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Abstract

In the present research, buckling behaviour of an isotropic homogeneous
rotating annular plate subjected to uniform compression on both inner and
outer edges is analysed. It is further assumed that the plate is rotating with
a constant angular speed. Formulation is based on the first order shear
deformation plate theory, which is valid for thin and moderately thick plates.
The complete set of equilibrium equations and the associated boundary con-
ditions are obtained for the plate. Prebuckling loads of the plate are obtained
under flatness and axisymmetric deformations. Using the adjacent equilibrium
criterion, the linearised stability equations are extracted. An asymmetric
stability analysis is performed to obtain the critical buckling loads of the plate
and the buckled configurations of the rotating plate. To this end, trigonometric
functions through the circumferential direction and the generalised differential
quadrature discretization across the radial direction are used which result in
an algebraic eigenvalue problem. Benchmark results are given in graphical
presentations for combinations of free, simply-supported, sliding supported,
and clamped types of boundary conditions. It is shown that rotation enhances
the buckling loads of the plate for all types of boundary conditions and alters
the buckled shape of the plate.
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1 Introduction

Plates with annular shape have different applications in mechanical and
civil engineering. The fact that stress distribution in rotating discs may
cause fractures and may therefore lead to failures of spinning mechanical
systems has become of quite some interest. The regime of stresses induced
by rotating may be compressive or tensile depending on the boundaries of
the disk. Rotating disks and plates have shown different applications such as,
pump rotors, compressors and computer disks. Yamaki (1985) was the first
who considered the asymmetrical buckling of annular plates under uniform
compression on both edges of the plate. In the analysis of Yamaki (1985)
asymmetrical deformations of the plate under axisymmetric loading are taken
into consideration. It is found that the buckling loads are often appearing in
shapes with one or more nodal diameters. He obtained the buckling loads
for twelve combinations of boundary conditions and discussed the stability
criteria for the case of small cores. Majumdar (1971) discussed theoretically
and experimentally, the buckling of a circular annular plate where the outer
edge is clamped and the inner edge is free. The plate is loaded with uniform
radial compressive force applied at the outside edge. The solutions indicate
that for small ratios of inner to outer radius, the plate buckles into a radially
symmetric mode. When the ratio of the inner to outer radius exceeds a certain
value, the minimum buckling load corresponds to buckling modes with waves
along the circumference. The number of waves depends on the ratio of the
inner and the outer radii. Irie et al. (1982) studied the free vibration and
stability of a variable thickness annular plate subjected to a torque by the
Ritz method. For this purpose, the transverse deflection of an annular plate
of a uniform thickness without the action of a torque is written in form of a
series of deflection functions. The kinetic and strain energies of the plate are
evaluated analytically and the frequency equation of the plate is derived by
the conditions for a stationary value of the Lagrange functional. The present
method is applied to annular plates with two types of radial thickness variation,
power law and exponential. The natural frequencies and the divergence torques
are calculated numerically, from which the effects of the varying thickness,
inner/outer radii ratio, and edge conditions are studied. Kiani and Eslami
(2013a) obtained the critical buckling temperatures of annular plates made
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from a functionally graded material. The plate is assumed to be attached to
an elastic medium which acts as an elastic foundation. Formulation is limited
to thin plates and asymmetrical stability analysis is performed. It is shown
that the fundamental buckling pattern of plates with both edges clamped is
always asymmetric. Ghiasian et al. (2014) carried out an investigation on
critical buckling temperatures of functionally graded material plates. This
study is developed based on a first order shear deformation plate theory which
is suitable for thin and moderately thick plates.

Mostaghel and Tadjbakhsh (1973) obtained a closed-form formula for
critical speed of a spinning solid circular plate where the edge of the plate is
restrained against radial expansion. In this analysis, rotating angular speed is
assumed to be constant and solution method is based on the Coulomb wave
functions. Iwan and Moeller (1976) discussed the effect of a transverse load on
the stability of a spinning elastic disk. The disk rotates with a constant angular
velocity and the load consists of a mass distributed over a small area of the disk
with a spring and a dashpot. The equation of motion for the transverse vibration
of the disk is written as a system of linear ordinary differential equations with
constant coeffcients. The analysis indicates that the disk system is unstable
for speeds in a region above the critical speeds of vibration of the spinning
disk due to the effects of load stiffness. The mass and damping of the load
system cause a terminal instability and other instabilities occur as a result of
modal interaction.

Eid and Adams (2006) obtained the critical speeds of a moderately thick
circular spinning disk by using the Mindlin plate theory, which includes shear
deformation and rotational inertia. A combination of analytical and numerical
methods is used to calculate the four lowest critical speeds for a centrally
clamped uniform circular disk. Comparisons between the critical speeds of
the shear deformable plate with those of classical plate theory, which neglects
shear deformation and rotational inertia, are made. Maretic (1998) analyzed
the vibration and stability of a circular plate with elastically restrained edge
induced due to the rotation with constant angular velocity. Maretic et al. (2007)
analyzed the vibration and stability of a circular plate induced due to the
rotation with constant angular velocity and a constant external torque. The
buckled states of an annular plate under the simultaneous action of an edge
torque and constant angular velocity are obtained. In this analysis asymmetric
formulation is presented. Stability analysis is performed using the adjacent
equilibrium criterion. Annular plates with both edges clamped are considered
and solution method is based on the Galerkin method. Solution method of this
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research, however, is restricted to thin plates. Maretic and Glavardanov (2004)
discussed the linear and nonlinear stability of a solid thin rotating circular
plate subjected to uniform temperature rise loading. Stress redistribution and
critical states of rotating solid circular plates are analyzed by Tutunku (2000)
and Tutunku and Durdu (1998). In the mentioned works, finite element
formulation is applied to obtain the critical speed of the plate. As concluded
in these researches, increasing the orientation up to a certain point makes
the plate less stable. Adams (1987) modelled the rotation of floppy disk with
a spinning annular plate and extracted the critical states of floppy disk. In
this analysis, the elastic foundation model is proposed to postpone the critical
state of a rotating floppy disk.As shown in this research, certain critical speeds
exist at which the spinning disk is unable to support arbitrary spatially fixed
transverse loads. These critical speeds are in the range of rotational speeds
relevant to certain floppy disk in magnetic recording applications. The effects
of various boundary conditions on the buckling velocity is discussed by Bauer
and Eidel (2007). Kiani and Eslami (2014) discussed the nonlinear stability
of a functionally graded material solid circular plate subjected to uniform
temperature rise and constant rotational speed. This research is limited to
axisymmetric deformations. Due to the stretching-bending coupling effects in
functionally graded material plates, various nonlinear responses are observed
among the results. Recently, Bagheri et al. (2017a) analysed the effects of
uniform rotation on the critical buckling temperature of the annular plates and
showed that critical buckling temperature of the plate may be enhances under
certain circumstances.

To the best of the present authors knowledge and as the above literature
survey reveals, the bifurcation buckling of an annular plate subjected to
the combined action of rotation and compression is not reported so far. In the
present research, first order shear deformation plate theory is used to obtain the
critical buckling loads of an annular plate rotating with constant angular speed.
To this end, pre-buckling forces of the plate are obtained by using the flatness
and axisymmetric deformation conditions. Afterwards, adjacent equilibrium
criterion is used to obtain the stability equations. Asymmetrical stability
analysis is performed and the governing equations are discreted by means of
the generalised differential quadratures. Various types of boundary conditions
as combinations of clamped, free, simply supported, and sliding supported
are considered. Numerical results are provided in graphical presentation to
obtain the critical buckling loads of annular plates as functions of boundary
conditions, inner to outer radius ratio, thickness to outer radius ratio and
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rotating speed. It is shown that rotation enhances the buckling loads of an
annular plate in all cases. However, it may change the buckling pattern of
the plate.

2 Theoretical Formulation

Consider an annular plate of thickness h, inner radius b, and outer radius a
as shown in Figure 1. The plate is subjected to uniform compression on both
inner and outer edges and also rotates with a constant angular speed ω. Polar
coordinates system (r, θ, z) with its origin located at the centre of the plate
mid-surface is defined. In this system, r, θ, and z represent, respectively, the
radial, circumferential, and through-the-thickness directions.

2.1 Kinematic Assumptions

Displacement field in the plate domain is assumed to obey the first order
shear deformation plate theory (FSDT). Based on the FSDT, the displacement
components of the plate may be written as (Ghiasian et al., 2014)

u(r, θ, z) = u0(r, θ) + zφr(r, θ)
v(r, θ, z) = v0(r, θ) + zφθ(r, θ) (1)

w(r, θ, z) = w0(r, θ)

where in Equation (1) u0, v0, and w0 represent the displacements at the mid-
surface of the annular plate in the r-, θ-, and z-directions, respectively. Also,
φr and φθ denote, respectively, the transverse normal rotations about θ and

Figure 1 Coordinate system and geometry of an annular plate.



330 H. Bagheri et al.

r axes. Besides, a comma indicates the partial derivative with respect to its
afterwards.

2.2 Nonlinear Strain-displacement Equations

The von Kármán type of geometrical nonlinearity, consistent with the small
strains, moderate rotations, and large displacements in the polar coordinates
system takes the form (Ghiasian et al., 2014)

εrr = u,r +
1
2
w2

,r

εθθ =
1
r
u +

1
r
v,θ +

1
2r2 w2

,θ

γrθ =
1
r
u,θ + v,r − 1

r
v +

1
r
w,θw,r (2)

γrz = u,z + w,r

γzθ =
1
r
w,θ + v,z

where εrr and εθθ express the radial and circumferential normal strains and
γrθ, γrz, and γzθ denote the shear strain components.

2.3 Constitutive Equations

When the material of the plate is linearly elastic, the constitutive law for a
plane-stress plate exposed to compressive and rotational loadings is (Ghiasian
et al., 2014)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σrr

σθθ

τrθ

τrz

τzθ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εrr

εθθ

γrθ

γrz

γzθ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

where Qij , i, j = 1, 2, 4, 5, 6 are the material stiffness coefficients. For an
isotropic homogeneous medium under plane stress conditions, these constants
are obtained as

Q11 = Q22 =
E

1 − v2 , Q12 = vQ11, Q44 = Q55 = Q66 =
E

2(1 + v)
(4)
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2.4 Stress Resultants

Based on the FSDT, the stress resultants are related to the stress components
through the following equations (Reddy, 2003)

(Nrr, Nθθ, Nrθ) =
∫ +h/2

−h/2
(σrr, σθθ, τrθ)dz

(Mrr, Mθθ, Mrθ) =
∫ +h/2

−h/2
z(σrr, σθθ, τrθ)dz (5)

(Qr, Qθ) =
∫ +h/2

−h/2
(τrz, τzθ)dz

Substituting Equation (3) into Equation (5) with the aid of Equations (1) and
(2), generate the stress resultants in terms of the mid-plane displacements as

⎧⎨
⎩

Nrr

Nθθ

Nrθ

⎫⎬
⎭ =

⎡
⎣A11 A12 0

A12 A22 0
0 0 A66

⎤
⎦

⎧⎪⎨
⎪⎩

u0,r + 1
2w2

0,r

1
rv0,θ + 1

ru0 + 1
2r2 w2

0,θ
1
ru0,θ + v0,r − 1

rv0 + 1
rw0,rw0,θ

⎫⎪⎬
⎪⎭

⎧⎨
⎩

Mrr

Mθθ

Mrθ

⎫⎬
⎭ =

⎡
⎣D11 D12 0

D12 D22 0
0 0 D66

⎤
⎦

⎧⎨
⎩

φr,r
1
rφr + 1

rφθ,θ
1
rφr,θ + φθ,r − 1

rφθ

⎫⎬
⎭ (6)

{
Qr

Qθ

}
=

[
A55 0
0 A44

] {
w0,r + φr
1
rw0,θ + φθ

}

In the above equations, the constant coefficients Aij and Dij are the stretching
and flexural stiffnesses and are obtained in terms of the elasticity modulus,
Poisson’s ratio, and thickness of the plate as

A11 = A22 =
Eh

1 − v2 , A12 =
vEh

1 − v2 ,

A44 = A55 = A66 =
Eh

2(1 + v)
(7)

D11 = D22 =
Eh3

12(1 − v2)
, D12 =

vEh3

12(1 − v2)
, D66 =

Eh3

24(1 + v)

The stress resultants on an element are shown in Figure 2.
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Figure 2 Stress resultants on an element in polar coordinate system.

2.5 Equilibrium Equations

The equilibrium equations of a rotating annular plate under uniform compres-
sion may be derived on the basis of the static version of virtual displacements
(Reddy, 2003). Considering that the total energy of the plate consists of the
strain energy and the potential energy due to the constant rotational speed ω
and compressive uniform load N on both edges, in an equilibrium position
one may write

∫ a

b

∫ 2π

0

∫ +h/2

−h/2
(σrrδεrr + σθθδεθθ + τrθδγrθ + τzθδγzθ + τrzδγrz

−ρrω2δu)rdzdθdr + N

∫ 2π

0
rδu0 |r=a

r=b dθ = 0 (8)

where N is the stress resultant of the applied forces on inner and outer
edges of the plate. Integrating the above functional over thickness, recalling
Equations (2), (3), and (6), and performing the appropriate mathematical
simplifications, a set of equations for the equilibrium state of an annular plate
subjected to the simultaneous effects of uniform compression and constant
angular speed is obtained as follows

δu0 : Nrr,r +
1
r
Nrθ,θ +

1
r
(Nrr − Nθθ) + ρhrω2 = 0

δv0 :
1
r
Nθθ,θ + Nrθ,r +

2
r
Nrθ = 0
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δw0 : Qr,r +
1
r
Qθ,θ +

1
r
Qr + Nrrw0,rr + Nθθ

(
1
r
w0,r +

1
r2 w0,θθ

)

+2Nrθ

(
1
r
w0,rθ − 1

r2 w0,θ

)
− ρhrω2w0,r = 0

δφr : Mrr,r +
1
r
Mrθ,θ +

1
r
(Mrr − Mθθ) − Qr = 0

δφθ :
1
r
Mθθ,θ + Mrθ,r +

2
r
Mrθ − Qθ = 0 (9)

2.6 Boundary Conditions

The complete set of boundary conditions may be extracted in the process of
virtual displacement relieving. In the next, four sets of boundary conditions
suitable for the present problem are defined. Accordingly, outer or inner edge
of the plate may be simply supported (S), clamped (C), free (F), or sliding
support (R). The mathematical expressions for each case are

S : Nrr + N = Nrθ = w0 = Mrr = φθ = 0

C : Nrr + N = Nrθ = w0 = φr = φθ = 0

F : Nrr + N = Nrθ = rQr + rNrrw0,r + Nrθw0,θ = Mrr = Mrθ = 0

R : Nrr + N = Nrθ = rQr + rNrrw0,r + Nrθw0,θ = φr = φθ = 0
(10)

3 Pre-buckling Analysis

Pre-buckling deformations and stresses should be obtained to express the stress
state of the plate at the onset and prior to buckling. Consider an isotropic
annular plate which is subjected to uniform compression at both inner and
outer edges. The plate is also rotating with constant angular speed. The effect
of rotation and compression prior to buckling on displacement field is axisym-
metric since the applied forces due to rotation and compression and geomety
of the plate are axisymmetric. Therefore, the prebuckling deformation of the
plate is also axisymmetric.

Only the flat pre-buckling deformations are considered. The pre-buckling
deformations of the plate are revealed via the solution of Equation (9), con-
sidering only the in-plane displacement components i.e., w0

0 = φ0
0 = φ0

θ = 0.
Here a superscript 0 indicates the primary equilibrium path characteristics.
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Using three constraints in addition to the axisymmetric condition, only the
first and the second of Equation (9) remain, which take the form

N0
rr,r +

1
r
(N0

rr − N0
θθ) + ρhrω2 = 0

N0
rθ,r +

2
r
N0

rθ = 0
(11)

The second equation results in a first order homogeneous ordinary differential
equation for N0

rθ whose solution considering the conditions N0
rθ(a) =

N0
rθ(b) = 0 is N0

rθ = 0. The first equation, however, results in a non-
homogeneous second order differential equation for u0

0 which may be
written as

Eh

1 − v2

(
du02

0
dr2 +

1
r

du0
0

dr
− 1

r2 u0
0

)
= −ρhrw2 (12)

Solution of the above equation considering the boundary conditions N0
rr(a) =

N0
rr(b) = −N is

u0
0 =

ρw2

8E

{
(1 − v)(3 + v)(a2 + b2)r + (1 + v)(3 + v)

a2b2

r

−(1 − v2)r3
}

− 1 − v

Eh
rN

(13)

Finally, distribution of force resultants induced due to rotation and
compression in the prebuckling regime may be evaluated upon substitution
of Equation (13) into Equation (6). The stress resultants in the prebuckling
regime are

N0
rr =

ρhω2(3 + v)
8

{
(a2 + b2) − a2b2

r2 − r2
}

− N

N0
θθ =

ρhω2(3 + v)
8

{
(a2 + b2) +

a2b2

r2 − 1 + 3v

3 + v
r2

}
− N

N0
rθ = 0

(14)

The force resultants induced due to rotation are compatible with those reported
in many of the applied mechanics textbooks, see e.g. Hetnarski and Eslami
(2009). Further consideration of the prebuckling forces reveal that tangential
and radial forces induced due to compression are compressive in the plate
domain, while the induced forces due to rotation are both tensile.
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4 Stability Equations

The stability equations of an annular plate are derived based on the well- known
adjacent-equilibrium criterion. Assume a pre-buckling equilibrium position
with displacement components u0

0, v
0
0, w

0
0, φ

0
r , and φ0

θ. Another equilibrium
position may exist, adjacent to the primary one. Displacement components of
the secondary equilibrium path differ by arbitrary perturbations u1

0, v
1
0, w

1
0, φ

1
r ,

and φ1
θ. Consequently, displacements of the secondary equilibrium path are

u0 = u0
0 + u1

0

v0 = v0
0 + v1

0

w0 = w0
0 + w1

0

φr = φ0
r + φ1

r

φθ = φ0
θ + φ1

θ

(15)

For the case when perturbation parameters are sufficiently small, displacement
field (15) lies on the branching point of the plate. At this stage stability
equations may be derived. The stability equations are obtained through usage
of Equations (6), (10), (14), and (15). The process is not presented herein for
the sake of brevity, nonetheless one may refer to the stability books of Brush
and Almroth (1975) and Eslami (2010) for the throughout process of stability
equations development.

N1
rr,r +

1
r
N1

rθ,θ +
1
r
(N1

rr − N1
θθ) = 0

N1
rθ,r +

1
r
N1

θθ,θ +
2
r
N1

rθ = 0

Q1
r,r +

1
r
Q1

θ,θ +
1
r
Q1

r + N0
rrw

1
0,rr + N1

θθ

(
1
r
w1

0,r +
1
r2 w1

0,θθ

)

+ 2N0
rθ

(
1
r
w1

0,rθ − 1
r2 w1

0,θ

)
− ρhrω2w1

0,r = 0

M1
rr,r +

1
r
M1

rθ,θ +
1
r
(M1

rr − M1
θθ) − Q1

r = 0

M1
rθ,r +

1
r
M1

θθ,θ +
2
r
M1

rθ − Q1
θ = 0

(16)

The stability equations in terms of the displacement components may be
obtained by using Equations (6), (14), and (16) and eliminating the second and
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higher order terms of the incremental displacements. The resulting equations
are as follow

A11

(
u1

0,rr +
1
r
u1

0,r +
1
r
v1
0,rθ − 1

r2 u1
0 − 1

r2 v1
0,θ

)

+ A66

(
1
r2 u1

0,θθ − 1
r
v1
0,rθ − 1

r2 v1
0,θ

)
= 0

A11

(
1
r
u1

0,rθ +
1
r2 u1

0,θ +
1
r2 v1

0,θθ

)

+ A66

(
− 1

r2 u1
0,θ − 1

r
u1

0,rθ +
1
r
v1
0,r − 1

r2 v1
0 + v1

0,rr

)
= 0

A66

(
φ1

r,r +
1
r
φ1

θ,θ +
1
r
φ1

r +
1
r2 w1

0,θθ + w1
0,rr +

1
r
w1

,r

)

− N

(
w1

0,rr +
1
r
w1

0,r +
1
r2 w1

0,θθ

)

+
ρhω2(3 + v)

8

{
(a2 + b2) − a2b2

r2 − r2
}

w1
0,rr − ρhrω2w1

0,r

+
ρhω2(3 + v)

8

{
(a2 + b2) − a2b2

r2 − 1 + 3v

3 + v
r2

}

(
1
r
w1

0,r +
1
r2 w1

0,θθ

)
= 0

D11

(
φ1

r,rr +
1
r
φ1

r,r +
1
r
φ1

θ,rθ − 1
r2 φ1

r − 1
r2 φ1

θ,θ

)

+ D66

(
1
r2 φ1

r,θθ − 1
r
φ1

θ,rθ − 1
r2 φ1

θ,θ

)
− A66(φ1

r + w1
0,r) = 0

D11

(
1
r
φ1

r,rθ +
1
r2 φ1

r,θ +
1
r2 φ1

θ,θθ

)

+ D66

(
1
r2 φ1

r,θ − 1
r
φ1

r,rθ +
1
r
φ1

θ,r − 1
r2 φ1

θ + φ1
θ,rr

)

− A66

(
φ1

θ +
1
r
w1

0,θ

)
= 0

(17)
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The above system of equations are five partial differential equations where the
first two of them are independent of the other three. Therefore, to obtain the
buckling state of the plate, only the last three ones may be considered.
In the next, a solution method for the last three stability equations is provided.

5 Solution Procedure

Due to the periodical conditions of the displacement field and considering the
fact that the buckling state of the annular plate may be asymmetric (Bagheri
et al., 2017b; Ghiasian et al., 2014; Kiani and Eslami, 2013a, 2013b), the
solution of the displacement field components is considered in the next form

w1
0(r, θ) = Wn(r) cos(nθ)

ϕ1
0(r, θ) = Φn(r) cos(nθ)

ϕ1
0(r, θ) = Ψn(r) sin(nθ)

(18)

where n is the number of nodal diameters. Substitution of Equation (18) into
the last three stability equations from Equation (17) yield

A66

(
Φn,r +

n

r
Ψn +

1
r
Φn − n2

r2 Wn + Wn,rr +
1
r
Wn,r

)

− N

(
Wn,rr +

1
r
Wn,r − n2

r2 Wn

)

+
ρhω2(3 + v)

8

{
(a2 + b2) − a2b2

r2 − r2
}

Wn,rr − ρhrω2Wn,r

+
ρhω2(3 + v)

8

{
(a2 + b2) +

a2b2

r2 − 1 + 3v

3 + v
r2

}(
1
r
Wn,r − n2

r2 Wn

)
= 0

D11

(
Φn,rr +

1
r
Φn,r +

n

r
Ψn,r − 1

r2 Φn − n

r2 Ψn

)

+ D66

(
−n2

r2 Φn − n

r
Ψn,r − n

r2 Ψn

)
− A66(Φn + Wn,r) = 0



338 H. Bagheri et al.

D11

(
−n

r
Φn,r − n

r2 Φn − n2

r2 Ψn

)

+ D66

(
− n

r2 Φn +
n

r
Φn,r +

1
r
Ψn,r − 1

r2 Ψn + Ψn,rr

)

− A66

(
Ψn +

1
r
Wn

)
= 0 (19)

The above three equations are coupled and homogeneous. In the next, for the
sake of generality, equations are transformed into a dimensionless presenta-
tion. The following non-dimensional parameters are used in the rest of this
work

μ =
2

1 − v
, s =

r

a
, δ =

h

a
, W =

W

a
, β =

b

a
,

λ =
12(1 − v2)Na2

Eh3 , χ2 =
12(1 − v2)ρhω2a4

Eh3 ,

(20)

With the aid of the newly defined parameters (20), the stability equations in a
dimensionless presentation take the form
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(21)
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The above system of equations are coupled with non-constant coefficients.
Obtaining an analytical solution for such equations is complicated and
therefore a numerical solution should be employed. Here, the generalised
differential quadratures (GDQ) method is used to discretize the system of
Equations (21) through the radius of the plate. Distribution of nodal points is
obtained based on the well-known Chebyshev-Gauss-Lobatto method as

si = β +
1 − β

2

{
1 − cos

(
i − 1
N − 1

π

)}
, i = 1, 2, . . . , N (22)

Applying the GDQ method to the stability Equations (21) and the boundary
conditions (11), results in a system of algebraic eigenvalue problem. Process is
not presented herein nonetheless one may refer to (Shu, 2000) for more details.
When the radial domain of the plate, i.e., β < s < 1 is divided into N nodes,
the discreted form of the stability Equations (21) may be expressed as
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where in the above equations i = 1, 2, . . . , N and C(r) stands for the
r-th. derivative coefficients in the GDQ method. After applying the GDQ
method to the boundary conditions, Equation (23) in a compact form may be
written as

(KE − λKN − χ2Kω)X = 0 (24)

In Equation (24) KE is the elastic stiffness matrix, KN is the geometrical
stiffness matrix due to uniform compression, and Kω is the geometrical
stiffness matrix due to rotation. The above system should be solved as
an eigenvalue problem to obtain the critical states of the plate and the
associated buckled shapes. In this study a Matlab code is developed to
obtain the eigenvalues and eigenvectors. In this code, the eigenvalues and
eigenvectors of the system of equations are obtained based on the Lanczos
algorithm. The process to obtain those parameters is as follows: For each
circumferential mode number n starting from zero, the eigenvalue problem
is solved and the minimum eigenvalue which is nT is obtained. Searching
among all of these minimums which are extracted for different number
of nodal diameters and choosing the minimum one, one may reach to
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the critical buckling parameter of the plate nT
cr and the associated mode

number n.

6 Numerical Investigation

The procedure outlined in the previous sections is used herein to obtain the
critical states of a rotating annular plate subjected to uniform compression
on both inner and outer edges. Different combinations of boundary conditions
are considered. Following convention is used for the boundary conditions. For
instance a plate which is clamped at the inner edge and simply supported at the
outer edge is denoted by C-S. In the procedure of solution and the numerical
results, the number of nodal points in GDQ method is chosen as N = 32, after
examination of convergence up to 3 digits. In whole of the numerical studies
the Poisson ratio is set equal to ν = 0.3.

In this section, first, comparison studies are provided to assure the validity
and accuracy of the present formulation. Afterwards, parametric studies
are provided to explore the simultaneous effects of rotation and uniform
compression on the buckling states of the plate.

6.1 Comparison Studies

A comparison study is provided in this section. A study is conducted
for the case of a stationary annular plate subjected to pure compression.
Yamaki (1985) and Wang et al. (2004) obtained the critical buckling loads
of thin annular plates using the classical plate theory. Results of this study are
compared with those of Wang et al. (2004). For the sake of comparison, a thin
plate is considered and therefore δ = 0.001 is considered for generation of
the present numerical results. Comparison is provided in Table 1 for various
values of β ratio. It is observed that for all types of boundary conditions and
inner to outer radius ratio, the results of our study are in excellent agreement
with those of Wang et al. (2004). Further investigation of the numerical
results indicates that the fundamental buckling shape of an annular plate
subjected to pure compression may be asymmetric. For plates with both edges
clamped, the fundamental buckling pattern is always asymmetric which is
designated with number of nodal diameters greater than zero. Furthermore,
unlike the other combinations of boundary conditions, in the S-F and F-S
plates variation of buckling load with respect to hole size is not monotonic.
For other combinations of boundary conditions, with increasing the β ratio,
critical buckling load of the plate increases. However, for these two types
trend is not monotonic.



342 H. Bagheri et al.

Table 1 Comparison of non-dimensional critical buckling load parameter of stationary
annular plates

√
λcr between the results of this study and those of Wang et al. (2004). Numbers

in parenthesis indicate the number of nodal diameters
Boundary
Conditions Source β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9
C-C Present 6.71 (1) 8.63 (2) 12.15 (4) 20.28 (7) 60.85 (23)

Wang et al. (2004) 6.68 (2) 8.63 (2) 12.15 (4) 20.27 (7) 60.89 (24)

S-S Present 4.20 (0) 4.75 (0) 6.40 (0) 10.52 (0) 31.44 (1)
Wang et al. (2004) 4.20 (1) 4.75 (0) 6.40 (0) 10.52 (0) 31.43 (0)

C-S Present 4.69 (1) 6.15 (0) 8.72 (0) 14.72 (0) 44.67 (0)
Wang et al. (2004) 4.71 (1) 6.16 (0) 8.73 (0) 14.73 (0) 44.69 (0)

S-C Present 5.99 (1) 7.06 (0) 9.42 (0) 15.30 (0) 44.19 (0)
Wang et al. (2004) 6.02 (1) 7.06 (0) 9.42 (0) 15.31 (0) 45.20 (0)

F-C Present 3.62 (0) 3.19 (0) 3.65 (0) 5.52 (0) 15.87 (0)
Wang et al. (2004) 3.62 (0) 3.19 (0) 3.65 (0) 5.52 (0) 15.87 (0)

R-C Present 3.94 (0) 4.71 (0) 6.39 (0) 10.52 (0) 31.43 (0)
Wang et al. (2004) 3.94 (0) 4.71 (0) 6.39 (0) 10.49 (0) 30.45 (12)

F-S Present 1.98 (0) 1.61 (0) 1.32 (0) 1.14 (0) 1.01 (0)
Wang et al. (2004) 1.98 (0) 1.61 (0) 1.32 (0) 1.14 (0) 1.01 (0)

R-S Present 2.09 (0) 2.40 (0) 3.18 (0) 5.19 (0) 15.60 (0)
Wang et al. (2004) 2.09 (0) 2.40 (0) 3.18 (0) 5.19 (0) 15.61 (0)

C-F Present 1.49 (0) 2.40 (0) 3.14 (0) 5.19 (0) 15.60 (0)
Wang et al. (2004) 1.49 (0) 2.40 (0) 3.14 (0) 5.19 (0) 15.61 (0)

S-F Present 1.13 (0) 1.34 (0) 1.32 (0) 1.14 (0) 1.01 (0)
Wang et al. (2004) 1.13 (0) 1.34 (0) 1.32 (0) 1.14 (0) 1.01 (0)

6.2 Parametric Studies

After validating the proposed formulation for the case of stationary annular
plates, parametric studies are presented to explore the buckling states of a
rotating annular plate subjected to uniform compression. Results of this section
are provided in Figures 3–10.

Figures 3–8 provide the critical buckling load of a rotating annular plate
with respect to rotating speed. These figures are associated to C-C, C-F, C-S, F-
C, S-C, and S-S boundary conditions, respectively. In each case, various hole
sizes and different thickness ratios are considered. It is observed that, in all
cases, rotation enhances the buckling load of the plate. Such trend is expected
since the forces induced due to rotation are tensile in the plate. Therefore, with
increasing the rotating speed, compressive buckling load of the plate increases
significantly. Increment ratio of the buckling load for different β ratios is not
the same. For instance, as the present results reveal in an S-C plate buckling
load of a stationary plate with hole size β = 0.5 is higher than a plate with
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Figure 3 Compressive buckling load parameter as a function of rotation parameter for the
C-C boundary conditions, different thickness to outer radius ratios, and various inner to outer
radius ratios.
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Figure 4 Compressive buckling load parameter as a function of rotation parameter for the
C-F boundary conditions, different thickness to outer radius ratios, and various inner to outer
radius ratios.
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Figure 5 Compressive buckling load parameter as a function of rotation parameter for the
C-S boundary conditions, different thickness to outer radius ratios, and various inner to outer
radius ratios.
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Figure 6 Compressive buckling load parameter as a function of rotation parameter for the
F-C boundary conditions, different thickness to outer radius ratios, and various inner to outer
radius ratios.
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Figure 7 Compressive buckling load parameter as a function of rotation parameter for the
S-C boundary conditions, different thickness to outer radius ratios, and various inner to outer
radius ratios.
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Figure 8 Compressive buckling load parameter as a function of rotation parameter for the
S-S boundary conditions, different thickness to outer radius ratios, and various inner to outer
radius ratios.
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Figure 9 Buckling configuration of the C-C annular plates with β = 0.5 and δ = 0.05.
(a) χ2 = 0, λcr = 133.126, n = 4, (b) χ2 = 50, λcr = 144.145, n = 3, (c) χ2 = 75, λcr =
148.606, n = 2, (d) χ2 = 100, λcr = 151.824, n = 1.

Figure 10 Buckling configuration of the annular plates with β = 0.4, δ = 0.05 and χ2 = 50.
(a) C-C, λcr = 105.908, n = 2, (b) C-F, λcr = 11.546, n = 0, (c) C-R λcr = 34.852, n = 0,
(d) S-S, λcr = 32.117, n = 0.

β = 0.1. On the other hand, with the introduction of rotation, trend changes.
For rotating speed χ2 > 300, buckling load of a rotating plate with hole size
β = 0.1 is higher than a plate with β = 0.5.

The GDQ method, similar to the finite elements or finite difference
methods, discretizes the governing equations and yields the lateral deflections
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at each radial line. Since the total shape of the plate is W (r) sin(nθ), it is
easy to plot the shapes of the plate at the onset of buckling. To this end,
once the eigenvalue problem is solved and the minimum buckled shape of
the plate is obtained, the number of nodal diameters for this load n and the
eigenvector of the plate are revealed. The eigenvector of the plate consist of
3N components where N of them are the nodal magnitudes of defection. Thus,
the peicewise function W (r) at the onset of buckling is known. Therefore, one
may plot W (r) sin(nθ) in the polar coordinates. Following this explanation,
a schematic of fundamental buckling pattern of annular plates is provided in
Figure 9. Results are given for various values of rotating speed for a plate with
both edges clamped, β = 0.5 and δ = 0.05. It is observed that critical buckling
load of the plate increases with increasing the rotating speed. Furthermore,
rotation may change the buckling pattern of an annular plate. As seen, the
number of nodal diameters changes from 4 to 3 when rotating speed increases
from χ2 = 0 to χ2 = 50. Further examination reveals that the buckling mode
number is n = 1 up to χ2 = 110. For χ2 > 110 the mode number at the onset
of buckling is equal to n = 0.

Figure 10 presents the fundamental buckling pattern of rotating annular
plates with different rotating speed where β = 0.4, δ = 0.05, and χ2 = 50. It
is observed that for the C-F, C-R, and S-S boundary conditions, the buckling
pattern is axisymmetric. For a C-C plate, the buckling pattern is associated
with the number of nodal diameters n = 2. It is verified that essential boundary
conditions are satisfied at the supports.

7 Conclusion

Present study aims to obtain the accurate buckling loads and buckled shape of
a rotating annular plate subjected to uniform compression on both inner and
outer edges. Plate is made from an isotropic and homogeneous material. First
order shear deformation plate theory is used to estimate the plate kinematics.
An axisymmetric flatness pre-buckling analysis is performed. Stability equa-
tions are obtained according the adjacent equilibrium criterion. The resulting
equations are discreted via the generalised differential quadrature method. The
followings are the general conclusions extracted from the numerical results.

• The fundamental buckling pattern of a rotating/stationary annular plate
subjected to axisymmetric uniform compression may be asymmetric.

• The fundamental buckling pattern of stationary C-C plates is always
asymmetric.
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• Except for the S-F and F-S plates, the fundamental buckling load of
annular plates with other combinations of boundary conditions increases
with the increase of the hole size.

• Increasing the rotation speed increases the buckling loads of the annular
plate subjected to uniform compression. This is due to the tensile nature
of the force resultants induced by the rotation.

• Rotation alters the distribution of the stresses within the plate in pre-
buckling regime and may change the buckling pattern of the plate in
both radial and circumferential directions.
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