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Abstract

With the rapid development of smart grid technology, in-depth research
on intelligent data-driven monitoring and status evaluation mechanisms for
distribution networks and distributed resources has become a key factor in
improving the operational efficiency, safety, and reliability of power systems.
This article aims to achieve precise management and optimized scheduling
of distribution networks and distributed resources by establishing an effi-
cient and intelligent monitoring and evaluation system. We have collected
over 10TB of data from multiple smart distribution network pilot projects,

Distributed Generation & Alternative Energy Journal, Vol. 39_6, 1153–1178.
doi: 10.13052/dgaej2156-3306.3963
© 2025 River Publishers



1154 Junqiu Fan et al.

including real-time operational data, equipment status information, user elec-
tricity usage behavior, and more. By adopting advanced data preprocessing
techniques, including data cleaning, integration, and transformation, low-
quality and incomplete data are effectively eliminated, ensuring the integrity
and quality of the dataset. Subsequently, the processed data is deeply mined
and analyzed using a distributed computing framework. The prediction model
proposed in this article provides high-precision predictions of key indicators,
such as load changes and power generation within the distribution network,
with an average prediction accuracy of over 95%. By utilizing clustering
analysis and association rule mining techniques, potential fault points within
the distribution network were successfully identified, furnishing scientific
decision-making support for operations and maintenance personnel. In the
realm of distributed resource state assessment, a novel state assessment model
grounded in multi-source data fusion has been introduced. This model com-
prehensively considers the operational characteristics of distributed energy,
environmental factors, and grid constraints and can comprehensively and
accurately evaluate the status of distributed resources. The experiment found
that this system significantly improved the utilization of distributed resources
and the overall operational efficiency of the power grid, with an average
increase of over 10%.

Keywords: Distributed distribution network, data driven, state assessment,
mechanism optimization.

1 Introduction

All kinds of distributed resources are connected to the distribution network,
which increases the power fluctuation of the distribution network and changes
the direction of power flow, making the traditional “passive access” operation
mode of the distribution network unable to meet the dispatching needs.
Represented by fans, photovoltaics, energy storage, and gas turbines, the
operating characteristics of these distributed resources can be summarized
in the following three aspects:

First, the output is highly uncertain. Due to the limitation of existing
prediction technology, the prediction is difficult to completely match the real
output situation, and the influence of prediction error cannot be ignored [1];
At the same time, the power fluctuation caused by the prediction error also
affects the safe operation of the distribution network, and even affects the
connected superior transmission network through the tie line;
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Second, the operation response speed is relatively fast. Distributed
resources in the distribution network can often respond in real time, and the
climbing and response speeds are far faster than those of traditional thermal
power units [2, 3]. As a result, the traditional dispatching method cannot
fully tap the potential of these distributed resources, and the real-time link
abandons wind and light greatly or the power fluctuates greatly, resulting in a
waste of resources and affecting the safety of distribution network operation;

Third, there are various operating entities. Represented by user-side pho-
tovoltaics, many distributed resources in the existing distribution network
are managed by entities other than distribution system operators, which may
cause conflicts of interest between different operating entities. Distributed
resources may not be directly controlled by distribution system operators,
resulting in unsatisfactory scheduling results.

All these factors underscore the urgent need for a transformation in
existing scheduling methods. In this backdrop, the concept of the “active dis-
tribution network” emerged. Its core significance lies in actively and flexibly
controlling the internal resources of the distribution network, thereby fully
harnessing the scheduling potential of these internal resources, as discussed
in [4, 5]. Therefore, on the basis of the existing scheduling methods, this
paper conducts research on the coordinated scheduling methods of active
distribution networks with multiple types of distributed resources from the
perspectives of resource optimization, scheduling strategies, and optimization
methods. The main meanings are as follows:

(1) From the aspect of optimizing resources, fully consider the available
resources in the distribution network, including the internal distributed
resource upper-level network interface, and internal demand response
resources, so that existing resources can be used to reduce the impact of
uncertainty;

(2) At the strategic level, flexibly devise operational strategies for the dis-
tribution network by optimizing the system across various time scales
and coordinating the demand response plan with the scheduling pro-
cess. This approach aims to mitigate power fluctuations resulting from
discrepancies between scheduled and actual outputs, harmonize the
output characteristics of diverse distributed resources, and enhance the
flexibility of system scheduling strategies.

(3) From the method level, when optimizing the distribution network with
multiple entities, consider the distribution of interests among different
entities, and use economic means to indirectly guide distributed resource
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operators, which is conducive to realizing the relationship between
producers and consumers and dispatching operators [6, 7].

To sum up, with the gradual increase in the penetration rate of dis-
tributed resources, how to make full use of existing resources, consider the
operating characteristics of different distributed resources, and model the
interactive interfaces between different operating entities, so as to realize the
flexible scheduling of active distribution networks with multi-type and high-
penetration distributed resources is a key issue in the operation of distribution
networks [8, 9]. It also has important theoretical significance and practical
application value for the development of distributed resources and the safe
operation of future power grids.

2 Distribution Network Dispatching Considering Demand
Response and Customer Comprehensive Satisfaction

2.1 Scheduling Architecture of Active Distribution Network
Considering Demand Response

The proposed scheduling architecture is divided into two phases: a day-ahead
phase and a real-time phase. The purpose of this is to coordinate the resources
on the power generation side and the demand side according to their response
speed, and to minimize the impact of forecast errors.

Figure 1 shows optimization dispatching flow chart of intelligent data-
driven distribution network. During the day-ahead stage, utilizing forecast
data for the upcoming 24 hours, the resources on both the power generation

Figure 1 Optimization dispatching flow chart of intelligent data-driven distribution network.
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and demand sides are comprehensively optimized. The objective of this
day-ahead optimization phase is to minimize the operational costs of the
distribution network and establish action plans for slow-response resources,
as outlined in [10]. At each time point, combined with latest forecast value,
the optimization variables of the distribution network are updated, including
the purchased power of the transmission network side and the output of
distributed resources.

2.2 Demand Response Model Based on Flexible Electricity Price
and Integrated Customer Satisfaction

Electricity price elasticity refers to the degree to which electricity load
changes due to changes in electricity prices. After linearizing the curve of
the user’s response to the price of electricity, the elasticity coefficient can be
defined as (1):

ε =
∆P

P0

ρ0
∆ρ

(1)

Where ε is the elasticity coefficient, P0 is the original load and electricity
price, ρ0 and ∆p are the changes in load and electricity price. Since the
change of electricity price in some periods may lead to the change of elec-
tricity consumption behavior in other periods, the demand response model of
users in one day can be modeled as an elastic matrix as shown in (2), which
is used to quantify the change of electricity consumption behavior when the
electricity price changes.
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(2)

When users are guided to change their electricity consumption behavior
by adjusting electricity prices, user satisfaction is often taken into account
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[11]. However, the existing user satisfaction indicators cannot comprehen-
sively quantify user satisfaction. The three indicators are as follows:

(1) Satisfaction with electricity consumption methods:

In order to reflect the degree to which users change their electricity consump-
tion behavior, the satisfaction degree of electricity consumption mode can be
established as shown in (3).

Su = 1−
∑T

i |∆PLoads
i,I |∑T

i

∑N
i PLoads

i,I

(3)

Su represents the satisfaction of electricity consumption mode, ∆PLoads
i,I

is the standard deviation of actual electricity consumption, indicates the
volatility of electricity consumption,

∑N
i PLoads

i,I is the average of actual
electricity consumption.

(2) Electricity cost satisfaction:

Consumers’ electricity costs affect their satisfaction. In existing studies such
as [12, 13], the satisfaction of electricity cost is composed of the change in
electricity price divided by the benchmark electricity price. However, because
the adjustment range of electricity price is not from zero to the benchmark
electricity price, the change range of these user electricity satisfaction indica-
tors is not [0, 1], which cannot intuitively reflect the change of user electricity
cost satisfaction. Therefore, in this chapter, the ratio of the price change to
the allowable range of price changes is regarded as cost satisfaction. The
derivation process of this cost satisfaction is shown in (4) and (5).

ρLoadsmax ,t = ρLoadsbas,t +∆ρLoads0 (4)

ρLoadsmin,t = ρLoadsbas,t −∆ρLoads0 (5)

Finally, in order to limit the customer cost satisfaction within the range of
[0, 1], the benchmark satisfaction can be set to 0 and the customer’s electricity
cost satisfaction is shown as (6).

Sc = 0.5−
∑r

i ∆ρLoadsi∑r
i (ρ

Loads
max ,l − ρLoadsmin,l )

(6)

Among them, Sc represents satisfaction with electricity bills, ∆ρLoadsi
represents the amount of change in electricity bills, ρLoadsmax ,l represents the



Research on Optimization of Intelligent Data Driven Monitoring 1159

Figure 2 Backby space-time coordination strategy.

customer’s expected or benchmark electricity bill, and ρLoadsmin,l represents the
actual electricity bill paid by the customer.

It can be seen from (6) that the upper and lower limits of electricity
consumption satisfaction are 1 and 0, respectively, representing the most
satisfactory and least satisfactory situations, respectively.

(3) Comprehensive user satisfaction:

Although the above two indicators can reflect the user’s satisfaction with
electricity consumption behavior and economic cost, in real life, the user’s
satisfaction is often affected by many factors [14]. If these satisfaction
indexes are constrained separately, not only the trade-off relationship of these
satisfaction indexes is ignored, but also the scheduling flexibility is damaged.

Figure 2 shows backby space-time coordination strategy. For example,
when guiding users to transfer loads from peak hours to other periods,
the satisfaction of electricity cost may have met the requirements, but due
to the limitation of satisfaction with electricity consumption methods, the
amount of load transfer by users is very limited [15, 16]. On the contrary,
the method proposed in this chapter combines the above two indicators into
a comprehensive customer satisfaction rate, and compensates the loss of
power consumption mode satisfaction rate by increasing cost satisfaction
rate, thereby improving scheduling flexibility while protecting the interests
of users. The comprehensive user satisfaction presented here (7) is shown.

Sa = γuSu+γcSc (7)

Among them, Sa represents the satisfaction of users with the electricity
bill after rectification, γu represents the amount of electricity used by users
before the renovation, γc represents the satisfaction with the environmental
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protection of electricity before the renovation, Sc represents the evaluation
value of the rationality of electricity bills, and represents the evaluation value
of service quality.

The setting of the two weighting coefficients can be selected according
to the specific situation, such as fitting according to the user’s perception
of overall satisfaction. Consumers enter into interruptible contracts with net-
work operators to reduce load during peak hours and receive compensation.
The interruptible load model is shown in (8).

0 ≤ P IL
i,t ≤ SIL

i,tP
IL,prod
i,t (8)

Among them, P IL
i,t represents the interruptible load at time t, SIL

i,t rep-
resents the electricity price or electricity market price signal at time t, and
P IL,prod
i,t represents the load level at time t. Because the state of interruptible

load can be controlled directly rather than guided by economic means, the
satisfaction of interruptible load is not taken into account.

2.3 Optimization Analysis Based on Source Load Characteristic

In the smart distribution network, the difficulty of realizing joint optimiza-
tion of each component has a certain gap, and the difficulty of optimizing
management for the same component is also different because it will be
affected by time period factors. Different from the traditional distribution net-
work, the components in the smart distribution network have more complex
characteristics and are diversified [17]. The following will explain it in detail.

(1) Distributed Generation System

According to whether it can support active management, distributed genera-
tion systems existing in distribution networks are divided into two categories:
controllable distributed generation and uncertain distributed generation [18].
In fieldwork, the analysis of these two types is conducted based on practical
circumstances rather than being strictly delineated by technical data indi-
cators. For distributed power generation utilized at the 400V low voltage
level, there exists not only distributed power generation that operates fully
in accordance with natural conditions, but also controllable distributed power
generation. When users only pay attention to their own needs, even if they are
equipped with a distributed power supply that can provide support for active
management, they may generate full power without basically controlling
constraints.
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Figure 3 Schedule architecture.

Figure 3 shows schedule architecture. There are generally two types
of operating modes for distributed generators operating at medium voltage
level of 10kV, which are small-scale distributed generators and large-scale
distributed generators. Among them, the access voltage of the former has a
higher level, and its access capacity is higher than that of the low-voltage
grid-connected power supply, and it has a certain responsiveness to active
management [19]. In addition, for large-scale distributed generation groups,
the management department of the power grid is responsible for their spe-
cial daily management. At the same time, in order to complete the active
management task, they are equipped with reactive power compensation,
harmonic suppression and other equipment. Unfortunately, under the current
management system, large-scale distributed generation groups have not yet
been widely used in domestic power systems. Wind power output model is
shown in (9).

PwT =
1

2
ρ · πR3ν3Cp (9)

PwT represents the wind power output at time T, ρ represents the rated power
of the wind turbine, R represents the wind speed at which the wind turbine
reaches its rated power, ν represents the cut in wind speed, and Cp represents
the cut out wind speed.

(2) Energy storage system

In a narrow sense, to provide active participation in optimal scheduling, an
energy storage system is designed and used to stabilize load power [20]. At
the same time, when various distributed power sources are widely used, the
power output can also be stabilized through the energy storage system. In a
broad sense, energy storage covers all equipment that can realize energy stor-
age. For smart distribution networks, we will study energy storage systems
that are not related to users and have a high ability to actively participate



1162 Junqiu Fan et al.

in optimal dispatching. The active power of the photovoltaic power plant is
shown in (10).

Ppv = AηNr (10)

Ppv represents the active power output of the photovoltaic power station
at time v, η represents the conversion efficiency of the photovoltaic power
station,r represents the solar irradiance, and N represents the total installation
area of the photovoltaic power station.

(3) Load element

The operating characteristics of load components in the actual operation of
the power grid are more complex and changeable than those of distributed
generation. According to the different adjustment degrees in the optimal
dispatching, they will be divided into the following types: (a) conventional
loads, which can only be switched by the user’s consumption habits, and
generally cannot be adjusted in optimization; (b) Flexible load, which can be
adjusted appropriately due to factors such as national policies and economic
development needs; (c) Controllable load, this type of load can produce a
strong response to the needs of power grid management, and the reduction of
electricity consumption will not have a greater impact on production and life.
The relationship between electric energy conversion efficiency and electric
power of gas turbine is shown in (11).

Ptur = ηtur ·HV ng ·Dgas (11)

Ptur represents the energy conversion efficiency, ηtur represents the maxi-
mum energy conversion efficiency of the gas turbine, HVng represents the
efficiency at the reference power point g, and Dgas represents the coefficient
describing the rate of efficiency change with power.

The most important thing to realize the optimal dispatching of the dis-
tribution network is the energy storage system. According to the analysis of
different characteristics between regions, choose to set the energy storage
system at the node where the distributed power generation has a large capacity
and is difficult to achieve power balance, so as to maximize the efficiency. It
can fully leverage the important role of energy storage systems in mitigating
power fluctuations. The relationship between the exhaust heat of the gas
turbine and its heat loss coefficient, electric power and output efficiency is
shown in Equation (12).

Qeg =
Ptur · (1− ηtur − ηloss)

ηtur
(12)

Qeg represents the heat loss of the gas turbine, ηtur represents the electrical
power output of the gas turbine, and ηloss represents the heat loss coefficient.
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Distributed generators and loads cannot exert all energy attributes in
the process of optimizing dispatching power systems like energy storage
systems [21]. This is because distributed generators and loads need to ensure
the quality of power service provided and user satisfaction. According to the
above analysis, it can be shown that when participating in optimal scheduling,
the effectiveness provided by each component is different. Among them, the
response of the energy storage system is the most sufficient, followed by the
large-scale distributed power cluster and controllable load, and the lowest
response is the smaller distributed power supply and the load with higher
flexibility [22]. According to the difference of time period and the different
characteristics of components, this chapter proposes an optimal scheduling
strategy based on the characteristics of source and load, and the details are as
follows:

(1) For the distributed generation with small capacity, in order to ensure that
the distributed generation with small capacity can reach full generation
state, different generation strategies are determined according to the time
period [23]. Photovoltaic power generation is used at noon and wind
power is used at night, which is due to its high efficiency and low cost
of photovoltaic power generation at noon, and wind power can provide
greater power generation efficiency at night. In other periods when the
output efficiency of the distributed generation with small capacity is low,
the power factor should be adjusted or its output should be restricted
according to the actual state.

(2) For the energy storage system, it should have the ability to adjust the
power unstable state at any time, but this is not absolute, and it should
be analysed according to the specific situation. During the net load
period with small fluctuations, such as the time range from night to early
morning, the energy storage system’s ability to adjust unstable power is
in a state of steady recovery [24]. During this time period, it could be
guaranteed to restore the energy of the energy storage system to About
40–60% of the total capacity. In addition, the energy storage system
should cooperate with the components in the current period to achieve
mutual assistance during the period with large unstable loads to achieve
stable load fluctuations, thereby ensuring that the energy storage system
achieves stronger adjustment capabilities with lower installation costs.

In Figure 4(a), the X-axis represents the line load rate percentage, the
Y-axis represents the energy efficiency grade, and the Z-axis corresponds to
the failure rate percentage. The blue scatter plot illustrates the distribution
of failure rates as a function of line load rates and energy efficiency levels.
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Figure 4 Visual analysis diagram of resource distribution of intelligent data-driven distribu-
tion network.

Figure 4(b) depicts the relationship between energy access rate, line load rate,
and energy efficiency level through blue scatter points and grey reference
planes. This visualization analysis provides insights into the intelligent, data-
driven distribution network resource allocation. For large-scale distributed
power generation clusters, under the condition of distributed generation, the
difficulty of predicting power generation is relatively low, and the complexity
of control is also reduced. Such components should consistently maintain
a certain power factor adjustment capability and output reduction capabil-
ity [25]. Similar to distributed generation, the management costs arising from
the inherent instability of the power system should be addressed by the power
system itself. Regarding flexible loads, there are two possible operation
modes: during peak hours or off-peak hours. When the load is in idle mode,
power adjustments can be made during optimal scheduling. However, during
peak hours when the load is busy, power adjustments cannot be made at any
time.

3 Cluster Partition and Scenario Method Theory Analysis
Applicable to Intelligent Distribution Network Optimal
Dispatching

The data in this study are derived from multiple distributed networks and
resource monitoring systems, including real-time data of voltage, current and
power factor. We used specialized data acquisition devices and transmitted
data to data centers for storage and analysis. In the data processing stage, the
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raw data is first cleaned and preprocessed to remove outliers and noise, and
the main features are extracted by using data dimension reduction techniques
such as principal component analysis (PCA) and independent component
analysis (PCA) and independent component analysis (ICA). The analytical
methods used, including support vector machine (SVM), random forest (RF),
and neural network (NN), are used to model and predict the processed
data. Data visualization tools such as Matlab and Tableau were also used
to visually present the data and analysis results. This study used the Python
programming language for data processing and analysis and used the machine
learning libraries such as Scikit-learning and TensorFlow to implement the
algorithm.

3.1 Cluster Division Method of Distribution Network

The cluster division of distribution network is to classify the similar nodes
connected to the distribution network into a cluster through a certain index,
and at the same time, different nodes are in different clusters, which realizes
the splitting of the large system into multiple small clusters, and analyzes and
calculates each cluster one by one, which improves the optimization adjust-
ment efficiency and operation economy of the power system. Distributed
generation cluster is a cluster composed of some distributed generation
sources energy storage units and power loads that are geographically close or
have similar or complementary electrical relations for a certain distribution
network area. Reasonable cluster division of the distribution network is the
premise of realizing optimal dispatching of the distribution network [26].
The formation of a large number of distributed generation clusters connected
to the distribution network is generally based on their own characteristics,
network topology, geographical boundaries, etc., and the adjustment between
nodes in different clusters has little influence, or the adjustment efficiency is
low, which makes the optimization and adjustment efficiency low. Clustered
adjustable resources can not only fully absorb new energy, but also weaken
the disturbance caused by distributed generation access to the distribution
network. Therefore, it is of great practical significance for distribution net-
work analysis to reasonably adopt the method of adjustable resource cluster
division, so that each node in the cluster is closely coupled, and the connec-
tion between two nodes that do not belong to the same cluster is sparse, so
that the approximate decoupling between clusters is completed.

Figure 5 shows trend diagram of distribution network fault prediction
based on big data analysis. From the graph, it can be seen that over time,
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Figure 5 Trend diagram of distribution network fault prediction based on big data analysis.

the deviation of fault values exhibits a certain fluctuation trend. At the time
node Time = 5, the deviation of the fault value is −30, indicating that the
predicted fault value at this time is 30 units lower than the benchmark value;
At the time node Time = 10, the deviation of the fault value jumps to+50,
indicating that the predicted fault value is 50 units higher than the benchmark
value. Upon further observation of the data, it was found that the fault value
deviation reached a peak of +80 at Time = 15, and then decreased slightly
to +60 at Time = 20. This trend may indicate that during the monitoring
period, the fault risk of the distribution network experienced a process of first
increasing and then decreasing.

3.2 Optimal Reactive Power Dispatching Method for Intelligent
Distribution Network Considering Uncertainty of Source and
Load

The blowout development of a large number of distributed energy sources
such as rooftop photovoltaics, micro wind turbines, energy storage, and
electric vehicles has caused a huge burden on the smart distribution network,
especially for relatively weak distribution networks, where the load capacity
is insufficient and has not formed a distributed power grid. If the grid-
connected power cannot be fully utilized by the load, the probability of
voltage exceeding the limit will increase [27]. In addition, the power flow
distribution of the system is easy to change, resulting in the change of
network loss. Distributed generation is affected by the external environment
and scheduling requirements, and its power output is random and fluctuat-
ing, which will lead to node voltage fluctuations, which will bring certain
challenges to the safe operation of smart distribution networks.
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Therefore, under the background of increasing the penetration rate of
distributed generation and increasing the interaction between source, net-
work and load, in order to ensure the high-quality power supply of smart
distribution network, this chapter proposes an optimal reactive power dis-
patching method for smart distribution network considering the uncertainty
of source and load. Firstly, the power characteristics of agricultural load,
industrial load, commercial load and municipal living load and distributed
photovoltaic are analysed. According to the difference of time period and
different characteristics of components, the optimal scheduling strategy based
on source-load characteristics is initially proposed. Secondly, considering the
output uncertainty of wind power, photovoltaic power and gas turbine, a reac-
tive power optimization model is established with the goal of minimizing the
total voltage offset of the system and the active power loss of the line, and the
constraint conditions of the safe operation of the grid. BAS-IGA algorithm
is used to solve it. Finally, an improved IEEE 33-bus system [28] is used to
simulate and verify the effectiveness and feasibility of the proposed optimal
scheduling method, which achieves the purpose of controlling voltage level
and reducing network loss by using less reactive power regulation.

To verify the validity of the method of this paper, This paper deploys
the proposed monitoring mechanism in an urban smart grid project. Through
real-time collection of power grid data, including voltage, current, power
factor, etc., the machine learning algorithm is used to analyze the data to real-
ize real-time monitoring and early warning of power grid status. The results
show that this mechanism can accurately identify the abnormal conditions in
the power grid, such as overload, voltage fluctuation, etc., and timely issue
early warning, providing strong support for the power grid operation and
maintenance personnel.

3.3 Uncertainty Analysis of Source Load

Specific material parameters were selected to perform uncertainty analysis
of source load. These parameters are selected on the basis of physical signifi-
cance, impact on system performance, and feasibility of practical application.
To assess the extent to which the different parameters affect the system per-
formance, we performed a parameter sensitivity analysis. This paper selects
a moderate sampling frequency, namely, the data is collected 100 times per
second (Fs = 100Hz). To balance computational efficiency and accuracy, a
data window containing 500 data points was selected (N = 500). The support
vector machine (SVM) was selected, and its regularization parameter C and
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Figure 6 Change graph of real-time data of distributed resource condition monitoring.

the kernel function parameter γ were optimized, and C = 10 and γ = 0.1
were determined as the optimal parameter combination.

Under the situation that smart grid is widely used, how to optimize the
access location and capacity of adjustable resources has become an important
research direction that affects the stable and reliable operation of smart
distribution network. The extremely complex load situation and the access of
various distributed sources make scholars who study the optimization theory
of smart distribution networks face a variety of difficult scenarios, which
greatly increases the challenge of optimal scheduling [29]. The operation
randomness of each component in the distribution network can be described
realistically by using a comprehensive scenario.

Figure ?? shows change graph of real-time data of distributed resource
condition monitoring. At present, there are detailed statistics on the power
industry and power planning. According to the statistical results, power
loads are generally classified into typical load types of agriculture, industry,
commerce, and municipal according to power consumption scenarios [30].
In addition to the above four typical loads, we also study the resident load
as one of the scenarios, because the characteristics of the resident load are
significantly different from other loads and are worth studying. In agricul-
tural load, there are obvious differences in load demand during busy time
(irrigation period) and idle time (non-irrigation period), while other types of
loads show their own changes according to the changes of four seasons.

Figure 7 shows the timing characteristics of the above five typical loads.
According to Figure 7, we can clearly find that different types of loads show
different changing rules. Among them, the uncertainty of industrial load is
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Figure 7 Timing characteristics of the five typical loads.

Table 1 Comparison of the optimization effects of intelligent data-driven monitoring and
state evaluation mechanism

Traditional Machine Learning-based Intelligent Data-driven
Methods Method Approach Approach
Monitoring efficiency
improved

10% 30% 50%

State assessment
accuracy

85.2% 90.5% 95.8%

Response time(min) 120 60 30
Error rate 5% 3% 1%

the lowest, showing a stable trend not only in season but also in time period,
because industrial electricity consumption is not sensitive to seasonal changes
and time period changes. Therefore, when managers manage the power grid,
they usually require an appropriate proportion of relatively stable industrial
loads to be included in the part that constitutes the load, so as to reduce the
uncertainty of load demand. Table 1 shows comparison of the optimization
effects of intelligent data-driven monitoring and state evaluation mechanism.

For agricultural loads, there are significantly different load demands dur-
ing busy hours (irrigation period) and idle hours (non-irrigation period). The
specific analysis is that during busy hours (irrigation period), users’ demand
for electricity has increased significantly, and there are certain fluctuations;
In idle time (non-irrigation period), the demand for electricity is low and the
demand is relatively stable. On the whole, compared with other loads such
as industrial loads and commercial loads, the level of electricity consumption
in agriculture is actually not high. However, the power distribution used in
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agriculture usually has the phenomenon of insufficient transformer capacity,
which may become an obstacle to rural distribution. One of the hidden
dangers to the safe and stable operation of the network, and the reason for this
phenomenon is that people do not pay enough attention to rural development.
In addition, the commercial load has obvious regularity of change. Corre-
sponding to our daily life, businesses usually open at 8–9 am and close at
8–10 pm (different seasons and times are different). This rule clearly reflects
the regular changes in electricity demand for commercial loads. Moreover, for
the time period when the demand for commercial load is low and the demand
is strong, the load will not fluctuate significantly, showing a relatively stable
trend. However, at 7:00 am and around 8:00 pm, commercial load demand
will have significant changes, that is, the load demand will increase rapidly
at 7:00 am and decrease rapidly around 8:00 pm. For a power system, if the
commercial load occupies a major position in the whole system, the changing
characteristics of the commercial load will lead to the instability of the overall
load demand. For residential load and municipal load, there are obvious peak
and trough periods, which are close to people’s production and living rules in
real life.

4 Conclusion

This article delves into advanced mechanisms for intelligent data-driven
monitoring and status assessment of distribution networks and distributed
resources. By integrating advanced technologies such as big data, cloud
computing, and artificial intelligence, an efficient and intelligent monitoring
and evaluation system has been successfully constructed. In terms of data
analysis, the prediction model has demonstrated excellent performance, with
an average prediction accuracy of over 95% for key indicators such as load
changes and power generation in the distribution network. Compared with
the traditional rule-or threshold-based monitoring methods, the proposed
intelligent data-driven monitoring and status evaluation mechanism has the
following advantages:

(1) Adaptive: This mechanism can automatically adapt to the characteristics
of different distributed networks and resources, without manually setting
thresholds or rules.

(2) High accuracy: Through in-depth analysis of data through machine
learning algorithms, this mechanism can accurately identify abnormal
situations and reduce false and missing positives.
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(3) Strong real-time performance: this mechanism can realize real-time
monitoring and early warning, timely detection and treatment of poten-
tial problems, and improve the efficiency of operation and maintenance.

In this study, by mining the association rules, potential fault points in
the distribution network have been successfully identified, providing timely
warning and scientific decision support for operation and maintenance per-
sonnel, effectively reducing the risk of faults. In terms of distributed resource
state assessment, the proposed state assessment model based on multi-
source data fusion comprehensively considers the operational characteristics
of distributed energy, environmental factors, and grid constraints and can
comprehensively and accurately evaluate the state of distributed resources.
Through practical case verification, it has significantly improved the uti-
lization rate of distributed resources and the overall operational efficiency
of the power grid, with an average increase of over 10%, making a signifi-
cant contribution to the sustainable development of the power industry. The
research results of this paper provide strong support for the management and
optimization of smart grid and distributed resources. In the future, we will
continue to optimize the algorithm and data processing speed to improve the
practicability and reliability of the mechanism.

Funding

This work was sponsored in part by The innovation project of China Southern
Grid (GZKJXM20222431).

References

[1] Nareshkumar, K., Roy, N. B., and Das, D. A novel distributed Q-PQV
bus pair approach for optimal planning of distributed generators and
capacitor banks in a distribution network. Computers and Electrical
Engineering, vol. 120, pp. 109718, 2024.

[2] Arunjothi, R., and Meena, K. P. Optimizing capacitor size and placement
in radial distribution networks for maximum efficiency. Systems and
Soft Computing, vol. 6, pp. 200111, 2024.

[3] Atutxa, A., Sanz, A., Sasiain, J., Astorga, J., and Jacob, E. Towards a
quantum-safe 5G: Quantum Key Distribution in core networks. Com-
puter Communications, vol. 224, pp. 145–158, 2024.



1172 Junqiu Fan et al.

[4] Babonneau, F., Gilbert, D., Piller, O., and Vial, J. P. Robust opti-
mal design of a tree-based water distribution network with intermit-
tent demand. European Journal of Operational Research, vol. 319(3),
pp. 834–844, 2024.

[5] Chen, L., Jiang, Y., Deng, X., Zheng, S., Chen, H., and Islam, M. R.
A multi-period restoration approach for resilience increase of active
distribution networks by considering fault rapid recovery and compo-
nent repair. International Journal of Electrical Power & Energy Systems,
vol. 161, pp. 110181, 2024.

[6] Egghe, L. Networks and their degree distribution, leading to a new
concept of small worlds. Journal of Informetrics, vol. 18(3), pp. 101554,
2024.

[7] Fan, P., Yang, J., Ke, S., Wen, Y., Liu, X., Ding, L., and Ullah, T. A mul-
tilayer voltage intelligent control strategy for distribution networks with
V2G and power energy Production-Consumption units. International
Journal of Electrical Power & Energy Systems, vol. 159, pp. 110055,
2024.

[8] Kinga, S., Megahed, T. F., Kanaya, H., and Mansour, D.-E. A. A new
voltage sensitivity-based distributed feedback online optimization for
voltage control in active distribution networks. Computers and Electrical
Engineering, vol. 119, pp. 109574, 2024.

[9] Hu, D., Si, Q., Bao, F., and Zhang, H. Distributed energy-saving speech
enhancement in wireless acoustic sensor networks. Information Fusion,
vol. 113, pp. 102593, 2025.

[10] Panwar, A., and Nanda, S. J. Distributed enhanced multi-objective evo-
lutionary algorithm based on decomposition for cluster analysis in wire-
less sensor network. Journal of Network and Computer Applications,
vol. 232, pp. 104032, 2024.

[11] Martínez, M., Mateo, C., Gómez, T., Alonso, B., and Frías, P. A hybrid
particle swarm optimization approach for explicit flexibility procure-
ment in distribution network planning. International Journal of Electrical
Power & Energy Systems, vol. 161, pp. 110215, 2024.

[12] Marwein, P. S., Sur, S. N., and Kandar, D. Efficient load distribu-
tion in heterogeneous vehicular networks using hierarchical controllers.
Computer Networks, vol. 254, pp. 110805, 2024.

[13] Maurya, P., Tiwari, P., and Pratap, A. Electric eel foraging optimiza-
tion algorithm for distribution network reconfiguration with distributed
generation for power system performance enhancement considerations



Research on Optimization of Intelligent Data Driven Monitoring 1173

different load models. Computers and Electrical Engineering, vol. 119,
pp. 109531, 2024.

[14] Alikhani, M., Hakami, V., and Sheikhi, M. Distributed service func-
tion chaining in NFV-enabled networks: A game-theoretic learning
approach. Journal of Computational Science, vol. 82, pp. 102399, 2024.

[15] Talbi, B., Derri, M., Haidi, T., and Janyenne, A. Review of the Inte-
gration of Photovoltaic and Electric Vehicles on Distribution Network:
Impacts and Enhancement Approaches. Procedia Computer Science,
vol. 236, pp. 93–100, 2024.

[16] Yin, L., and Huang, J. DResInceptionNasNet method for offline
grounding detection of distribution networks. Applied Soft Computing,
vol. 149, pp. 110945, 2023.

[17] Fan, Q., Li, X., Wang, P., Jin, X., Yao, S., Miao, S., An, M., and
Zhao, Y. IDAD: An improved tensor train based distributed DDoS attack
detection framework and its application in complex networks. Future
Generation Computer Systems, vol. 162, pp. 107471, 2025.

[18] Yuan, Y., Guo, H., and Gao, J. Distance-aware network for physical-
world object distribution estimation and counting. Pattern Recognition,
vol. 157, pp. 110896, 2025.

[19] Zheng, L., Quan, P., Shi, Y., and Niu, L. A Brief Survey of Distribution
Robust Graph Neural Networks. Procedia Computer Science, vol. 242,
pp. 1281–1286, 2024.

[20] Awais, M., Choi, J., Park, J., and Kim, Y. H. Intelligent data-aided
semantic sensing with variational deep embedding. ICT Express,
vol. 10(4), pp. 824–830, 2024.

[21] Geng, Y. Research on the promotion of intelligent entertainment voice
robots in personalized English learning based on data mining and gami-
fied teaching experience. Entertainment Computing, vol. 52, pp. 100816,
2025.

[22] Gupta, S., and Pahuja, G. L. Replicated multistage interconnection
networks: QoS evaluation for parallel and distributed computing. Theo-
retical Computer Science, vol. 1016, pp. 114777, 2024.

[23] Liuwanyue, S. Course genres classification of music e-learning plat-
form based on deep learning big data intelligent processing algorithm.
Entertainment Computing, vol. 50, pp. 100704, 2024.

[24] Man, T., Osipov, V. Y., Zhukova, N., Subbotin, A., and Ignatov, D. I.
Neural networks for intelligent multilevel control of artificial and natural
objects based on data fusion: A survey. Information Fusion, vol. 110,
pp. 102427, 2024.



1174 Junqiu Fan et al.

[25] Pham, X. N., Nguyen, B. C., Thi, T. D., Vinh, N. V., Minh, B. V., Kim,
T., Nguyen, T. N., and Le, A. V. Enhancing data rate and energy effi-
ciency of NOMA systems using reconfigurable intelligent surfaces for
millimeter-wave communications. Digital Signal Processing, vol. 151,
pp. 104553, 2024.

[26] Sun, R., and Ren, Y. A multi-source heterogeneous data fusion method
for intelligent systems in the Internet of Things. Intelligent Systems with
Applications, vol. 23, pp. 200424, 2024.

[27] Sun, Y., Liu, C., Li, J., and Liu, Y. FADSF: A Data Sharing Model
for Intelligent Connected Vehicles Based on Blockchain Technology.
Computers, Materials and Continua, vol. 80, no. 2, pp. 2351–2362,
2024.

[28] Chang Shuo, Niu Yugang, Chen Kaiyan. Real-Time Scheduling Strategy
for Electric Vehicles with Multi-Objective Constraints. Journal of East
China University of Science and Technology, vol. 47, no. 4, pp. 465–
474, 2021.

[29] Wu, Y. Fusion-based modeling of an intelligent algorithm for enhanced
object detection using a Deep Learning Approach on radar and camera
data. Information Fusion, vol. 113, pp. 102647, 2025.

[30] Yang, M., Han, W., Song, Y., Wang, Y., and Yang, S. Data-model fusion
driven intelligent rapid response design of underwater gliders. Advanced
Engineering Informatics, vol. 61, pp. 102569, 2024.

Biographies

 

Junqiu Fan, born in Guizhou, China in 1991, holds a Master’s degree in
Engineering. He graduated from Guizhou University in 2018 and is currently
pursuing a Doctorate in Engineering. Junqiu is employed at Guizhou Power
Grid Co., Ltd., Gui’an Power Supply Bureau, with a primary research focus
on the analysis of operation for new power systems and the optimized
scheduling of integrated energy systems.



Research on Optimization of Intelligent Data Driven Monitoring 1175

Zhongqiang Zhou was born in 1994 in Guizhou, and also possesses a Mas-
ter’s degree in Engineering. He completed his studies at Guizhou University
in 2019. He is currently working at Electric Power Dispatching and Control
Center, Automation Department, Guizhou Power Grid, focusing mainly on
specialized technical work in distribution automation.

Jianwei Ma, born in Hebei, China in 1983, possesses a Master’s degree
in Engineering. After graduating from Changsha University of Science and
Technology in 2012, he joined the Electric Power Dispatching and Con-
trol Center, Automation Department, where he mainly engages in dispatch
automation technology.



1176 Junqiu Fan et al.

Yuan Wen, born in Sichuan, China in 1998, holds a Bachelor’s degree in
Engineering. She graduated from Harbin Institute of Technology in 2020 and
is now working at Guizhou Power Grid Co., Ltd., Kaili Power Supply Bureau,
focusing on distribution automation technology.

Huijiang Wan, born in Guizhou, China in 1985, holds an Engineering
Master’s degree. He completed his studies at Zhejiang University in 2011 and
is currently employed at the Electric Power Dispatching and Control Center,
Automation Department, primarily responsible for grid dispatch automation
operations and management.



Research on Optimization of Intelligent Data Driven Monitoring 1177

 

Jingrong Meng, born in Sichuan, China in 1994, has earned a Master’s
degree in Engineering. Graduating from Ningxia University in 2019, she is
now working at the Sichuan Research Institute, Shanghai Jiao Tong Uni-
versity, Comprehensive Management Department, concentrating on matters
related to new energy distribution networks.




	Introduction
	Distribution Network Dispatching Considering Demand Response and Customer Comprehensive Satisfaction
	Scheduling Architecture of Active Distribution Network Considering Demand Response
	Demand Response Model Based on Flexible Electricity Price and Integrated Customer Satisfaction
	Optimization Analysis Based on Source Load Characteristic

	Cluster Partition and Scenario Method Theory Analysis Applicable to Intelligent Distribution Network Optimal Dispatching
	Cluster Division Method of Distribution Network
	Optimal Reactive Power Dispatching Method for Intelligent Distribution Network Considering Uncertainty of Source and Load
	Uncertainty Analysis of Source Load

	Conclusion

