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Abstract

In this research, while investigating the vibration analysis of rotary axes, we
specifically investigate the rotor of a turbofan engine used in the industry.
The features of this rotor range are high-performance, lightweight, and low-
vibration range. These three factors are in contradiction with each other,
resulting in a thorough examination of the total vibration of the complete
turbofan rotor. To achieve this, various parameters such as the concentration
of properties, rotational inertia, gyroscopic torque, rotational loading, effects
of unbalanced mass, crevillous effects, bearing flexibility, etc. have been
studied in modeling. The rotor’s natural frequencies, along with the critical
velocity, are plotted as well as the shape of its modes. The software is required
to perform the computations written by Ansys software and after ensuring its
accuracy.
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1 Introduction

Rotordynamics is a field under mechanics, that mainly deals with the vibra-
tion of rotating structures. In recent days, the study of rotor dynamics has
gained more importance within Jet engine industries. The main reason is Jet
engine consists of many rotating parts that constitutes a complex dynamic
system. While designing rotors of high-speed turbomachinery, it is of prime
importance to consider rotor dynamics characteristics to account. Consider-
ing these characteristics at the design phase may prevent the jet engine from
severe catastrophic failures. These rotordynamic characteristics can be deter-
mined with the help of the much relied Finite elements method. Traditionally,
Rotordynamic analyses were performed with specialized commercial tools.
On the other hand capabilities of more general FEA software have gradually
been developed and the most commonly used software is Ansys. The aim of
this thesis work is to build an RM12 Jet engine rotor model in Ansys and
evaluate its rotor dynamics capabilities with the specialized rotor dynamics
tools. These works help in understanding, modeling, simulation, and post-
process techniques for the rotor dynamics analysis of RM12 Jet engine rotor
using Ansys. The science of vibrations studies the oscillating motion of
objects and the forces associated with them. The subject of vibrations is one
of the most important and practical topics in the field of engineering. All
objects that have the properties of elasticity and mass are capable of vibration,
which causes an error and wear in all machines and structures. Rotating shafts
and their vibrations have played a very important role in the industry because
the shafts are the main means of power generation and power transmission
in the industry. Axes as the main part of internal combustion engines, types
of steam, water, and gas turbines, generators, electric motors, pumps, fans,
compressors, and all kinds of machine tools such as lathes, drills, and milling.
Also have many applications in the automotive, rail, shipping, and aviation
industries. Creating severe vibrations and applying large forces in a short
time or creating small and light vibrations and applying small forces in a
long time can cause rotation systems to fail. This failure can manifest itself in
any of the components of the rotating system such as shafts, and bearings [1].
Investigated the dynamic behavior of rotors, they obtained equations for the
elements of a rotor such as disks, the main axis of the rotor, and bearings using
the Rayleigh-Ritz method for a simple rotor [2]. Conducted research on the
critical speed of shafts and developed his famous method for determining
natural frequency [3]. Analyzed the flexible rotor system with magnetic
bearings and obtained the specific values, the optimal dynamic properties



Dynamics and Vibration Analysis of a Rotor-Bearing System 277

for the rotor, which make it stable at different speeds, as well as the critical
speed of the rotor, using Campbell diagrams. They examined the shape of the
modes and the frequency and time of the responses [4]. Performed various
effects such as shear deformation, rotational inertia, gyroscopic torque, axial
force, torsional torque, axial force, gyroscopic torque, and nonlinear factors
in the shaft model. Other axial components such as vanes, seals, dampers,
foundations, and enclosures were also gradually incorporated into the axle
models. Thus, today, quite complex models are created for the axes that make
it possible to accurately analyze the vibrations of the axis. The issue at hand
was initially limited to finding the critical axis and finding the amplitude
of the fluctuations caused by the nomenclature. The vibration of the shaft
due to the force of gravity and the misalignment of the bearings are other
issues related to the shafts. Various factors of instability in the axes such as
internal shaft damping, bearing oil layer, shaft asymmetry, alternating axial
force, and the coupling of transverse and torsional vibrations were identified
and investigated. In the analysis of transverse axis vibrations [5], first used
the finite element method. They considered the shaft to be composed of
shafts, bearings, and thin rigid discs. The shaft element is based on the
Euler-Bernoulli beam element previously acquired by Archer in 1963 and
is intersected by two transverse vibrations considering the transverse vibra-
tions. The bearings were modeled as a parallel spring and damper with 16
coefficients corresponding to different directions, and the gyroscopic effect
was also considered in rigid disk modeling. In this article, they calculated
the threshold of instability and the response to engagement [6]. Studied the
nonlinear dynamic behavior of the rotor with roller bearings numerically and
then compared it with experimental data [7]. Used the finite element method
in numerical analysis. Examining the position, he modeled the rotor using
beam elements [8]. Compared the dynamic behavior of a real model of a
rotor with a disk and the blades with a simplified model of a rotor with a
disk. They examined the complete diagrams and frequencies of both models
using Ansys software Gave [9]. The effect of bearings on both rotors on
the dynamic behavior of the GTF transmission system has been explored
and quantified, especially for the influence of the location of bearings on
both rotors on the load sharing behavior of the star gearing system in the
GTF gearbox. The results show that the position of bearings on both rotors
could affect the load sharing performance and maximum floating amounts
of members in the star gearing system of the GTF gearbox, therefore, the
location of bearings on rotors can be rearranged to achieve better performance
in vibration control and load distribution of the system [10]. Numerical study
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on the rotor dynamic analysis of a dual-spool turbofan engine in the context
of blade defect events. The simulation results indicate that the high-vibration
status of the rotor commences beyond 10,000 rpm, which is identified as
the first critical speed of the lower speed rotor. Moreover, we monitored the
unbalanced stages near the inter-rotor bearing, which prominently influences
the overall rotor dynamic status, and the corrosion of the HPC to prevent fur-
ther instability [11]. A second bearing is positioned aft of the gear reduction
and supports the gear reduction. The second bearing is a thrust bearing. A fan
drive turbine drive shaft drives the gear reduction. The fan drive turbine drive
shaft has a weakened link which is aft of the second bearing such that the fan
drive turbine drive shaft will tend to fail at the weakened link and a location
aft of the second bearing [12]. In this study, for a turbofan engine-powered
unmanned aerial vehicle, Global Warming Potential (GWP) calculations
have been performed covering a range of flight Mach number and altitude.
Results were presented to illustrate the GWP magnitudes for different flight
speeds and altitudes in a comparative manner for the turbofan-powered UAV.
Optimization calculations were done by using a genetic algorithm. a genetic
algorithm (GA) is a metaheuristic inspired by the process of natural selection
that belongs to the larger class of evolutionary algorithms (EA). Genetic algo-
rithms are commonly used to generate high-quality solutions to optimization
and search problems by relying on biologically inspired operators such as
mutation, crossover and selection.

2 Statement of the Problem

2.1 Vibrations of Rotating Axes

Although the complete set of the rotor consists of many components, which
play a key role in the vibration analysis of a rotor, there are 4 main com-
ponents, which are: shaft, components mounted on the shaft, bearing, base.
Figure 1 shows the complete set of the rotor.

In this research, using finite element analysis, each of these four members
is modeled and finally, the matrix related to each component is obtained,
which is used to analyze the whole rotor set, the total mass matrix of the
system, and the stiffness matrix of the whole system. And the damping
matrix of the whole system is assembled and placed in the following vibration
equation, which will give the last equation after solving the system frequency
response [13]. In the following equation, Ω is the rotational speed of the rotor.

[M ]{δ̈}+ (Ω[G] + [C]){δ̇}+ [K]{δ} = {f} (1)
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Figure 1 Schematics of rotor assembly.

Figure 2 Kinematics of rotating elements (Cao, 2018).

2.2 Kinematics of Rotating Elements

A rotating element is considered as a rigid body and its rotational kinetic
energy is calculated as follows:

Trot =
1

2
(Ixxω

2
x + Iyyω

2
y + Izzω

2
z) (2)

In general, the position of a rigid object in space by three angles α,
β, Φ to Euler angles and a fixed coordinate system (bare) with fixed unit
vectors and another with rotating unit vectors is a coordinate system on the
center of a fixed rotating element Has been. When all of the Euler angles
are zero, the two coordinate systems overlap. For a general position for the
element in space, the connection between the two devices can be successfully
and completely calculated in three steps with the mentioned Euler angles.
Figure 2 shows the kinematics of rotating elements [14].
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2.3 Rail Shaft Element

Strain energy for a small disk located at a distance s along the element, the
flexural strain energy relationship is as follows [15]:

dueB =
1

2

{
v′

w′′

}T [
EI 0
0 EI

]{
v′

w′′

}
ds (3)

Which is EI flexural axis. If the element is also under a constant axial
force, the strain energy stored in the disk will be called the strain energy
under a constant axial load as follows:

dueA = −1

2

{
v′

w′′

}T [
P 0
0 P

]{
v′

w′′

}
ds (4)

Strain energies for the whole element are obtained by integrating differ-
ential expressions over the entire length of the element:

U eA =
EI

2

∫ L

0

[(
∂2u

∂y2

)2

+

(
∂2w

∂y2

)2
]
dy (5)

U eA =
F

2

∫ L

0

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
dy (6)

The total energy of the axis is obtained from Equation (7):

U eA =
EI

2

∫ L

0

[(
∂2u

∂y2

)2

+

(
∂2w

∂y2

)2
]
dy

+
F

2

∫ L

0

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
dy (7)

The kinetic energy formula of an element uses the expansion of the disk
kinetic energy equation located at a distance it is obtained from the length of
the element [15].

dT e =
1

2

{
v̇
ẅ

}T [
µ 0
0 µ

]{
v′

w′′

}
ds+

1

2
Φ̇τpds

+
1

2

{
β̇
γ̇

}T [
Id 0
0 Id

]{
β̇
γ̇

}
ds− Φ̇γ̇βτpds (8)
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Ts =
ρs

2

∫ L

0
(u̇2 + ẇ2)dy +

ρl

2

∫ L

0
(β̇2 + γ̇2)dy

+ ρILΩ2 − 2ρIΩ

∫ L

0
γβdy (9)

2.4 Element Shaft Euler-Bernoulli

If the effect of rotational inertia on the rail shaft element is ignored, the result-
ing model becomes the Euler-Bernoulli model. Rotational mass matrices
and gyroscope matrices are removed from the model [16]. The relationship
between the strain energy of an axis and the symmetric surface is in the form
of Equation (15).

U1 =
EI

2

∫ L

0

[(
∂2u

∂y2

)2

+

(
∂2w

∂y2

)2
]
dy (10)

Which E is Young’s modulus. If the axis is under a constant axial force F,
a second expression is added to the axis strain energy, which is obtained as
follows:

U2 =
F

2

∫ L

0

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
dy (11)

Therefore, the strain energy of the whole axis is obtained from the
following equation:

UT =
F

2

∫ L

0

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
dy

+
EI

2

∫ L

0

[(
∂2u

∂y2

)2

+

(
∂2w

∂y2

)2
]
dy (12)

The general formula for the axial kinetic energy is obtained by extending
the disk kinetic energy equation. For an element, the length of the L element,
the expression energy is as follows.

TS =
ρs

2

∫ L

0
(u̇2 + ẇ2)dy (13)
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2.5 Element Shaft Timoshenko

The general formula for the kinetic energy of an element is obtained by
extending the kinetic energy equation of a disk located at a distance S from
the length of the element [15].

dT e =
1

2

{
v̇
ẇ

}T [
µ 0
0 µ

]{
v̇
ẇ

}
ds+

1

2
Φ̇τpds

+
1

2

{
β̇
ẇ

}T [
ID 0
0 ID

]{
β̇
ẇ

}
ds− φ̇γ̇βτpds (14)

For an element of length L, the expression of the total kinetic energy is as
follows:

Ts =
ρs

2

∫ L

0
(u̇2 + ẇ2)dy +

ρI

2

∫ L

0
(β̇2 + γ̇2)dy

+ ρILΩ2 − 2ρIΩ

∫ L

0
γ̇βdy (15)

For a small disk located at a distance s along with the element, the flexural
strain energy relationship is as follows:

dueB =
1

2

{
v′′

w′′

}T [
EI 0
0 EI

]{
v′′

w′′

}
ds (16)

Which is axis-bending stiffness. If the element is also subject to a constant
axial force P, the strain energy stored in the disk will be called the strain
energy under a constant axial load as follows:

dueA = −1

2

{
v′

w′

}T [
P 0
0 P

]{
v′

w′

}
ds (17)

Due to the shear deformation, the strain energy resulting from the shear
must also be added to the equations:

dues =
1

2

{
v′′shear
w′′shear

}T [
kAG 0

0 kAG

]{
v′′shear
w′′shear

}
ds (18)
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Strain energies for the whole element are obtained by integrating differ-
ential expressions over the entire length of the element:

U es =
kAG

2

∫ L

0

[(
∂2us
∂y2

)2

+

(
∂2w

∂y2

)2
]
dy

U eB =
EI

2

∫ L

0

[(
∂2u

∂y2

)2

+

(
∂2w

∂y2

)2
]
dy

U eA =
F

2

∫ L

0

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
dy (19)

Therefore, the strain energy of the whole element is obtained from the
following equation:

U eT =
F

2

∫ L

0

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
dy

+
EI

2

∫ L

0

[(
∂2u

∂y2

)2

+

(
∂2w

∂y2

)2
]
dy

+
kAG

2

∫ L

0

[(
∂2us
∂y2

)2

+

(
∂2w

∂y2

)2
]
dy (20)

For the element of Timoshenko’s beam the functions of the Fig are as
follows [15].

The disk is structured in such a way that the disk is assumed to be rigid,
so there will be no hard matrix for the disk. We consider the disk to be a rigid
body and define kinetic energy for it [20]. The term kinetic energy is defined
for a disk that has 4 degrees of freedom of rotation and rotation as follows:

TD =
1

2
MD(u̇2 + ẇ2) +

1

2
(IDXw

2
X + IDYw

2
Y + IDZw

2
Z) (21)

That u and w, are the coordinates of the center of the disk at R and IDX ,
IDY , IDZ , The moment of inertia of the disk concerning the x, y, and z axes.
Assuming the disk is symmetrical (IDZ = IDZ ) And small angles θ and Ψ



284 H. Rahmani et al.

constant angular velocity φ̇ = Ω the kinetic energy equation will be:

TD =
1

2
MD(u̇2 + ẇ2) +

1

2
IDX(θ̇2 + Ψ̇2)

+
1

2
IDY (Ω2 + 2ΩΨ̇θ) (22)

If the displacement vector is considered as follows:

δ = [u,w, θ,Ψ]T (23)

Using Lagrangian equations:
The first matrix is the classical mass matrix and the second matrix is the

gyroscopic matrix.

d

dt

(
∂T

∂δ̇

)
− ∂T

∂δ
=


MD 0 0 0

0 MD 0 0

0 0 IDX 0

0 0 0 IDX



ü

ẅ

θ̈

ψ̈



− Ω


0 0 0 0

0 0 0 0

0 0 0 IDy

0 0 −IDy 0



u̇

ẇ

θ̇

ψ̇

 (24)

Where ρ is the amount of mass per unit volume. The cross-sectional area
of the beam is assumed to be constant and the moment of inertia of the cross-
sectional area of the axis relative to its diameter is assumed to be constant.
Therefore, the mass and hard disk element matrices are as follows:

[M e
D] =


MD 0 0 0

0 MD 0 0
0 0 IDX 0
0 0 0 IDX

 and [Ged] =


0 0 0 0
0 0 0 0
0 0 0 IDy
0 0 −IDy 0


(25)

In the above equations,MD is the mass of the disk and IDX is the moment
of diagonal inertia and IDy is the moment of polar inertia.

In the case of bearings, the element is such that the bearing is on one side
of the node and the other node of the bearing element is connected to the base
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element because each node has four degrees of freedom, so the element has
eight degrees of freedom and therefore the matrix Its stiffness and damping
will be 8× 8, and using the short bearing assumption, we will have a stiffness
and damping matrix [21].

[kb]e =



Kxx Kxy 0 0 −Kxx −Kxy 0 0

Kyx Kyy 0 0 −Kyx −Kyy 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−Kxx −Kxy 0 0 Kxx Kyx 0 0

−Kyx −Kyy 0 0 Kyx Kyy 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


(26)

The matrix elements are the hardness coefficients of the oil film. The first
index indicates the direction of the force and the second index indicates the
direction of displacement.

[Cb]e =



Cxx Cxy 0 0 −Cxx −Cxy 0 0

Cyx Cyy 0 0 −Cyx −Cyy 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−Cxx −Cxy 0 0 Cxx Cyx 0 0

−Cyx −Cyy 0 0 Cyx Cyy 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


(27)

The matrix elements are the damping coefficients of the oil film.
Assume that the terms viscous damping and stiffness are known and the

effects of bending can be ignored. The virtual work of the forces entering the
axis is written as follows:

δw = −kxxuδu− kxzwδu− kzzwδw − kzxuδw − cxxu̇δu− cxzẇδu

− czzwδw − czxu̇δw

δw = Fuδu+ Fwδw (28)
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Where Fu and Fw are the general components of force. If we want to
represent the equations in the form of a matrix, we will have the assumption
Fθ = FΨ = 0.

Fu

Fw

Fθ

FΨ

 = −


kxx kyz 0 0

kzz kzx 0 0

0 0 0 0

0 0 0 0



u

w

θ

ψ

−

C C 0 0

C C 0 0

0 0 0 0

0 0 0 0



u̇

ẇ

θ̇

ψ̇

 (29)

The first matrix is the hardness matrix and the second matrix is the viscous
damping matrix. Matrices are generally asymmetric (Kzz 6= Kzz and Czz 6=
Cxz). The components of the matrices can be a function of the rotation speed
of the rotor.

By combining the matrices for a single-rotor system, the general form of
the system equation will be as follows:

[M ]{δ̈}+ ([C] + Ω[G]){δ̇}+ [K]{δ} = {F (t)} (30)

Where δ contains the node displacement, M is the symmetric matrix of
mass, C is an asymmetric matrix containing the antisymmetric matrix of the
gyroscope as a function of Ω, and an asymmetric matrix is obtained from the
bearing profile; It is asymmetric due to the nature of the bearings. And F (t)
is the force corresponding to the mass nomination, asynchronous forces, or
harmonic forces fixed in space.

Calculate the natural frequency, the shape of modes.
Considering the attenuation term, solving the equation does not simply

lead to the discussion of eigenvalues and eigenvectors. Rather, it requires
the use of more complex methods that can be examined by examining the
orthogonality of fashions [20].

[M ]{δ̈}+ ([C] + Ω[G]){δ̇}+ [K]{δ} = {0} (31)

To calculate the frequency and natural modes, the system vibration
equation: [

[0] [M ]
[M ] (Ω[G] + [C])

]
η̇ +

[
−[M ] [0]

[0] [K]

]
η =

[
0
0

]
(32)
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Defined in the above relation:

M∗ =

[
[0] [M ]

[M ] ([C] + Ω[G])

]
, K∗ =

[
−[M ] [0]

[0] [K]

]
(33)

~η =

[
δ̇
δ

]
(34)

By placing in the above relationships:

[M ]∗{δ̇}+ [K]∗{δ} = {0} (35)

The answer to the above equation can be considered as follows:

~η = {Ψ}eσt (36)

And to solve the nonlinearity of the above equation:

|σM∗ +K∗| = 0 (37)

Response to stimulus forces
Here the steady-state response to the constant force is calculated as

follows.
Kδ = F1 (38)

The equation is easily solved using methods such as Gaussian.
Mass nomination force, asynchronous force, constant harmonic force in

space.
According to the stated equation, the equations to be solved are as

follows [20]:

[M ]{δ̈}+ ([C] + Ω[G]){δ̇}+ [K]{δ}

= fs sin(w∗t) + fc cos(w∗t) (39)

Which fc, fs are synchronous forces and mass nominee forces. By plac-
ing and specifying the expressions multiplied by sin(Ωt) and cos(Ωt), the
following equation is obtained:[

K −Mω∗
2 −ω∗(Ω[G] + [C])

ω∗(Ω[G] + [C]) K −Mω∗
2

] [
δs
δs

]
=

[
fs
fc

]
(40)
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3 Results and Discussion

3.1 Validation of Numerical Modeling

To ensure the correctness of the software used and check the accuracy of the
results, examples were solved with Ansys and MATLAB software that the
model used in this example is designed in Katia software. These examples
include the ones mentioned incredible sources and compare the answers with
each other. After correcting the mistakes and ensuring the correct operation
of the software, it has been used in this project. Here are some suggestions on
how to look or get an appointment for Ansys Workbench software.

3.2 Simple Rotor

In this example, a simple steel rotor is shown in Figure 3. The rotor has a
shaft and a disk that is rigidly attached to the end of the shaft, and the center
of mass of the disk is due to an imbalanced mass with the axis of rotation. It
is not true. This rotor is under rotation with a natural frequency of 700 RPM.
The first six frequencies, the Campbell diagram, the harmonic response, and
the shape of the modes are given below.

3.3 Simple Rotor Analytical Modeling

Analytical modeling of the rotor is considered with four degrees of free-
dom, which includes two transverse states and two torsional states {u} =
{y z Ψ θ}T

[Cgyro ] =


0 0 0 0
0 0 0 0
0 0 0 ΩJp
0 0 −ΩJp 0

, [M ] =


m 0 0 0
0 m 0 0
0 0 JT 0
0 0 0 JT

,

Figure 3 Simple rotor with the disk.
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Table 1 The specifications of the simple rotor

Properties Unit

Disk diameter 0.6 m

Disk thickness 0.5 m

Shaft length 1m

Shaft diameter 0.03 m

Density 7850 kg/m

Young’s modulus 211 GPa

Poisson’s ratio 0.3

Disk mass 110 kg

Distance from the axis 0.001 m

Unbalanced mass 110 kg

Table 2 Analytical and numerical response of a simple rotor under rotational loading

Type First Second Three Four Five

Row of Analysis Mode Mode Mode Mode Mode

1 Analytical response (Ansys) 2.4128 2.4131 5.851 19.554 19.559

2 Numerical response (Matlab) 2.3117 2.391 5.671 19.1 19.451

[k] =


k11 0 0 k12

0 k11 −k12 0
0 −k12 k22 0
k12 0 0 k22

 (41)

I =
πd4

64
, Jp =

mD2

8
, JT =

mD2

16
,

k11 =
12EI

L3
, k12 =

6EI

L2
, K22 =

4EI

L
(42)

The effects of the gyroscopic matrix are very important during rotor
analysis.

Table 2 shows the comparison of the first five frequencies, which are
calculated by both analytical and numerical methods.

To evaluate the validity of the modeling, a simple Campbell Rotor
diagram in analytical and numerical methods is presented in Figures 4 and 5.

After reviewing the results, a Campbell diagram is drawn for a simple
rotor. The modes in the complete diagram are the coefficients 1 ∗ω and 2 ∗ω.
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Figure 4 Campbell diagram (Matlab analytical modeling).
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Figure 5 Campbell diagram (Ansys numerical modeling).

3.4 Simple Rotor Harmonic Response

To calculate the harmonic response, the mass of the unbalance is equal to the
mass of the disk at point e on the axis of rotation on the disk. To calculate the
balancing force:

{F (t)} =


mueΩ

2

0
0
0

 cos(Ωt) +


0

mueΩ
2

0
0

 sin(Ωt) (43)
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Figure 6 The location of the force applied in the software.

Rotational Speed ,(rpm)

Ra
di

al
D

isp
la

ce
m

en
t,

(m
)

100 200 300 400 500 600

0.02

0.04

0.06

0.08

0.1

0.12
Harmonic Response (Matlab Model)

Frame 001 21 Feb 2018

Figure 7 Simple rotor harmonic response (Matlab analytical model).

Figure 6 shows the location of the force applied to the unbalanced disk in
Ansys software. This force is also applied to the mentioned point. The rotor
harmonic response is also compared by analytical and numerical methods.
Figure 7 shows the simple rotor harmonic response (Matlab analytical model)
and, Figure 8 shows the harmonic response of the rotor (Ansys numerical
model). Figures 9–11 shows the modes obtained by Ansys software. Which
indicates different states of motion, including torsion and transition.

3.5 Rotor with Roller Bearing

In this step, a rotor with the dimensions and specifications used in the first
part is shown with the difference that a roller bearing is attached to the end
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Figure 8 The harmonic response of the rotor (Ansys numerical model).

 
Figure 9 The first mode of the rotor (bending) in Ansys software.

Figure 10 The second (torsional) mode of the rotor in Ansys.
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Figure 11 The third (bending) mode of the rotor in Ansys.

of the disc. As in the previous example, the rotor is made of steel. This rotor
is under rotation with a natural frequency of 700 RPM. In the following, the
first five frequencies, Campbell diagram, harmonic response, and shape of
modes are examined. The specifications of the roller bearing are as follows,
which are connected to the disc on the rotation plate.

Ky = 3 ∗ 105 N/M2

Kz = 6 ∗ 105 N/M2 (44)

[k] =


k11 0 0 k12

0 k11 −k12 0
0 −k12 k22 0
k12 0 0 k22

+


ky 0 0 0
0 kz 0 0
0 0 0 0
0 0 0 0

 (45)

The amount of stiffness in the vertical direction is twice the stiffness
in the transverse direction. In analytical modeling, the amount of bearing
stiffness is added to the total stiffness of the matrix and the final shape of
the stiffness matrix is calculated. Table 3 shows the frequency calculated
from both analytical and numerical methods. In analytical modeling, as in
the previous example, a rotor with four degrees of freedom is considered,
which includes two transverse states and two torsional states. To evaluate the
validity of the modeling, the Campbell-rotor diagram with a roller bearing is
shown in analytical and numerical methods in Figures 12 and 13.

To calculate the harmonic response of a rotor with a roller bearing, as
in the previous example, an unbalanced mass equal to the mass of the disk
is placed on the disk at point end of the axis of rotation. The harmonic
response with the rotor shown in Figures 14 and 15 has been compared to
analytically and numerically. The presence of two peaks in both diagrams
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Table 3 Comparison of the first five analytical and numerical frequencies of the rotor with a
roller bearing

Type First Second Three Four Five
Row of Analysis Mode Mode Mode Mode Mode
1 Analytical response (Matlab) 1.96 2.1 6.12 19.02 19.1
2 Numerical response (Ansys) 2.2374 2.25 5.9 18.93 18.97
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Figure 12 Campbell diagram (Matlab analytical modeling).
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Figure 13 Campbell diagram (Ansys numerical modeling).

indicates the existence of two critical velocities during the period and the
maximum value in the frequency response diagram changes. The location is
the end of the shaft. Figures 16–18 shows the modes obtained for the rotor
with roller bearings obtained by Ansys software.
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Figure 14 The harmonic response of the rotor with a roller bearing (Matlab analytical
model).
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Figure 15 The harmonic response of the rotor with a roller bearing (Ansys numerical
model).

Figure 16 The first (torsional) mode of the rotor in Ansys software.
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Figure 17 The second mode (bending) of the rotor in Ansys software.

 
Figure 18 The third (bending) mode of the rotor in Ansys software.

Figure 19 Rotor with hydrodynamic bearing.

3.6 Rotor with Hydrodynamic Bearing

In this rotor, with the dimensions and specifications used in the rotor, the
same as before is used, which is shown in Figure 19. The difference is that a
hydrodynamic bearing is attached to the end of the disc. As in the previous
example, the rotor is made of steel. This rotor is under rotation with a natural
frequency of 700 RPM. In the following, the first five frequencies, Campbell
diagram, harmonic response, and shape of modes are examined.
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Table 4 Comparison of analytical and numerical frequencies
Type First Second Three Four Five

Row of Analysis Mode Mode Mode Mode Mode
1 Analytical response (Matlab) 6.14 0 13.97 18.96 19.1
2 Numerical response (Ansys) 6.51 0 14.57 18.93 18.99

The specifications of the selective disc-connected hydrodynamic bearing
that rotates on the plate are as follows:

Ky = 3 ∗ 105 N/M2

Ky = 6 ∗ 105 N/M2 and
Cy = 500 Ns/m
Cz = 500 Ns/m

(46)

In this bearing, the amount of damping in the vertical direction is twice
the horizontal direction, and as a result, the number of dampers used in the
equation will be as follows.

[C] = [Cgyro ] + [C] =


0 0 0 0
0 0 0 0
0 0 0 ΩJp
0 0 −ΩJp 0

+


Cy 0 0 0
0 Cz 0 0
0 0 0 0
0 0 0 0


(47)

The stiffness matrix is used in the same way as in the second example

[k] =


k11 0 0 k12

0 k11 −k12 0
0 −k12 k22 0
k12 0 0 k22

+


ky 0 0 0
0 kz 0 0
0 0 0 0
0 0 0 0

 (48)

In analytical modeling, as in the previous example, a rotor with four
degrees of freedom is considered, which includes two transverse states and
two torsional states. Table 4 shows a comparison of the first five frequencies
calculated by both analytical and numerical methods. For modeling valida-
tion, the Campbell-rotor diagram with a hydrodynamic bearing is shown in
analytical and numerical methods in Figures 20 and 21.

To calculate the harmonic response of a rotor with a hydrodynamic bear-
ing, as in the second example, an unbalanced mass equal to the mass of the
disk is placed on the disk at point e of the axis of rotation. Figure 22 shows the
harmonic response of the rotor with hydrodynamic bearing (Matlab analytical
model) and, Figure 23 shows the harmonic response of the rotor with hydro-
dynamic bearing (Ansys analytical model). The rotor harmonic response is
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Figure 20 Campbell diagram (analytical model).
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Figure 21 Campbell diagram (Ansys model).
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Figure 22 The harmonic response of the rotor with hydrodynamic bearing (Matlab analyti-
cal model).
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Figure 23 The harmonic response of the rotor with hydrodynamic bearing (Ansys analytical
model).

 
Figure 24 The first (torsional) mode of the rotor in Ansys software.

also compared by analytical and numerical methods. Figures 24–26 shows
the modes obtained for the rotor with hydrodynamic bearings obtained by
Ansys software.

3.7 Simulation of RM12 Turbofan Rotor System

The turbofan engine selected in this project will be used in the Saab JAS 39
Gripe fighter. The working speed of this rotor is 30000 RPM (3140 radians
per second). The general view of the turbine and the parts that are important in
vibrations are shown below. This turbofan engine consists of three fan stages,
seven axial compressor stages, one low-pressure turbine stage, and one high-
pressure turbine stage with a shaft connected between them. The rotor is
mounted on four bearings whose positions are marked. The components of
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Figure 25 The second mode (bending) of the rotor in Ansys software.

 
Figure 26 The third mode (bending) of the rotor in Ansys software.

Table 5 Specifications of materials used in the rotor
Mechanical Properties Steel Aluminum Titanium
Young modulus (GPa) 207 71 116
Shear modulus (GPa) 80 26 44
Poisson’s ratio 0.3 0.35 0.35
Volumetric mass (kg/m3) 7800 2700 4506
Thermal expansion coefficient (1/C) 14 × 106 23 × 106 8.6 ×10 6

the rotor are turbines and shafts, respectively, which are made of steel alloys,
the compressor is made of aluminum alloys, and the fan used is made of
titanium. Table 5 shows the specifications of materials used in the rotor and,
Table 6 shows the weight of parts used in the gas turbine rotor.

All turbofan rotor parts have been modeled in Catia software after
measuring dimensions in millimeters and finally, the assembly has been
disassembled. The following are the rotor parts. Figure 27 shows the first
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Table 6 Weight of parts used in the gas turbine rotor
Unit The Total

Name Material Weight (kg) Number Weight (kg)
Low-pressure steel turbine Steel 25.11 1 25.11
High-pressure steel turbine Steel 11.78 1 11.78
High-pressure compressor Steel + Aluminum 18.31 1 18.31
Fan set Steel + Titanium 29.13 1 29.13
The whole set of rotors – – – 139.68

 

Figure 27 First stage spool (low-pressure rotor).

Figure 28 Second stage spool (high-pressure rotor).

stage spool (low-pressure rotor) and, Figure 28 shows the second-stage spool
(high-pressure rotor) and, Figure 29 shows the complete model of the RM12
rotor. The main model of turbofan with blades is shown in Figure 30. The
turbofan rotor finite element model is shown in Figure 31.

For the case of using the floor bearing, which of course is the closest
model to the real state of the rotor in question, the results of the Ansys
program are shown in Table 7. In the model of simulation of a rotor with a
rigid bearing, the rotor in question does not have any rotation in the direction
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Figure 29 The complete model of the RM12 rotor.

Figure 30 Turbofan RM12 model.

Figure 31 Turbofan rotor finite element model.
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Table 7 Results of the round floor bearing Ansys program
Ansys Results (Hz Frequency) Critical Velocity (Hz) Mode Number
473 951.51 1BW
1293 1290.76 2FW
1353 1342.03 3FW
1387 1372.45 4BW
1449 1404.93 5FW
1581 1470.06 6FW
1599 1584.55 7FW
1763 1611.78 8FW
1778 1769.42 9FW
1936 1783.6 10FW
2018 1944.74 11FW
3737 2027.22 12FW

Figure 32 Campbell rotor diagram with rigid bearing.

of the axis of rotation or movement in the directions at the place of application
of the bearings and is completely restricted. The range of rotational speed of
the rotor with rigid bearing (RPM) is 0–30000. The damping frequencies
associated with the critical velocity for a rigid bearing rotor are shown in
Table 7. Figure 32 shows a Campbell diagram of the RM12 rotor with a
round bottom bearing in the applied frequency range. The rigid bearing in
the RM12 rotor is shown in the sections shown in Figure 45. Figure 33–36
shows the RM12 rotor modes under rotational loading.
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Figure 33 Location of round floor bearings.

Figure 34 The first mode (torsion) of the free rotor.

 

Figure 35 The second mode (bending) of the rotor.



Dynamics and Vibration Analysis of a Rotor-Bearing System 305

Figure 36 The third mode (bending) of the rotor.

Figure 37 RM12 rotor with roller bearing.

3.8 RM12 Rotor with Roller Bearing

To use the roller bearing in the RM12 rotor, the stiffness parameters of this
bearing can be defined as follows: The location of the bearings is as shown in
Figure 37.

K11 = 1× 107 N/M2

K22 = 1× 107 N/M2

K12 = 2× 106 N/M2

K21 = 2× 106 N/M2

(49)

The bearings are shown in the locations shown in the figure. In this
bearing, the rotational movement in the direction of the axis is restricted. The
lame frequencies along with the critical speed for a rotor with rigid bearings
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Table 8 Results from the Ansys rotor program with roller bearings
Ansys Results (Hz Frequency) Critical Velocity (Hz) Mode Number
1288 1419.42 1FW
1348 1396.88 2BW
1392 1410.83 3BW
1455 1487.9 4BW
1573 1599.56 5BW
1605 1678.09 6BW
1758 1766.91 7FW
1778 1723.47 8BW
1945 1942.19 9BW
2002 2109.1 10FW
2382 2313.69 11FW
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Figure 38 Campbell rotor diagram with roller bearing.

are shown in Table 8. Figure 38 shows a Campbell RM12 rotor diagram with a
roller bearing in the applied frequency range. Figures 39–41 shows the RM12
rotor modes of a roller bearing.

3.9 RM12 Rotor with Hydrodynamic Bearing

To use the hydrodynamic bearing in the RM12 rotor, the stiffness param-
eters, and the damper properties of this bearing can be defined as follows
(Srikrishnanivas, 2012). This bearing is inserted in the software in the form
of COMIN214 in the simulation, which is a two-dimensional asymmetric
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Figure 39 The first mode (torsion) of the rotor.

Figure 40 The second mode (bending) of the rotor.

 
Figure 41 The third mode (bending) of the rotor.
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Figure 42 COMBI element 214.

 

Figure 43 RM12 rotor schematic.

element of spring and damper. The COMIN214 element and the shape of
the rotor in question along with the bearing element are shown in Figure 42.
Figure 43. RM12 shows the rotor schematic and, Figure 44 shows the location
of the bearings. In this bearing, the rotational motion is limited in the direction
of the axis. The Campbell rotor diagram in question shows in the range of
0–30.000 RPM. Crank frequencies and critical velocities for a rotor with a
hydrodynamic (asymmetric) bearing are shown in Table 9. Figure 45 shows
a Campbell diagram of an RM12 rotor with a hydrodynamic (asymmetric)
bearing in the applied frequency range. Table 10 shows the critical frequency
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Figure 44 RM12 rotor cross-section.

Table 9 Results of Ansys Rotor software with hydrodynamic bearing (asymmetric)
Ansys Results (Hz Frequency) Critical Velocity (Hz) Mode Number
1287 1298.09 1BW
1348 1367.47 2BW
1381 1392.83 3FW
1442 1465.85 4BW
1573 1586.88 5BW
1591 1605.25 6BW
1751 1769.91 7BW
1765 1785.51 8FW
1918 1942.03 9BW
1999 2051.56 10BW
2039 2313.21 11BW
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Figure 45 Campbell rotor diagram with hydrodynamic bearing (asymmetric).
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Table 10 Results of Ansys Rotor program with hydrodynamic bearing (symmetrical)
Ansys Results (Hz Frequency) Critical Velocity (Hz) Mode Number
1299 1305.12 1BW
1362 1378.02 2BW
1401 1409.17 3FW
1465 1481.17 4BW
1591 1616.01 5BW
1605 1621.90 6BW
1774 1789.14 7BW
1786 1799.02 8FW
1929 1941.11 9BW
2024 2037.02 10BW
2046 2311.84 11BW

 
Figure 46 Campbell rotor diagram with hydrodynamic bearing (symmetrical).

and velocity values for the bearing symmetrical element. Figure 46 shows a
Campbell RM12 rotor diagram with a hydrodynamic (symmetrical) bearing
in the applied frequency range. Figure 47 shows the location of the harmonic
force. Figures 48–50 shows the modes of the RM12 rotor under rotational
loading and the use of a hydrodynamic (asymmetric) bearing. Figure 51
shows the harmonic response of free RM12 rotor to unbalanced mass and,
Figure 52 shows the harmonic response of RM12 rotor with rigid bearing to
unbalanced mass and, Figure 53 shows the harmonic response of RM12 rotor
with roller bearing to unbalance mass and, Figure 54 shows the harmonic
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Figure 47 Place of application of harmonic force.

Figure 48 The first (torsional) mode of the rotor.

 
Figure 49 The second mode (bending) of the rotor.
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Figure 50 Three mode (bending) of the rotor.

Figure 51 The harmonic response of free RM12 rotor to unbalanced mass.

Figure 52 The harmonic response of RM12 rotor with rigid bearing to unbalanced mass.
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Figure 53 The harmonic response of RM12 rotor with roller bearing to unbalance mass.

Figure 54 The harmonic response of RM12 rotor with hydrodynamic bearing to unbalanced
mass.

response of RM12 rotor with hydrodynamic bearing to unbalanced mass.

K11 = 1× 107 N/M2

K22 = 1× 107 N/M2

K12 = 2× 106 N/M2

K21 = 2× 106 N/M2

C11 = 100 Ns/m
C22 = 100 Ns/m
C12 = 200 Ns/m
C21 = 200 Ns/m

(50)
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To calculate the unbalance response in the RM12 rotor, an unbalanced
mass 1×10−5 is placed on the second-row fan blade and a rotational speed in
the range (0–18000 RPM) is applied over some time. The frequency response
has been calculated for all four types of rotors along with the bearings
considered in the previous section. To calculate the frequency response:

{F (t)} =


meΩ2

0
0
0

 cos(Ωt) +


0

meΩ2

0
0

 sin(Ωt) (51)

4 Conclusions

The results of numerical and analytical simulations had a very good agree-
ment with each other.

The main frequencies of the rotor were calculated at the specified
rotational speed, the results of which are fully specified.

The main values of critical velocities are obtained for different rotor
states, which are reduced when using the hydrodynamic journal bearing.
Which itself is effective in system stability.

According to the results, as expected, in the free rotor mode, the highest
lame frequencies are observed in the system.

Due to the shape of the modes obtained in each case, the most displace-
ment has occurred in the RM12 rotor fan, so reducing the vibrations of the
input fan to prevent failure, should be considered as an important parameter.

In the bearing modeling mode, when the bearings are rigidly modeled,
the crank frequencies are higher than in the case of the hydrodynamic and
rolling journal bearing mode, due to the higher system stiffness ratio. It is
the same as before. Also, the use of hydrodynamic journal bearings reduces
the system frequency, which in turn increases the efficiency and reduces the
system vibrations.

In calculating the frequency response of the RM12 rotor using an
unbalanced mass that was applied to the input fan, in the case of using
a hydrodynamic bearing, the amplitude of the system vibrations is greatly
reduced.
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