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Abstract

With the deep integration of electric power and information technology
systems, the distribution system shows the trend of increasingly complex
structures and increasing external risk factors. This leads to more diversified
types of faults in the distribution network, so it is crucial to optimize its
topology. In this paper, we first compare the main connection modes of high-
voltage and medium-voltage distribution networks in China, and combine
them with the specific needs of Shaanxi Power Grid to propose a differ-
entiated flexible network model and its scope of application. Using Graph
Neural Network and Genetic Algorithm, an innovative optimization method
of distribution network connection is proposed to support the typical network
structure of the new distribution network. Analysis of examples shows that
the proposed algorithm can improve the original network’s network loss and
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voltage deviation by 32.8% and 37.3%, respectively, and the improvement
effect is better than that of the traditional genetic algorithm. At the same time,
considering the different stages of distribution network development and the
uncertainties that may be faced, this paper also explores the flexible transition
scheme of each typical network structure to ensure a smooth transition to
a more efficient, green and intelligent distribution network model without
affecting the reliability of the existing power supply.

Keywords: Distribution network, connection mode, graph neural network,
genetic algorithm, model parameter optimization.

1 Introduction

As the final link of the power system, the distribution network is directly
impacting the consumers, which is the key bridge to realize and guarantee
the power supply capacity and power supply quality of the whole system [1].
With the rapid growth of the national economy, the expectations of consumers
for the reliability of power supply from distribution networks are increasing.
At the same time, the growing maturity of the power market and the improve-
ment of the tariff system further put forward more stringent requirements for
power supply reliability. Therefore, in the process of planning and construc-
tion of the distribution network, it is necessary to put the improvement of
economic efficiency and reliability of the power supply of the distribution
network in a crucial position, to meet the needs of social and economic
development and the growing demand of consumers.

When planning a medium-voltage distribution network, a suitable con-
nection mode should be selected based on the load characteristics, economy,
and reliability requirements of the power supply area to ensure that the
distribution network can adequately meet the power supply demand under
normal conditions [2]. The rapid evolution of information technology and
the ongoing advancement of smart grid infrastructure have propelled the
deep integration of power systems with cyber-physical systems (CPS) into
a pivotal trend in the current development of the power industry. This trend
not only elevates the level of intelligence, informatization, and automation
within power systems but also presents new opportunities for efficient energy
utilization, environmental protection, and sustainable development. Japan
has implemented a three-phase, three-wire neutral ungrounded system at the
6.6 kV voltage level, significantly enhancing its formidable reputation for
reliable power supply [3]. For China, especially in regions with high load
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density and a developed economy, it can actively learn from Japan’s small-
capacity, dense-point, short-distance distribution model to optimize the power
supply network. In the areas where the development of the medium-voltage
distribution network is lagging, priority should be given to the construction of
the medium-voltage distribution ring-networked structure, through adopting
the flexible layout of multi-section and multi-contact, reducing the scope of
fault outage, facilitating the maintenance of equipment segmentation outage.
At the same time, it is necessary to enhance the flexible load scheduling and
transfer capabilities to improve the reliability of the power supply system [4].
Given the various forms of medium-voltage distribution network structure,
and the various connection modes have their own characteristics and appli-
cable scenarios, it is indispensable to carefully weigh the balance between
economy and reliability, to ensure that the distribution network can meet the
current development needs, but also has the potential for future expansion.
Therefore, many researchers have carried out studies on the selection of
connection modes [5–8] and evaluation indexes [9–11], and Wu et al. [12]
used fuzzy hierarchical analysis (FAHP) and gray relational analysis (GRA)
to solve the problem of selecting connection modes of medium-voltage distri-
bution networks and established a comprehensive evaluation index system in
terms of technology, economy, and adaptability. Therefore, it is necessary to
study the connection methods in distribution networks, assess the reasonable-
ness of the connection methods, and transform and optimize the unreasonable
places of the connection methods to improve the power supply capacity of
the distribution networks and reduce the operating costs of the distribution
networks.

The Graph Neural Network (GNN) method extends neural networks into
the graph domain [13], realizes the combination of deep learning and graph
data, and provides a new research space for optimizing the connection method
of distribution networks. Firstly, the knowledge model of the distribution
network is constructed using the knowledge graph method, including the
relationship between distribution network topology, connection mode node
voltage, and other variables, and the graph structure information is used
to analyze and reason about the distribution network data, to improve the
accuracy and robustness of the model [14]. Then the optimization model
of the distribution network is built using the GNN method, which can fully
explore the data information and improve its robustness under missing data
and noise, and also capture the changes in the network topology [15–19] and
improve the generalization under network reconfiguration, which is of great
significance for the combination of the grid topology and data information.
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The structural configuration optimization of distribution networks refers
to the conditions of satisfying the current constraints, node voltage con-
straints, branch power constraints, etc. In addition to traditional classical
optimization algorithms, such as topology optimization [20], more widely
used at this stage are heuristic algorithms, including ant colony algorithms,
simulated annealing algorithms, genetic algorithms, and artificial intelligence
algorithms [21] or the fusion of the above algorithms [22], among which the
genetic algorithms are the most widely used. Sun et al. [23] analyzed the
distributed power generation and distribution network system and put forward
the dynamic based on the improvement of the genetic algorithm optimiza-
tion method. They used constraints and an objective function to establish a
mathematical model of the distribution network, where the objective function
contains network losses, DGs investment, and power supply reliability. Jo
and his team [24] innovatively combined the k-nearest neighbor (kNN)
algorithm with a genetic algorithm to achieve significant results in the field of
distribution network reconfiguration optimization. This novel fusion strategy
enhances the search capability of the genetic algorithm through the kNN
structure, and successively shows excellent performance improvement, which
strongly validates the effectiveness of the combination of the two in solving
complex optimization problems. On the other hand, another researcher [25]
designed a genetic algorithm to intelligently adjust the population size for
the optimization task of distribution network reconfiguration. The algorithm
can dynamically expand or reduce the population size according to the real-
time state of the genetic algorithm search process, thus realizing the double
optimization of search efficiency and quality. The experimental data show
that compared with the traditional genetic algorithm, this improved method
of adaptive adjustment can explore the solution space more efficiently and
find higher-quality solutions.

This paper utilizes the GNN method and genetic algorithm to perform
multi-objective optimization of distribution network structure based on exist-
ing research, exploring multiple wiring combinations to reduce the fault
occurrence rate and power supply loss, and to improve the economy, reliabil-
ity, and green and low-carbon nature of the distribution network. Combined
with the specific needs of the Shaanxi power grid, we propose a differentiated
flexible network model and its scope of application, and study the adaptive
ability of the model under network reconfiguration, and the migration ability
of the model and the transition scheme under multi-distribution network
from.
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The rest of the paper is organised as follows: Initially, it analyzes dis-
tribution network connection modes, comparing high-voltage and medium-
voltage types based on security, reliability, economy, and application sce-
narios. Following this, it discusses principles for evaluating and optimizing
these modes across various dimensions. An optimization model using graph
neural networks and genetic algorithms is then proposed for multi-objective
enhancement of the network structure. Experiments validate the method’s
effectiveness, showing significant reductions in network losses and voltage
deviations.

2 Analysis of Distribution Network Connection Mode

At the present stage, China’s urban distribution network system can be sub-
divided into two major distribution network systems, namely, high-voltage
and medium-voltage, according to the different voltage levels. Specifically,
the high-voltage distribution system is centered on the 110kV voltage level,
and its main function is to provide power transmission to medium-voltage
distribution networks and large-scale power users. The medium-voltage
distribution network generally adopts a 10kV voltage level, directly impact-
ing the consumers for power supply. This division aims to optimize the
transmission and distribution of electricity.

2.1 High-voltage Distribution Network Connection Mode

According to Technical Guidelines for Distribution Network Planning issued
by State Grid Corporation of China, the power supply areas are carefully
divided into six categories, namely A+, A, B, C, D and E, each of which
is defined according to its specific load density and regional characteristics.
In this paper, we choose to analyze the power supply areas of categories
A+ and A. The power supply areas of category A+, as the core areas with
extremely dense loads, mainly include the city centers, which have extremely
high requirements for power supply quality. Class A power supply areas, on
the other hand, cover municipalities and provincial capitals with similarly
high load densities, where stability and reliability of power supply are also of
paramount importance.

Further refined to the high-voltage distribution grid connection mode
for A+ and A class power supply areas, which often adopt scientific and
advanced grid structure design to ensure efficient and safe power supply.



1184 Guo Chen et al.

There are three typical high-voltage distribution grid connection modes: 3T
type, double-chain and triple-chain, which are illustrated below:

Figure 1 3T type connection mode.

Figure 2 Double-chain connection mode.

Figure 3 Triple-chain connection mode.
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Table 1 Comparison of three typical high-voltage distribution network connection modes
Safety and Reliability

Connection Mode N-1 N-2 Application Scenarios
3T type Meet Not meet Applicable to two substations need a strong

connection between two substations and high
load density areas or areas with
high-reliability requirements and tight power
supply corridors.

Double-chain Meet Meet Applicable to two substations that require a
strong connection between two substations
and frequent changes in the mode of operation
areas.

Triple-chain Meet Meet Suitable for urban areas with high load density
and areas with high load density and tight land
use in urban areas.

The comparison of the three connection modes is shown in Table 1, which
shows that the safety and reliability performance of double-chain and triple-
chain connection modes satisfies both N-1 and N-2, and is superior to that of
3T type. When selecting the connection mode, it is necessary to comprehen-
sively consider the specific local load density and the actual situation of the
power supply path, to ensure that the selected program matches the applicable
occasions.

2.2 Medium-voltage Distribution Network Connection Mode

Typical connection modes of medium-voltage distribution networks are
mainly categorized into radial, ring, and section contact connection modes.

Radial connection mode (Figure 4) is one of the most basic and direct
wiring strategies in the field of medium-voltage distribution networks, which
is especially suitable for those areas with low load density and relatively dis-
persed geographical location of users, effectively simplifying the complexity
of the distribution network. Radial connection mode is known for its simple
structure, which not only reduces the construction cost, but also simplifies the
operation and management process, and improves the efficiency of equipment
use. However, the limitations of this model should not be ignored: once the
power supply suffers a failure, it will directly lead to the loss of power supply
capacity of the entire line, thus sacrificing the reliability of the power supply.

Ring connection mode (Figure 5) provides the flexibility to distribute
power to two separate busbars of a single main transformer, or directly across
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Figure 4 Radial connection mode.

Figure 5 Ring connection mode.

two separate main transformers. This configuration is particularly common
in urban core areas where high reliability is sought and is often operated
in open-loop mode to optimize grid efficiency and stability. Compared to
the traditional radial grid layout, toroidal wiring exhibits higher operational
flexibility and reliability. The advantage is that by constructing a closed-loop
structure and reserving spare line capacity, the system can respond quickly
and redistribute power loads without interrupting service, effectively reducing
the risk of outages due to line failures.

While this design enhances the redundancy and resilience of the system,
it also correspondingly increases the initial construction investment cost.
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Figure 6 Section contact connection mode.

To ensure that the supply load can be smoothly transferred during an emer-
gency, each line in the ring grid is designed to carry only about half of its
maximum load capacity (i.e., the load factor is controlled at about 50%).
This strategy ensures that in the event of a line failure, the neighboring
backup line can seamlessly take over the additional load, thus avoiding
service interruptions and significantly enhancing the stability of the power
supply system and the customer’s power experience. However, this design
consideration also leads directly to an increase in overall grid construction
costs.

Section contact connection mode (Figure 6) cleverly realizes the seg-
mented layout of the main lines, and cleverly configures contact switches
at each segmental node, thus constructing an interconnection channel with
other lines. The design of this sectionalized line significantly enhances the
reliability of the power supply system: once a section of the line encounters
a fault and interrupts the power supply, the neighboring contact switches can
quickly intervene to transfer the affected loads to other healthy lines, ensuring
the continuity and stability of the power supply and greatly shortening the
recovery time from power outage. Compared with ring connection mode,
section contact connection mode shows unique advantages in improving line
utilization efficiency and regional load carrying capacity. Through refined
line segmentation and efficient load distribution, this method can increase
the load ratio of the line to a higher level, and at the same time, only about
one-third of the reserve capacity needs to be retained to effectively cope with
emergencies, thus realizing the efficient use of resources.
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Table 2 Comparison of three typical medium-voltage distribution network connection
modes

Connection Maximum Line
Mode Load Rate (%) Line Contact Way Economy Reliability

Radial 100 None Good Bad

Ring 50 Instation and interstation Average Good

Section contact 67 Instation and interstation Average Good

However, it is worth noting that the section contact connection mode
brings high power supply reliability, but also comes with relatively high
construction and maintenance costs. The complex network structure and
refined management requirements make this method more suitable for power
supply areas with high load density and extremely stringent requirements on
power supply quality. In these areas, the sectional contact line connection
method can give full play to its advantages and provide solid and reliable
power protection for economic development and social life.

For the three connection modes described above, the relevant comparison
is shown in Table 2:

2.3 Analysis of the Current Situation of Shaanxi Power Grid

Shaanxi Power Grid is an important part of the Northwest Power Grid. This
paper investigates the current situation of Shaanxi Power Grid System, and
sorts out and analyzes the current problems faced as follows:

Shaanxi Power Grid has now built a strong infrastructure network, specifi-
cally including the completion of 10 750 kV substations, the total transformer
capacity of which has jumped to 25.2 million kVA, significantly enhancing
the transmission capacity of the grid. Meanwhile, the 750 kV high-voltage
lines have reached 21, with a total mileage spanning 1499.8 kilometers,
which not only carefully weave a ring network structure in the Guanzhong
area to stabilize the power supply in the core area, but also further expand
to the northern Shaanxi area, constructing a backbone network layout of
“two longitudinal and one ring”, realizing a wide-area coverage and efficient
interconnection of power transmission. Efficient interconnection. This layout
not only optimizes the structure of the grid but also greatly improves the
reliability and flexibility of Shaanxi’s power supply. In addition, the smooth
operation of the grid also depends on the establishment of substations of other
voltage levels, and Figure 7 shows the proportion of the number of substations
of each voltage level.
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Figure 7 The capacity proportion of each voltage level in Shaanxi power grid.

As the power industry undergoes a profound transformation from a
traditional architecture to a smart system, Shaanxi Power Grid is actively
deploying a robust smart grid system at the 750 kV and 330 kV levels,
to lay a solid foundation for the development of the backbone grid in the
next ten to fifteen years, and to ensure that the grid architecture can flexibly
respond to, and lead, the demands of the energy transition of the future.
In addition, new energy access has also prompted Shaanxi Power Grid to
implement distribution network optimization measures to effectively respond
to the challenges of grid planning and transformation brought about by new
energy access on a large scale, and to ensure that the grid structure can be
flexibly adapted to and promote the efficient integration and utilization of
new energy. These are all issues that need to be resolved by Shaanxi Power
Grid at present.

3 Principles of Comprehensive Assessment and
Optimization of Distribution Network Connection Mode

3.1 Integrated Assessment Indicators

This paper comprehensively evaluates and analyzes the connection modes
of distribution networks from a multi-dimensional perspective, aiming to
explore their reliability, safety and economy in depth.

(1) Reliability

The power supply reliability of a distribution network is a measure of its
ability to maintain the healthy operation of key equipment and parameter
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stability, as well as the ability to quickly restore power supply and limit the
scope of power outages under stable and non-stable (e.g., maintenance and
fault) conditions. In this paper, the power supply reliability rate R is chosen
to measure it, calculated as in Equation (1):

R =
T − Tc

T
× 100% (1)

Where T denotes the total power supply time and Tc denotes the outage
time. The larger R is, the more reliable the distribution network is.

(2) Security

The core of the security of a distribution network is its ability to withstand
and recover from operational failures, as well as its ability to flexibly transfer
power between lines to maintain continuity of supply. In this paper, the line
N-1 throughput rate S is chosen to evaluate the security, and the calculation
method is shown in Equation (2):

S =
CN−1

C
× 100% (2)

Where C denotes the total number of lines and CN−1 denotes the number
of lines that satisfy N-1 and are in contact. The larger C is, the more secure
the distribution network is.

(3) Economy

The economic evaluation of distribution networks focuses on the economic
efficiency of the construction investment. This involves not only the rational
planning and control of the initial construction costs, but also a comprehen-
sive assessment of the maintenance costs, energy efficiency improvement and
potential returns in the long-term operation. The calculation method is as
follows:

E = ET + EL + EO (3)

EL = βLM0 (4)

Where ET denotes the substation construction cost, EL denotes the line
construction cost, EO denotes the cost of disconnecting switches, β denotes
the line zigzag coefficient, L denotes the length of the line, and M0 is the
unit cost of the line. The lower the construction investment E, the higher the
economics of the distribution network.
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3.2 Optimization Principle

The optimization principle of the distribution network connection modes, that
is, it mainly focuses on the several assessment indicators introduced above:

1. Clear network structure, avoid redundancy and save construction costs.
The network structure of the distribution network is designed to be
concise and clear, effectively avoiding unnecessary redundancy, so as
to economically realize the construction cost savings and optimization.
This design strategy not only improves the operational efficiency of the
system, but also promotes the rational use of resources.

2. Flexible, safe and reliable power supply, realizing high automation of
power distribution. The design of power distribution network ensures
that the power supply is flexible and changeable, can quickly respond
to power demand fluctuations, and realizes the optimal allocation of
resources. At the same time, it strengthens security measures, adopts
intelligent monitoring and rapid fault-handling mechanisms, and guar-
antees safety. Meanwhile, it can realize a stable power supply and
provide continuous, high-quality power service under any circumstances
to meet the needs of social and economic development.

4 Construction of Optimization Model Based on Graph
Neural Network and Genetic Algorithm

4.1 Graph Neural Network (GNN)

GNN skilfully utilizes the nature of the Laplace matrix of graphs and intro-
duces the classical Fourier transform to graphs, which enables GNN to per-
form efficient convolution operations on complex topologies, thus effectively
capturing and extracting spatial features in graphs, and providing a powerful
tool for machine learning models when dealing with graph-structured data.

After normalizing the Laplace matrix and eigen-decomposing it, the
matrix ∆ is obtained see Equation (5).

∆ = U

λ1 · · · 0
...

. . .
...

0 · · · λn

U−1 (5)

U = (u⃗1, u⃗2, . . . , u⃗n) (6)

λ =

λ1 · · · 0
...

. . .
...

0 · · · λn

 (7)
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Figure 8 Changes in CNN (above) and GNN (below) receptive domains.

Where U is the eigenvector and λ is the eigenvalue.
The convolution formula for the convolution kernel g on the graph can be

expressed as Equation (8), by which feature extraction of distribution network
data can be realized.

g ∗ f = U(UT g ·UTf) (8)

Where g is the convolutional kernel function, f is the signal vector on the
graph, and U is the eigenvector of the Laplace matrix of the graph.

Similar to CNN, with the gradual deepening of the number of convo-
lutional layers in GNN, the range of neighboring nodes’ information that
the central node can integrate and utilize is also expanded, as shown in
Figure 8. At the same time, both feature update mechanisms are closely
dependent on the convolutional operation, and this coupling relationship
makes them show high efficiency in feature extraction. In particular, GNN
can perceive and integrate the global structural information, thus realizing a
more comprehensive and deeper feature representation of graph data [26, 27].

4.2 Genetic Algorithm

Genetic Algorithm (GA) is a heuristic algorithm in which the randomness of
the search gives it a powerful ability to jump out of local optimal solutions
and describe a model using any complex equation or irregular boundaries
by simply providing a range of values for the parameters [28]. Drawing on
the idea of Darwinian evolution, each individual inherits and mutates like a
chromosome [29]. Analogous to genes encoded as nucleotide sequences in
chromosomes, the GA encodes individuals of a population using a certain
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Figure 9 GA algorithm diagram: (a) random selection of parents in the population; (b)
crossover; (c) mutation.

coding scheme and then evolves according to a fitness function. As shown in
Figure 9, GA mimics the process of natural selection, with genetic exchanges
between two individuals called crossovers, as well as random mutations that
occur in the process called mutations [30].

The GA algorithm implements the optimization process through the
process of population evolution. The variables to be solved in the model are
represented as the genes of an individual, and all the genes are represented as
vectors constituting an individual Xt

i , as shown in Equation (9):

Xt
i = (xti,1, x

t
i,2, . . . , x

t
i,D), i = 1, 2, . . . ,M (9)

Where t denotes the number of evolutionary generations and i is the
individual number.

Each generation population Z consists of M individuals as in Equa-
tion (10). Where Zt denotes the population of generation t and Xt

i denotes
the i-th individual in the population of generation t.

Zt = {Xt
1,X

t
2, . . . ,X

t
M} (10)

The real number encoding is used to assign values to the variables, and
the j-th variable for the i-th individual X0

i is valued in the following way:

x0i,j = Lj_min + rand [0, 1](Lj_max − Lj_min),

i = 1, 2, . . . ,M, j = 1, 2, . . . , D (11)

Where Lj_max and Lj_min denote the upper and lower bounds of the j-
th variable, respectively, and rand[0, 1] denotes the generation of a random
number lying between 0 and 1 (containing 0, 1).

GA adopts a “greedy” selection strategy, retaining the best individuals
in each evolutionary generation. The measure of goodness of an individual
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Figure 10 Inter-individual crossover diagram.

is called Fitness, which is calculated by the fitness function (also called
the evaluation function). The larger the Fitness value of an individual, the
better adapted it is and the easier it is to retain. The selection operation from
generation t to t+ 1 can be described as:

Xt+1
k =

{
Xt

i , if Fitness(Xt
i ) > Fitness(Xt

j)

Xt
j , otherwise

(12)

Where Xt
i and Xt

j denote two individuals in generation t, and Xt+1
k

denotes individuals retained to the next generation.
The crossover operation randomly identifies two individuals from the

current population Zt for information exchange, and Figure 10 shows the
process of crossover between individuals Xt

i and Xt
j . Each individual may

mutate during the evolutionary process.
The following Figure 11 shows the flow of the GA algorithm to optimize

the model parameters.

4.3 Constructing Optimization Models

The optimization process of the connection modes of distribution network
is mainly divided into two steps: Firstly, utilizing graph neural networks for
modeling and feature extraction of the distribution network. This involves
leveraging the capabilities of graph neural networks to capture the com-
plex topological and operational characteristics of the distribution network,
enabling effective representation and analysis of its structure and behavior.
Secondly, based on the optimization objective of the designed distribution
network model, the coding method and key parameters of the genetic algo-
rithm are set. Subsequently, through the processes of selection, crossover, and
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Figure 11 GA algorithm flowchart.

mutation, the genetic algorithm is employed to optimize the model param-
eters. This approach aims to iteratively refine the model’s configuration,
thereby enhancing its performance and aligning it more closely with the
desired optimization objectives.

In this paper, the minimization of network loss ε1 and the minimization
of node voltage deviation ε2 of the distribution network are taken as the
optimization objectives, then the objective function of the genetic algorithm
is given as Equation (13):

min
X∈Θ

E(X) = min
X∈Θ

√
[ε1(X)− 1]2 + [ε2(X)− 1]2 (13)

ε1(X) =
f1,max − f1(X)

f1,max − f1,min

ε2(X) =
f2,max − f2(X)

f2,max − f2,min

(14)
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Where f1(X) is the network loss function and f2(X) is the node voltage
deviation function; f1,max and f2,max denote the initial network loss and node
voltage deviation, and f1,min and f2,min denote the optimized network loss
and node voltage deviation; X = (x1, x2, . . . , xD) is the parameter vector;
Θ denotes the search space of the variables, and the search space of each
variable is determined by the range of parameter values.

The objective function is further transformed into the fitness function
Fitness(X) in the GA algorithm, which is calculated as in Equation (15). The
larger the value of fitness, the better the wiring of the distribution network
and the easier the individual is saved.

Fitness(X) =
1

1 + E(X)
(15)

5 Analysis of Results

5.1 Optimized Design and Scope of Application of the Network
Model

When discussing the diversified structure of medium-voltage distribution
networks, various connection modes show unique characteristics and appli-
cable scenarios, and their selection requires careful consideration of the load
characteristics, economic efficiency, and reliability standards of the power
supply area. This process aims to balance the dual needs of economic invest-
ment and power supply stability to ensure the comprehensive optimization of
distribution networks in construction and renovation.

The characteristics of signals in graph theory are strongly influenced
by the connection structure between nodes, i.e., the same signal will show
different properties in differentiated graph structures. Given this, we adopt a
GNN model, whose input is centered on the topology data of the distribution
network, which exhaustively records the information of nodes and edges
in the Shaanxi grid. The output of the model focuses on the prediction of
network losses and voltage deviations at the node level, providing key indi-
cators for optimization decisions. The application of the GNN model in the
optimization of wiring pattern combinations is based on the characteristics of
the graph domain, which is unique in that each central node can aggregate
the feature information from its two-order neighboring nodes, thus achieving
a more accurate capture of the global information. This feature not only
enhances the model’s ability to understand complex network structures but
also endows it with strong resistance to noise and data perturbation. Even
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Figure 12 Comparison of accuracy of CNN and GNN.

in the case of incomplete measurement data, GNN can effectively predict
and optimize the voltage deviation and network loss by its global vision, and
achieve optimal adjustment of the structure.

For the specific case of Shaanxi Power Grid, we collected a sample set of
6000 data sets from 30 branch circuits and divided them into a training set
(4800 samples), a validation set, and a test set (600 samples each) based on
the ratio of 8:1:1. To evaluate and compare the adaptability and robustness
of CNN and GNN models in the face of complex topology changes in
distribution networks, a series of network reconfiguration scenarios with
different levels of difficulty are carefully designed. The results are shown
in Figure 12, which shows that the accuracy of GNN is higher than that of
CNN in all three scenarios.

Through careful parameter tuning, we set the learning rate to 0.006, the
batch size to 10, and performed 400 iterations of training. In this paper, we
choose the Root Mean Square Error (RMSE) as loss function to calculate loss
rate. Then the RMSE is calculated as in Equation (16):

RMSE =
1

T

√√√√ T∑
t=1

(yt − ŷt)
2 (16)

The experimental results are shown in Figure 13, with the increase of
iterations, the model performance is significantly improved: after 20 itera-
tions, the accuracy reaches 91.21%; at 400 iterations, the accuracy climbs
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Figure 13 The accuracy and loss of GNN-based distribution network model.

to 98.60%, and the loss rate is reduced to about 0.11 p.u. This series of
data strongly proves the excellent efficiency and accuracy of the GNN-based
optimization model for the combination of distribution network connection
modes. This series of data strongly proves the excellent performance of the
GNN-based distribution network wiring pattern combination optimization
model in terms of efficiency and accuracy. The GNN model, trained on
a sample set of 6000 data sets collected from 30 branch circuits in the
Shaanxi Power Grid, achieved remarkable accuracy, reaching 98.60% after
400 iterations. This high accuracy is a testament to the model’s ability to
predict network losses and voltage deviations at the node level with great
precision. The low loss rate of approximately 0.11 further validates the
model’s robustness and efficiency.

Figure 14 shows the two-dimensional classification map after dimen-
sionality reduction using neural networks, where the horizontal and vertical
coordinates indicate the two principal components that have the greatest
influence on classification, the scatter samples indicate the distribution net-
work topology, and the clustering results show that the distribution network
structure belongs to different class categories.

To comprehensively assess the robustness of the model under data pertur-
bation scenarios, we conducted an in-depth analysis of two major aspects:
data noise and data incompleteness. First, the model’s ability to tolerate
measurement errors is tested by injecting Gaussian noise of different lev-
els (specifically 60dB, 40dB, and 20dB) into the node features. This is
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Figure 14 Graph of cluster analysis results.

intended to simulate the signal interference that may be encountered in real
environments, to verify the stability performance of the model in a noisy
background.

Secondly, to examine the performance of the model in the missing data
scenario, we set two missing data rates while keeping other parameters
unchanged: randomly selecting 1% of the total data and setting its value to
0, and a more stringent missing data condition of 2%. Such settings aim to
simulate the random missingness problem that may be encountered during the
data collection process, and thus assess the prediction accuracy and reliability
of the model when the data are incomplete.

Table 3 details the validation results of the model under the above data
noise and missing data conditions, demonstrating how the model’s perfor-
mance varies when faced with different levels of data perturbation, thus
providing us with an intuitive basis for assessing the robustness of the model.
Under the 60dB high-intensity noise condition, the model still maintains high
performance, and although the accuracy decreases compared to the no-noise
case, the decrease is within the acceptable range, indicating that the model
has a certain degree of resistance to extreme noise disturbances; as the noise
intensity decreases, the model’s accuracy significantly improves, approaching
the performance in the no-noise case, further verifying the model’s stability
in dealing with medium-intensity noise. The stability of the model is further
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Table 3 The effect of data perturbation on model performance
Data Perturbation Accuracy (%)
None 98.60
20dB Gaussian noise 96.63
40dB Gaussian noise 96.54
60dB Gaussian noise 96.42
1% data loss 96.55
2% data loss 96.35

verified when dealing with medium-intensity noise; in the lower intensity
20dB Gaussian noise environment, the accuracy of the model is almost unaf-
fected and remains at a very high level, which proves the robustness of the
model under regular noise conditions. In terms of missing data analysis, the
performance of the model slightly decreases in the case of a 1% missing data
ratio, but the overall accuracy remains at a high level. This indicates that the
model has a certain degree of fault tolerance and can maintain good prediction
results even when some data are missing. As the proportion of missing data
increases, the accuracy of the model decreases, but the decrease does not
show a sharp deterioration, indicating that the model can still maintain a
certain degree of stability when dealing with a higher proportion of missing
data. However, due to the large number of distribution network topology
combinations and the great amount of data, it not only greatly increases
the time cost of optimization, but also may lead to the optimized structure
obtained by GNN falling into the local optimal solution.

Therefore, in this paper, based on the GNN screening results, the
improved genetic algorithm with dual optimization objectives is used to
do the final optimization, which improves the computational efficiency
and ensures that the wiring combination pattern obtained is the globally
optimal result as far as possible at the same time. Using the proposed dual-
objective optimization method of distribution network structure based on
the improved genetic algorithm, the above GNN-selected system network
architecture is optimized, and the results are compared with the traditional
genetic algorithm-based optimization algorithm with the single objective of
minimizing network loss or node voltage deviation. The population size of
the proposed improved genetic algorithm is set to 100, the maximum number
of iterations is 100, the crossover probability is taken as 0.7, and the variance
probability is taken as 0.02.

After the proposed bi-objective optimization framework in this paper
is applied to network optimization, the system performance is significantly



Research on Optimization of Distribution Network Connection Mode 1201

Table 4 The optimization calculation results based on improved GA
Power Node Voltage

Model Loss (kW) Deviation (p.u.) Accuracy (%)
Actual 191.61 1.587 98.60
Minimum power loss 127.02 1.106 96.63
Minimum node voltage deviation 139.54 0.975 96.54
Double-target optimization Model 128.76 0.995 96.35

improved. Specifically, as shown in Table 4, the system network loss is
reduced to 128.76 kW, which achieves a significant reduction of 32.8%
compared to the maximum node system state before optimization. At the
same time, the node voltage deviation is also significantly reduced from the
original 1.587p.u. to 0.995p.u., a reduction of up to 37.3%, which effectively
enhances the voltage stability.

Comparing the results of the dual-objective optimization strategy with
the single-objective optimization that purely seeks to minimize the network
loss, we find that although the system network loss slightly increases from
127.02 kW to 128.79 kW, which is an increase of only 1.39%, the node
voltage deviation achieves a much more substantial improvement from 1.106
p.u. to 0.995 p.u., which is a decrease of 10.03%. This comparison highlights
the advantages of dual-objective optimization in balancing system efficiency
and voltage stability, indicating that its comprehensive performance is better
than that of a single network loss optimization strategy. On the other hand,
compared with the single-objective optimization that only focuses on mini-
mizing the node voltage deviation, the dual-objective optimization algorithm
effectively reduces the system network loss while maintaining a lower voltage
deviation. Specifically, the system network loss is reduced by 7.73% from
139.54 kW to 128.76 kW. Although the nodal voltage deviation increases
slightly from 0. 975 p.u. to 0.995 p.u., with an increase of only 2.10%,
this small change is within the acceptable range and does not significantly
affect the overall system performance. Therefore, in terms of comprehensive
benefits, the bi-objective optimization method is also superior to the sim-
ple node voltage deviation minimization strategy. Figure 15 visualizes the
changes in the node voltage before and after optimization, further verifying
the effectiveness of the dual-objective optimization strategy.

After in-depth analysis, compared with the traditional single-objective
optimization path relying only on a genetic algorithm, the innovative dual-
objective optimization strategy based on the improved genetic algorithm
in this paper shows more excellent performance. This strategy not only
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Figure 15 Voltage distribution diagram before and after the optimization.

Figure 16 10kV distribution network structure.

significantly reduces the power loss of the system, but also effectively reduces
the deviation range of the node voltage, thus greatly enhancing the opera-
tional reliability and stability of the power system. By carefully observing
the dynamic change curve of the fitness function, it can be seen that after
only 20 iterations of the improved genetic algorithm, the algorithm can
efficiently lock and approximate the optimal solution of the fitness function,
which significantly improves the efficiency and accuracy of the optimization
process. In addition, the optimal combination of connection modes found
during the optimization process, as shown in Figure 16, not only reflects the
algorithm’s ability to accurately judge the complex power system structure
but also provides a valuable reference for practical engineering applications.
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5.2 Flexible Transition Scheme

In planning the ideal power supply model and future network architecture,
our goal is to build an efficient and reliable power network system. The
planning process starts with a vision of the network architecture in the target
year and is closely based on the actual state of the network today, with a
carefully laid out blueprint for the intermediate years based on medium-
term load forecasts. Our strategy focuses on solving the bottlenecks in the
current network and skilfully designs a smooth transition from the current
state to the target network architecture. Based on the detailed program for
the near-term planning year, we have carefully planned a series of renovation
and construction projects aimed at gradually eliminating deficiencies in the
existing network. In particular, we have developed solutions to the core
problems of the current distribution network, such as long supply radii,
redundant supply paths, unclear zoning, and a weak network structure. It is
worth noting that this transformation does not start from scratch, but rather
builds on the existing load and line layouts and progressively moves towards
the target network structure, ensuring that it is highly adaptable and flexible
in the face of the new challenges of urban development.

We emphasize the importance of properly laying out interconnecting lines
between substations and within stations, given the pressure on the power
supply and the risk of line overloads that may arise from the continuous
growth of load capacity in the distribution network. As the key to system
flexibility, these contact lines can ensure flexible load distribution among
different stations, which significantly improves the overall reliability of the
system. For radial connection mode, if the load ratio is high or does not meet
the N-1 safety standard, it is recommended to connect it with neighboring
lines to form a “mutual backup hand in hand” ring or single contact structure
to enhance the load transfer capability. For lines that have been looped, if
the load is also heavy, it is recommended to consider establishing a new
contact with a low-load line or connecting to a substation with a surplus
interval to optimize the load distribution. In the core urban areas with very
high load density, given their special requirements for high capacity and
high reliability, we tend to adopt more complex wiring strategies, such as
multi-section and multi-contact methods, to ensure stable and efficient power
supply. Adopt a phased approach to the transition, allowing for incremental
improvements and adjustments. Utilize advanced monitoring and control
systems to ensure the stability and reliability of the power supply during
the transition. Engage stakeholders early in the process and maintain open
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communication to address concerns and facilitate the transition. This com-
prehensive planning strategy not only solves the current problems but also
lays a solid foundation for the sustainable development of the power network
in the future.

6 Conclusion

In this paper, we first compare the main connection modes of China’s high-
voltage and medium-voltage distribution grids and combine them with the
specific needs of the Shaanxi power grid to propose a differentiated and
flexible network formation mode and its scope of application. Through the
use of graph neural network and genetic algorithm, this paper proposes an
innovative optimization method of distribution network connection mode
to support the typical network structure of a new distribution network, and
obtains the following conclusions:

1. The use of graph neural network (GNN) model, whose inputs are the
information of nodes and edges in Shaanxi power grid, the final accuracy
reaches 98.60%, while the loss rate is reduced to about 0.11 p.u., which
is a strong proof of the excellent performance of the optimization model
for the combination of connection modes of the distribution grid based
on the GNN in terms of efficiency and accuracy, and the GNN possesses
strong stability in the presence of missing data and perturbations;

2. The optimization results of the dual-objective genetic algorithm show
that the proposed algorithm can better improve the network loss and
voltage deviation of the original network by 32.8% and 37.3%, respec-
tively, and the improvement effect is better than that of the traditional
genetic algorithm.

3. Considering the different stages of distribution network development
and the uncertainty factors that may be faced, the flexible transition
scheme of each typical network structure is explored to ensure a smooth
transition to a more efficient, green, and intelligent distribution network
mode without affecting the reliability of the existing power supply.

Furthermore, the application of the improved genetic algorithm enhances
the computational efficiency, ensuring that the wiring combination pattern
obtained is as close to the globally optimal result as possible. This not only
reduces the workload of the learners but also increases their confidence in
the decision-making process, as they can rely on the model’s accuracy and
reliability.
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