
dimensional feature space of the equipment into a subspace composed of
principal component features and a residual space. By calculating the T2
or Q statistics of the tested equipment in the subspace or residual space, it
describes the degree of deviation between the equipment state and the normal
state for fault diagnosis. Reference [8] applies principal component analysis
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to the fault diagnosis of power transformer equipment, and combines T2
and Q statistics to propose a fault diagnosis method of power equipment
based on combined characteristic indexes. Reference [9] proposes a power
equipment fault diagnosis algorithm based on principal component analysis,
which reduces the dimensionality of power equipment data feature vectors
and improves the training and testing accuracy of the algorithm. Refer-
ence [10] proposes a multivariate process monitoring and fault diagnosis
method based on principal component analysis. This method combines multi-
dimensional state indicators of power equipment into a single indicator,
and integrates feature information between different indicators to diagnose
equipment faults.

The support vector machine model projects the normal state data and fault
data of equipment into a high-dimensional space, exploring a hyperplane that
can separate normal and fault data, and using it as a fault decision boundary
for equipment fault diagnosis. Reference [11] proposed using support vector
machines for feature classification of power equipment operation data to
achieve fault identification of power equipment. Reference [12] proposed
a support vector machine based method for predicting and diagnosing dis-
solved gas concentrations in power transformer oil, which solves the problem
of equipment fault diagnosis under small sample conditions. Reference [13]
proposes using genetic algorithms to optimize the parameters of support
vector machine models and improve the accuracy of support vector machine
diagnostic results. Artificial neural network model describes the complex cor-
respondence between network inputs and outputs by simulating the working
mode of human brain neurons. In fault diagnosis applications, the input of
artificial neural networks is device monitoring data, and the output is device
health status.

Equipment monitoring data is transformed into equipment fault diagnosis
results through non-linear weighting of each layer structure. Reference [14]
introduces artificial neural networks into fault diagnosis based on neural
networks. This method collects historical data of power equipment, and
determines whether the equipment is in a fault state based on the trained
neural network. Reference [15] considers the issue of insufficient equipment
historical data and proposes to use resampling method to obtain more equip-
ment historical data. By training artificial neural networks with the sampled
equipment data, the accuracy of equipment fault diagnosis can be improved.
Reference [16] proposes a power equipment diagnosis model that combines
principal component analysis with neural networks. The model first extracts
key performance indicators of the equipment using principal component
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analysis, and then trains a neural network using observation data of the key
indicators. After that, the trained neural network is used for fault diagnosis.

Hidden Markov model is a statistical model composed of Markov chains
containing multiple hidden states. This model decomposes the process of
equipment from normal state to fault state into multiple hidden states that
cannot be directly observed. Each hidden state has different probability dis-
tributions for equipment monitoring data. The model describes the dynamic
characteristics of equipment from normal to faulty states through the tran-
sition probability between hidden states, and estimates the probability of
equipment being in different hidden states based on monitoring data for fault
diagnosis [17]. Reference [18] proposed a method based on Hidden Markov
Model. This method describes the multiple stages of equipment development
from normal to fault through the hidden states in the Hidden Markov Model,
and evaluates the health status of the equipment by calculating the likelihood
of monitoring data of the tested equipment under different hidden states.
Reference [19] proposes a fault diagnosis method that combines wavelet
analysis with hidden Markov models for complex fault characteristics of
power equipment. Firstly, the feature vector of equipment data is extracted
by wavelet decomposition, and then the hidden Markov model is used to
identify the fault pattern, and on this basis, the fault diagnosis is carried
out. Reference [20] combines power equipment oil chromatography analysis
technology with hidden Markov models. Firstly, oil chromatography analysis
is used to extract feature vectors from equipment monitoring data. Then, the
extracted feature vectors are used to train the hidden Markov model, and the
probability of the equipment in different hidden states is evaluated based on
the training results.

3 Model Construction

3.1 Model Construction Ideas

The demand for emergency repair spare parts of power equipment mainly
comes from the occurrence of power emergencies. Therefore, to predict the
demand for emergency repair spare parts of power equipment, we must
first analyze and sort out various external manifestations, characteristics,
development trends, and possible impacts of power emergencies, and con-
struct scenario or situation descriptions of events, identify abnormal scenarios
that may generate emergency repair spare parts requirements. The abnormal
scenario of emergency repair spare parts of power equipment is caused by the
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Figure 1 Ideas for building a demand prediction model for emergency repair spare parts of
power equipment based on scenario analysis.

abnormal state of inventory data and power equipment status data. Scenario
evolution trend analysis and association rule mining are the main methods to
predict the demand of emergency repair spare parts in this paper. The idea of
building a demand prediction model of emergency repair spare parts of power
equipment based on scenario analysis is shown in Figure 1:

(1) Scenario theme determination
This article takes spare parts for power equipment repair as the scenario
theme, and needs to define the research scope and conduct in-depth
research on the characteristics of spare parts for power equipment repair.
Based on sufficient collection of information related to the scenario
theme, scenario analysis should be carried out

(2) Definition of Decision Scenarios
Based on the theme of the scenario, explore the mechanism of the
development of power emergencies, analyze the possible uncertainty
factors that may occur in the future and the potential impact on spare
parts for power equipment repair, identify the scenario elements that
have a significant impact, and define decision-making scenarios based
on the scenario elements.
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(3) Scenario Evolution Analysis
Based on the constructed decision scenario, the possible path of sce-
nario development is deduced through Bayesian network, and the core
scenario that can lead to the demand for emergency repair spare parts
of power equipment is analyzed. If the decision scenario can trigger the
demand for emergency repair spare parts of power equipment, it is the
core scenario; if the decision scenario cannot trigger the demand for
emergency repair spare parts, it is the self-healing scenario.

(4) Mining association rules between scenarios
The core scenario represents the scenario that can generate spare parts
demand, but the specific demand for emergency repair spare parts still
needs to be predicted by quantitative models. Using fuzzy reasoning to
mine the association rules between the core scenario and the demand
for emergency repair spare parts, and combining expert experience to
improve the association rules, the core scenario is associated with the
demand quantity.

(5) Prediction model construction
Based on the association rules between mining scenarios, a comprehen-
sive model is constructed to predict the demand for emergency repair
spare parts for power equipment, achieving the prediction of demand
under different scenarios. When it is necessary to make a decision on the
demand for emergency repair spare parts, the relevant data can be input
into the model to obtain the predicted demand for power equipment
emergency repair spare parts.

Power emergency is an uncertain event usually caused by the sudden
occurrence of internal and external factors in the power system. It will
cause serious harm loss or impact to the part or the whole of the power
system. These factors may include natural disasters, man-made sabotage,
equipment failure, etc., and the impact of events may include power outage,
equipment damage and other aspects. As electric power emergency is the
prerequisite for generating the background demand for emergency repair of
electric power equipment, it is necessary to analyze the influencing factors of
emergency repair demand of electric power equipment from the perspective
of electric power emergency. The scenario of power system is composed
of scenario elements. Determining the scenario elements that affect spare
parts demand and constructing scenarios can realize the scenario evolution
analysis of power equipment demand. By analyzing the demand data for
emergency repair spare parts caused by power system emergencies at home
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Figure 2 Scenario elements affecting the demand for emergency repair spare parts of power
equipment.

and abroad in recent years, as shown in Figure 2, the following scenario
elements affecting the demand for emergency repair spare parts for power
equipment are summarized from the perspective of power emergencies:

3.2 Model Building

In view of the complexity and dynamic characteristics of power emergency
scenarios and their impact on the decision-making of emergency repair spare
parts of power equipment, the definition of scenarios is considered from
both static and dynamic aspects. Specifically, the scenario model includes
not only static aspects such as the definition of attribute names and attribute
states in scenario elements, but also dynamic aspects such as the relationship
between different elements in the process of scenario evolution. These two
aspects are the common description of situational elements in the situational
deduction problem, and they are also the core basis for solving the situational
deduction problem. According to the above scenario elements, the decision-
making scenario set of the demand for emergency repair spare parts of power
equipment established based on the common knowledge element model is
S, S is composed of each decision-making scenarios, and the definition of
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decision-making scenario S is shown in formula (1):

s = (st, E,EA,R, q), s ∈ S (1)

Among them, st represents the spatio-temporal elements of the scenario,
including the decision-making time t and the scenario occurrence place l,
E = {E1, E2, E3} = {Ei|i = 1, . . . , n} represents the collection of scenario
elements that constitute the scenario, including disaster-causing factor-related
elements E1, disaster-bearing body-related elements E2, disaster-pregnant
environment-related elements E3, ei represents scenario elements. EA rep-
resents the attribute set of all elements of the decision-making scenario S,
EA = {eai|i = 1, . . . , n}, eai represents the attribute set of the scenario
element ei, eai = {aij |j = 1, . . . , |eai|}, and aij represents the j-th attribute
of the corresponding scenario element ei.

In the scenario analysis of emergency repair spare parts of power equip-
ment, there is a causal relationship between each adjacent scenario. Scenario
elements are the basis of constructing scenarios, and there are certain asso-
ciations among them, which lead to the changes of the status of scenario
elements. Through the analysis of the state changes of scenario elements, we
can understand the evolution process between scenarios, and these changes
are driven by the complex role relationships between scenario elements,
so these role relationships are also the cause of causality between adjacent
scenarios. Therefore, the relationship between situational elements is the
core of situational evolution analysis. Concretely speaking, the result of the
functional relationship between the situational elements is the functional rela-
tionship between the attributes of the elements. Different scenario elements
will interact within the scenario, and the result of this interaction is the change
of the attribute state of the elements in the situation, thus evolving from the
situation s to the next situation. The relationship between the elements of the
situation and the situation is shown in Figure 3.

Decision-making scenarios need to include the relational information
between scenario elements to achieve deduction between scenarios. This
paper uses a ruler to express the relationship between scene elements, and
uses an incidence matrix to describe it, as shown in formula (2):

R =


r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . . . . . . . .
rn1 rn2 . . . rnm

 (2)
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Figure 3 Demonstration of the relationship between scenario elements and scenarios.

Among them, rij represents the association relationship between the
scene element ei and the scene element ej , and n represents the number of
elements contained in the scene.

By giving the values of some variables, the probability distributions of
others can be deduced. The scenario-based Bayesian network model con-
structed in this paper includes three parts, namely SBN = {V,A, P}. Among
them, A represents the variables of different emergency repair spare parts
decision scenarios in this paper, each network node V has a conditional
probability table.

Figure 4 is an example of the evolution path of a scenario. The initial
scenario is extracted from the input decision-making scenario, the scenario
elements are comprehensively considered, and the evolution relationship
between scenarios is analyzed by using Bayesian networks to obtain the
evolution path in the figure. There are two types of output scenarios: self-
healing scenarios and core scenarios. If the deduced future scenario cannot
trigger the demand for spare parts, it is defined as a self-healing scenario,
such as Sm in the figure, and the q of this scenario is 0. If the deduced
future scenario will trigger the demand for spare parts, it is defined as the
core scenario, such as Sn in the figure, and recorded in the core scenario set
S′. Moreover, the q of this scenario is 1, and the initial scenario S0 of the core
scenario is recorded at the same time, which is convenient for deploying spare
parts in advance and improves the efficiency of emergency decision-making.

After the scenario deduction analysis, the scenario of q = 1 is extracted
to form the core scenario set S′. For the core scenario in S′, we modify some
parameters to facilitate the reasoning of fuzzy rules in the later stage. For core
scenario s′, where q is 1, we remove the attribute q and modify its attribute
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Figure 4 Example of scenario evolution path.

element, as shown in formula (3):

s′ = (st, E,EA,R), s′ ∈ S (3)

In order to avoid data redundancy, according to the collected data of
power system historical accidents and spare parts requirements, we combine
the spatial and temporal distribution of demand in the core scenario set to
establish the spare parts requirement set D of power equipment. The spare
part requirement set D is composed of a single requirement d, and the spare
part requirement dis defined as formula (4):

d = (st,N,Q,M), d ∈ D (4)

The demand data for emergency repair spare parts can be expressed as
d. Among them, st represents the time and location of the emergency repair
spare parts demand, which echoes the elements in the core scenario s, and
N represents the name of the required emergency repair spare parts, such
as tension clamps, overhead conductors and other spare parts. Q represents
the demand for emergency repair spare parts, and M represents the unit of
measurement for emergency repair spare parts. For example, the common
unit of measurement for tension clamps is pair, and the unit of measurement
for overhead conductors is kilometers.

3.3 Fuzzy Analysis

In this paper, expert experience and adaptive neural network fuzzy infer-
ence system (ANFIS) are combined to obtain fuzzy rules and improve the
prediction efficiency of emergency repair spare parts.
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Figure 5 Fuzzy model construction flow chart.

The process of ANFIS fuzzy model construction is shown in Figure 5.
Among them, the core scenario and spare parts demand data after determining
the weight of scenario elements are input into the model as training samples,
the ANFIS system is constructed and the model parameters are trained, the
fuzzy rule base is obtained, and the error index E is calculated. When the
error index is less than or equal to the error target £, the model training is
over. When the error index is greater than the error target, continue to train
the ANFIS model until the ANFIS model that meets the error target is trained.

We assume that the inputs of the fuzzy inference system are x and y, and
the output is z (obtained by weighted average of the outputs of each rule).
There are two IF-THEN rules, as shown by formula (5) and formula (6):

Ruel1 : IF x is A1 and y is B1 THEN z1 = p1x+ q1y + r1 (5)

Ruel2 : IF x is A2 and y is B2 THEN z2 = p2x+ q2y + r2 (6)

Among them, Ai and Bi are the fuzzy numbers of the antecedent, zi is
the exact number in the consequent. The equivalent ANFIS model structure
is shown in Figure 6. The input vector of the model in the figure is [x, y], the
weights w1 and w2 can be obtained by multiplying the membership function
µ in the antecedent, w̄1 and w̄2 are the proportion of the weights of each rule
to the total weights, and the output z is the weighted average of z1 and z2.
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Figure 6 ANFIS model structure corresponding to the first-order Sugeno fuzzy model.

The functions of each layer are described separately below:

Layer 1: Fuzziness. For each fuzzy set, a function is defined to describe the
degree to which a given input belongs to the fuzzy set (called membership
degree), which is called membership function. The node i of the first layer
is calculated in formula (7), where Ai is the fuzzy set, Q1

i is the value of the
membership, the input x or y belongs to fuzzy Ai.

Q1
i =

{
µA1(x), i = 1, 2
µB1−2(y), i = 3, 4

(7)

Layer 2: The rule confidence corresponding to the i-th node is as in formula
(8), where “•” can be any T-normal form operator that performs a fuzzy
“AND”.

Q2
i = wi = µA1(x) · µB1(y), i = 1, 2 (8)

Layer 3: Normalized confidence. The model calculates the ratio of the
confidence to the confidence, as in formula (9):

Q3
i = w̄i =

wi

wi + w2
, i = 1, 2 (9)

Layer 4: Calculating rule output. As shown in formula (10), where w̄i is the
normalized confidence of the output, {piqiri} is the consequential parameter,
which needs to be updated:

Q4
i = w̄izi = w̄i(pix+ qiy + ri) (10)

Layer 5: Calculating the total output. The model sums the output of the fourth
level to obtain the total output, as shown in the formula (11):

Q5
i = z =

∑
i

w̄izi =

∑
iwizi∑
iwi

, i = 1, 2 (11)
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4 Model Experiment Analysis

4.1 Model Construction

In order to improve the immersion of human-computer interaction process,
the simulation construction of virtual model in augmented reality system
needs to pursue the highest possible fidelity. The power scenario and equip-
ment model experimentally constructed in this paper adopts the process steps
shown in Figure 7. For three-dimensional modeling, the shape should be
the same as the actual object as much as possible, and the accuracy of the
model-related data should be guaranteed to reach the corresponding accuracy.

The architecture of the power emergency repair training system based
on augmented reality designed is shown in Figure 8. The system runs on
the smartphone terminal, and triggers various interaction mechanisms to

Figure 7 Roadmap for 3D power scenario construction.

Figure 8 Architecture of power emergency repair training system based on augmented
reality.
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Table 1 Server host test environment
Project Hardware and Software Configuration
Processor Intel i5 4 Core 2.8 GHz
Memory 32GB RAM
Hard disk 1TB
Operating system Windows 7
Performance testing tool LoadRunner 10.0

complete the corresponding functions by coordinating the visual input from
the camera with the resources stored in the database. Relying on sensors such
as the gyroscope of the smartphone device, users can observe the augmented
reality environment from different perspectives through the mobile phone.

The Web server host and database server host in the system test work need
to be custom configured and deployed, Server host test environment is shown
in Table 1.

4.2 Results

The Bayesian network-based scenario evolution model is combined with
an adaptive neural network-fuzzy inference system improved by experts’
experience. First, the scenario evolution is used to analyze whether there
will be emergency repair spare parts demand, and then the adaptive neural
network-fuzzy inference system is used to mine the association rules between
core scenarios and emergency repair spare parts demand, so as to realize the
prediction of emergency repair spare parts demand for power equipment. The
test set is input into the built emergency repair spare parts demand prediction
model, and the predicted demand Q’ is compared with the actual demand Q
to obtain the results shown in Figure 9.

The demand prediction environment of emergency repair spare parts of
power equipment is complex, and it has high uncertainty and long-term zero
demand, so many influencing factors need to be considered at the same
time. We proposes a scenario-based prediction method for the demand of
spare parts for emergency repair of power equipment. This method uses
scenario evolution to screen out the scenarios that generate the demand for
emergency repair spare parts, and then predicts the demand for emergency
repair spare parts of electric power equipment. Therefore, this method can
accurately predict the demand for emergency repair spare parts of electric
power equipment. It is necessary to compare the demand prediction method
proposed in this paper with the commonly used demand prediction methods
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Figure 9 Comparison between actual demand Q and predicted demand Q’.

Table 2 Comparison of prediction effects of different models
The predictive Support vector

model proposed machine
in this paper regression model

MAE (Mean Absolute Error) 1.07 3.70
RMSE (Root Mean Squared Error) 2.38 6.77

in the power field, and analyze the differences between the two prediction
effects.

In the power industry, support vector regression (SVR) is commonly used
to predict power demand. SVR method can not only process linear separable
data, but also process nonlinear separable data. In the SVR method, a bound-
ary band is constructed by minimizing the prediction error and maximizing
the interval, and the data points are mapped into a high-dimensional space
to achieve regression analysis. Support vector regression model is used as a
comparison model for analysis. Consistent with the above data analysis and
processing process, the same training set and test set are input into the support
vector regression model. Then, this paper compares the SVR model with the
demand prediction model of emergency repair spare parts. The prediction
effect of SVR and the prediction model proposed on the test set is shown in
Figure 10.

The prediction indicator of the scenario analysis method and the SVR
method were calculated, and the comparison of the prediction indicator of
the two methods is shown in Table 2.

In order to examine the performance of the system under high pressure
environment, a mixed pressure test case as shown in Table 3 is designed,
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Figure 10 Comparison curve of prediction effects of the two methods.

Table 3 Test results table of system performance
Response Time (ms)

Concurrency Maximum Average
20 363 180
40 351 193
60 384 199
80 390 224

100 407 235
120 398 242
140 947 602
160 1107 686
180 1063 750
200 1201 924

that is, a multi-step pressurization form is used to examine whether the
performance of the system under different pressures meets expectations.

4.3 Analysis and Discussion

As shown in Figure 9, the RMSE of the calculated comprehensive test set
is 2.40, and the MAE is 1.08. Figure 9 is the comparison curve between the
actual demand Q and the predicted demand Q’ of the test set data. It can be
seen that the predicted demand curve basically fits the actual demand, and
a large number of zero values that do not generate emergency repair spare
parts demand are also separated through scenario evolution analysis, and the
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prediction accuracy is high, which verifies the effectiveness of the proposed
method.

From the comparison between the predicted demand and the actual
demand in Figure 10, it can be seen that due to the large number of zero-
value demands in the data, the predicted value of SVR is generally low,
which makes the prediction effect of the SVR method not good, and some
predicted values are negative value. However, the demand prediction method
of emergency repair spare parts of power equipment based on scenario
analysis proposed in this paper has good prediction effect. In particular, it uses
scenario evolution to analyze whether there is a demand for power equipment
emergency repair spares parts, so that the zero-value demand prediction is
accurate and will not affect the core scenario non-zero demand prediction, so
the prediction effect is good.

From the results in Table 2, it can be seen that due to the large number
of zero values in the dataset, the MAE and RMSE of the support vector
regression model are relatively high, and the prediction effect is poor. The
prediction model based on scenario analysis has a relatively good effect, its
MAE and RMSE are smaller, and its prediction accuracy is higher than that
of support vector regression model. The prediction model based on scenario
analysis will produce the core scenario of the demand for emergency repair
spare parts and predict the demand for emergency repair spare parts in stages,
which reduces the impact of a large number of zero values on the prediction
effect of the model and makes the demand prediction method proposed in
this paper can be effectively predicted. The validity and superiority of the
model are proved by the analysis of the above example data. The results
show that compared with the traditional method, the proposed method can
greatly improve the accuracy of the demand prediction of emergency repair
spare parts, and can provide a basis for the purchase and scheduling of
emergency repair spare parts in the subsequent power grid system. Based on
the analysis of spare parts demand prediction model for emergency repair
of electric power equipment and the spare parts management of electric
power enterprises, three suggestions are put forward. In terms of technology
application, power enterprises should strengthen the application of digital
technology in the management of emergency repair spare parts of power
equipment. Through powerful data analysis and scientific prediction model
construction, they should analyze the scenarios that may generate demand for
emergency repair spare parts as early as possible and predict their demand,
so as to reserve an appropriate amount of emergency repair spare parts of
power equipment in advance. In terms of data accumulation, due to the
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lack of historical data of emergency repair spare parts of power equipment,
it is necessary to strengthen the collection and accumulation of historical
data related to emergency repair spare parts of power equipment. More-
over, enterprises need to consider the impact of power emergencies on the
demand for emergency repair spare parts of power equipment, and improve
the accuracy of the demand prediction model for emergency repair spare
parts of power equipment by continuously inputting internal and external
data related to emergency repair spare parts of power equipment. In the
selection of prediction methods, due to the intermittent and uncertain demand
of emergency repair spare parts of power equipment, it is difficult to predict
its demand. Therefore, when choosing the demand prediction method for
emergency repair spare parts of power equipment, enterprises can use the
method of considering whether and how much the demand for emergency
repair spare parts of power equipment is generated to analyze the generation
process of emergency repair spare parts of power equipment demand and use
combined methods to predict.

From the system performance test results shown in Table 3, it can be seen
that when the number of concurrent users in the system is around 160, the
peak logic operation response time of the system exceeds 1 second. However,
according to the actual situation of the distribution network emergency repair
task management business of the power supply company, the concurrent
traffic of commanders in the system and the concurrent traffic of remote
PAD devices are basically maintained at 100. Therefore, the data processing
time of the system in the environment of 100 concurrency meets the relevant
standards in the performance requirement analysis, and the system is still
running normally when the concurrency reaches 200, and there is no crash or
no response. If the business environment of the system changes in subsequent
applications, the performance of the system can be improved by improving
the hardware and software configuration of the system server.

5 Conclusion

This paper innovatively combines the adaptive neural network fuzzy infer-
ence system with expert experience, and considers the weights of different
scenario elements to achieve more accurate prediction of emergency repair
spare parts of power equipment. In addition, this paper validates the superi-
ority of the prediction method constructed in this paper through experiments,
and the method proposed in this paper is affected by data. However, although
the prediction method based on scenario analysis proposed in this paper
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predicts the demand for emergency repair spare parts, it needs to ensure that
the input data of the model is large when the prediction results are good.
Therefore, the prediction model can be continuously optimized with the real-
time input data flow by establishing an online prediction model and other
methods.

Although the scenario analysis based prediction method proposed in
this article predicts the demand for emergency repair spare parts, the more
input data the model has, the better the prediction effect of the model. This
can be achieved by establishing online prediction models and continuously
optimizing the prediction model with real-time input data flow.
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