An Analytical and Experimental Study of the Linear Fresnel Reflector Solar Concentrator System
DOI:
https://doi.org/10.13052/dgaej2156-3306.2923Keywords:
LFRSC, analytical model, trapezoidal cavity absorber, overall heat loss coefficientAbstract
A solar hot water generation system that makes use of a linear
Fresnel reflector solar concentrator (LFRSC) technique to concentrate
solar radiation onto a stationary absorber cavity suspended above the
concentrator plane is proposed. Heat loss from the trapezoidal cavity
absorber occurs via a complex interaction between radiation, convection
and conduction within the cavity, and then from cavity to the surroundings. This article describes and compares experimental and analytical
methods used to investigate the heat losses from the cavity absorbers
with and without plate underneath the absorber tubes. Reasonable
agreement is achieved between the two methods for heat loss in the
cavity absorber. Also, analytical and experimental thermal performance
analysis of LFRSC system is determined. The results are presented and
discussed.
Downloads
References
Di Canio DG, Tretyl WJ, Jur FA, Watson CD. Line-focus Solar Thermal Central
Receiver Research Study. FMC Corporation, Santa Clara, CA, Final Report.
Available at http://www.osti.gov/energycitations/product.biblio.jsp?osti_id¼
; 1977.
Vant-Hull LL. In: Winter CJ, Sizmann RL, Vant-Hull LL, editors. Solar power plants.
Berlin: Springer-Verlag; 1991. p. 114.
Nixon JD, Dey PK, Davies PA. Which is the best solar thermal collection technology
for electricity generation in north-west India? Evaluation of options using the
analytical hierarchy process. Energy 2010;35: 5230-5240.
Feuermann D, Gordon JM. Analysis of a two-stage linear Fresnel reflector solar
concentrator. ASME Journal of Solar Energy Engineering 1991;113:272-79.
Feuermann D. Analysis and Evaluation of the Solar Thermal System at the BenGurion Sede Boqer Test Center for Solar Electricity Generating Technologies.
Israel Ministry of Energy and Infrastructure, Jerusalem. Final Report, Contract No.
, July 2003.
Kalogirou, S. Solar thermal collectors and applications. Progress in Energy and
Combustion Science 2004;30:231-95.
Mills D, Morrison GL. Compact linear Fresnel reflector solar thermal power plants.
Solar Energy 2000;68:3:263-83.
Häberle A, Zahler C, Lerchenmüller H, Mertins M, Wittwer C, Trieb Fl. The
solarmundo line focussing Fresnel collector. Optical and thermal performance and
cost calculations. In: 11th solar PACES international symposium on concentrated
solar power and chemical energy technologies; 2002. Sept. 4-6, Zurich, Switzerland.
http://www.spg-gmbh.com; Solar Power Group 2008.
http://www.ausra.com; Ausra 2009.
Hoshi A, Mills DR, Bittar A, Saitoh TS. Screening of high melting point phase
change materials (PCM) in solar thermal concentrating technology based on CLFR.
Solar Energy 2005;79:332-39.
Roberto Grena, Pietro Tarquini. Solar linear Fresnel collector using molten nitrates
as heat transfer fluid. Energy 2011;36:1048-56.
Jance MJ, Morrison GL, Behnia M. Natural convection and radiation within an
enclosed inverted absorber cavity: preliminary experimental results. International
Renewable Energy Transforming Business: proceedings of solar. 2000; Brisbane:
ANZSES.
Singh PL, Sarviya RM, Bhagoria JL. Thermal performance of linear Fresnel
reflecting solar concentrator with trapezoidal cavity absorbers. Applied Energy
a;87:541-50.
Flores Larsen S, Altamirano A, Hernandez A. Heat loss of a trapezoidal cavity
absorber for a linear Fresnel reflecting solar concentrator. Renewable Energy
;39:198-206.
Singh PL, Sarviya RM, Bhagoria JL. Heat loss study of trapezoidal cavity absorbers
for linear solar concentration collector. Energy conversion and Management 2010
b;51: 329-37.
Natarajan E, Basak T, Roya S.Natural convection flows in a trapezoidal enclosure
with uniform and non-uniform heating of bottom wall. International Journal of
Heat and Mass Transfer 2008;51(3-4):747–56.
Chapman AJ. Heat transfer. New York: Macmillan Publishing House; 1984.
Balaji C, Venkatesan S. Correlations for free convection and surface radiation in
square cavity. International Journal of Heat and Fluid Flow 1994;15(3):249–51.
Facao Jorge, Armando Oliveria C. Numerical simulation of a trapezoidal cavity
receiver for a linear Fresnel solar collector concentrator. Renewable Energy
;36:90-96.
Sendhil Kumar Natarajan, Reddy KS, Tapas Kumar Mallick. Heat loss
characteristics of trapezoidal cavity receiver for solar linear concentrating system.
Applied Energy 2012;93: 523-31.
Manikumar R, Valan Arasu A, Jayaraj S. Numerical simulation of a trapezoidal
cavity absorber in the linear Fresnel reflector solar concentrator system,
International Journal of Green Energy. http://dx.doi.org/10.1080/15435075.2012.75
ANSYS workbench 12.0, FLUENT 12.0, User’s guide, 2009.
Manikumar R, Valan Arasu A. Design and theoretical performance analysis of
linear Fresnel reflector solar concentrator with a tubular absorber. International
Journal of Renewable Energy Technology 2012;3(3):221-36.
Negi BS, Kandpal TC, Mathur SS. Designs and performance characteristics of a
linear Fresnel reflector solar concentrator with a flat vertical absorber. Solar Wind
Technology 1990;7(4):379-92.
Reynolds DJ, Jance MJ, Behnai M, Morrison A. An experimental and computational
study of the heat loss characteristics of a trapezoidal cavity absorber. Solar Energy
;76: 229–34.
Kothandaraman CP, Subramanyan S. Heat and Mass Transfer Data Book. New
Delhi: New Age International Publishers; 2008.
Sukhatme SP, Nayak JK. Solar energy principles of thermal collection and storage.
New York: Tata McGraw-Hill Publication; 2009.
Negi BS, Mathur SS, Kandpal TC. Optical and thermal performance evaluation of
a linear Fresnel reflector solar concentrator, Solar and Wind Technology, 1989;6(5):589-593.
Manikumar R, Valan Arasu A, Jayaraj S. Computational fluid dynamics analysis of
a trapezoidal cavity absorber used for the linear Fresnel reflector solar concentrator
system, Journal of Renewable and Sustainable Energy, 2012;4: 063145 (1-18).
Valan Arasu A, Sornakumar TD. Performance characteristics of parabolic trough
solar collector system, Int Energy J, 2006;7:137–45