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Abstract

This paper represents the nonlinear bending and free vibration analysis of
a simply supported imperfect functionally graded (FG) microplate resting
on an elastic foundation based on the modified couple stress theory and the
Kirchhoff plate theory (KPT) together with the von-Kármán’s geometrical
nonlinearity. The FG microplates with even and uneven distributions of
porosities are considered. Analytical solutions for the nonlinear bending and
free vibration are obtained. Comparing the obtained results with the published
one in the literature shows the accuracy of the current solutions. Numerical
examples are further presented to investigate the effects of the material length
scale parameter to thickness ratio, the length to thickness ratio, the power-law
index and the elastic foundation on the nonlinear bending and free vibration
responses of the FG microplate.
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1 Introduction

Known as a kind of composite materials, FG materials with outstanding
advantages compared to traditional composite materials are increasingly
widely used in many industrial fields, especially in the aerospace indus-
try, automotive industry, chemical industry, electronic industry and so on.
Because of the wide applications of beam- and plate-like structures, the
analysis of the mechanical responses of FG beams and plates has attracted
the research interest of scientists [1, 2]. In recent years, the application
of micro- and nano-sized structures has been increasing in the design of
micro- and nano-sized devices and systems, especially in micro- and nano-
electromechanical systems (MEMs/NEMs) [3, 4]. In MEMs/NEMs, besides
fixed electrodes, movable parts are often modeled by micro-/nano-beams or
micro-/nano-plates. Size-dependent effects have an important influence on
the behaviors of micro-/nano-structures, so the classical elasticity theory is no
longer suitable for modeling these small-sized structures because of the lack
of material length scale parameters. Therefore, to observe the size-dependent
effect on the mechanical behaviors of micro-/nano-structures, several non-
classical elasticity theories have been proposed such as the nonlocal elasticity
theory [5], the strain gradient theory [6], the couple stress theory [7–9]
and the modified couple stress theory [10]. Among these size-dependent
elasticity theories [5–10], the modified couple stress theory (MCST) has
many advantages in computational practice because only one material length
scale parameter is required.

Based on the MCST, some models of size-dependent micro-/nano-beams
and plates were developed to observe the size-dependent effect on the
mechanical behaviors of these small-sized structures. Ma et al. developed
the models of size-dependent microbeams based on the Timoshenko beam
theory [11], and the Reddy-Levinson beam theory [12] to investigate the static
bending and free vibration problems. Şimşek [13] examined the nonlinear
free vibration and static bending behaviors of the Euler-Bernoulli microbeam
resting on the elastic foundation. The classical and first-order shear deforma-
tion theories were developed by Reddy and Berry [14] to study the nonlinear
bending behavior of FG circular plates. The Ritz method was utilized by Ke
et al. [15] to investigate the free linear vibration behaviors of size-dependent
Mindlin microplates. Wang et al. [16] developed the Kirchhoff plate theory
accounting for von-Kármán’s geometrical nonlinearity to investigate the
nonlinear free vibration behaviors of size-dependent circular microplates.
The nonlinear free vibration behaviors of FG Mindlin microplates with the
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von-Kármán’s geometrical nonlinearity were represented by Ke et al. [17]
and Ansari et al. [18]. The Reddy’s plate theory was developed by Thai and
Kim [19] to study the static bending and free linear vibration behaviors of FG
plates. The analytical solutions for the problem of nonlinear static bending
analysis of FG Kirchhoff and Mindlin plates were carried out by Thai and
Choi [20] using Bubnov–Galerkin method. Lou and He [21] reported the
analytical solutions for the nonlinear bending and free vibration analysis
of FG microplates based on the Mindlin and Kirchhoff plate models. The
static bending and forced vibration behaviors of an imperfect FG Mindlin
microplate with porosities subjected to a moving load were investigated
by Şimşek and Aydın [22] using Lagrange’s method. Based on the MCST,
the nonlinear vibration responses of FG microplates were investigated by
Fan et al. [23] using the non-uniform rational B-spline-based isogeomet-
ric approach. The explicit solution for nonlinear free vibration of thin FG
microplate based on the MCST and the KPT was reported by Setoodeh and
Rezaei [24] using the Homotopy analysis method. And recently, Tao and
Dai [25] presented the analysis of the size-dependent nonlinear free vibration
of FG graphene platelets-reinforced composite annular sector microplates.

The problem of the static and dynamic analysis of size-dependent beams
and plates based on the MCST has received much attention from researchers.
However, the obtained results are mainly linear analyses. The results of the
nonlinear analysis of the size-dependent plate models can be found in some
works such as Wang et al. [16], Ke et al. [17], Ansari et al. [18], Thai and
Choi [20], Lou and He [21], Fan et al. [23], Setoodeh and Rezaei [24] and
Tao and Dai [25].

In this paper, author presents the analytical analysis of the nonlinear
bending and free vibration behaviors of an imperfect FG microplate with
porosities resting on an elastic foundation in the framework of the MCST
and Kirchhoff plate model with the von-Kármán’s geometrical nonlinearity.
The simple power law is considered to estimate the material properties
of the FG microplate. Along with that, two types of porosity distribution
including even and uneven distributions are considered to examine the effect
of porosities. The analytical solution for nonlinear bending and free vibration
analysis of the imperfect FG microplate with porosities are carried out. The
accuracy of the obtained solutions has been verified by comparison with the
existing solutions. Numerical illustrations are given to evaluate the effects of
several important parameters on the nonlinear deflection and frequency of the
imperfect FG microplate.
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2 Model and Formulation

A rectangular FG microplate with porosites resting on an elastic foundation
is considered as shown in Figure 1. The FG microplate has the length a, width
b and thickness h. The FG microplate is supported by an elastic foundation
with linear and shear stiffness coefficients corresponding to kL and kP . The
coordinate system (Oxyz) is selected as in Figure 1.

The FG microplate composed of ceramic and metal is considered in this
study. Where, the material properties of the FG microplate are assumed
to vary continuously in the thickness direction. The upper surface of the
FG microplate (z = h/2) is assumed to be rich in ceramic, while the
lower surface of the FG microplate (z = −h/2) is assumed to be rich in
metal. In addition, the effect of porosity is considered through two porosity
distribution models including even distribution (FGM-I) and uneven distri-
bution (FGM-II), as depicted in Figure 2. These models were proposed by
Wattanasakulpong and Chaikittiratana [26] by modifying the rule of mixture.

For the even distribution of porosities inside the FG material which is
defined as FGM-I, the material properties including the Young’s modulus
E(z) and the mass density ρ(z) can be expressed as [26]:

E(z) = (Ec − Em)

(
z

h
+

1

2

)k
+ Em − (Ec + Em)

δ

2
, (1)

ρ(z) = (ρc − ρm)

(
z

h
+

1

2

)k
+ ρm − (ρc + ρm)

δ

2
. (2)

Figure 1 Model of an imperfect FG microplate resting on an elastic foundation.
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Figure 2 Two types of porosity distribution: (a) FGM-I and (b) FGM-II.

For the uneven distribution of porosities inside the FG material which is
defined as FGM-II, the material properties can be expressed as [26]:

E(z) = (Ec − Em)

(
z

h
+

1

2

)k
+ Em −

δ

2
(Ec + Em)

(
1− 2

|z|
h

)
, (3)

ρ(z) = (ρc − ρm)

(
z

h
+

1

2

)k
+ ρm −

δ

2
(ρc + ρm)

(
1− 2

|z|
h

)
, (4)

where, the non-negative number k (0 ≤ k < ∞) is called the power-law
index which governs the change in material properties of the FG microplate;
and δ(0 < δ � 1) indicates the porosity volume fraction. When δ = 0
(without porosities), the imperfect FG microplate becomes to the perfect FG
microplate. The FG microplate becomes a full ceramic microplate and full
metal microplate corresponding to k = 0 and k →∞.

Because the effect of Poisson’s ratio on the mechanical behaviors of FG
structures is very small when compared with that of the Young’s modulus
and mass density [27]. Therefore, the Poisson’s ratio ν is considered to be
constant in this study.

For the imperfect FG microplate, the neutral surface and the mid-surface
are not the same because of the elasticity modulus is anti-symmetric with
respect to the mid-surface of the microplate. Therefore, it is necessary to
consider the effect of the physical neutral surface. The position of the physical
neutral surface can be determined as [21, 22]:

z0 =

∫ h/2
−h/2E(z)zdz∫ h/2
−h/2E(z)dz

(5)
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The displacement field of the FG microplate based on the Kirchhoff plate
theory can be expressed as [21]:

u1(x, y, z, t) = u(x, y, t)− (z − z0)
∂w

∂x

u2(x, y, z, t) = v(x, y, t)− (z − z0)
∂w

∂y
u3(x, y, z, t) = w(x, y, t)

(6)

where (u, v, w) denote the displacements of a point on the physical neutral
surface of the FG microplate. The non-zero components of the strain field
of the FG microplate considering the von-Kármán’s geometrical nonlinearity
can be written as follows:

εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− (z − z0)
∂2w

∂x2

εyy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

− (z − z0)
∂2w

∂y2

εxy =
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
− 2(z − z0)

∂2w

∂x∂y

(7)

The components of the rotation vector can be expressed as [22]:

θx =
∂w

∂y
, θy = −∂w

∂x
, θxy =

1

2

(
∂v

∂x
− ∂u

∂y

)
, (8)

The components of the symmetric curvature tensor are [20, 22]:

χxx =
∂2w

∂x∂y
, χyy = − ∂2w

∂x∂y
, χzz = 0,

χxy =
1

2

(
∂2w

∂y2
− ∂2w

∂x2

)
,

χxz =
1

4

(
∂2v

∂x2
− ∂2u

∂x∂y

)
,

χyz =
1

4

(
∂2v

∂x∂y
− ∂2u

∂y2

)
,

(9)
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The motion equations in terms of displacements (u, v, w) can be derived
by employing the Hamilton’s principle. The details for the process of estab-
lishing the motion equations of the FG microplate can be reviewed in the
work of Thai and Choi [20]. Accordingly, with the elastic foundation, the
equations of motion can be obtained as [21]:

A

(
∂2u

∂x2
+

1− ν
2

∂2u

∂y2
+

1 + ν

2

∂2v

∂x∂y

)
+
An
4
∇2

(
∂2v

∂x∂y
− ∂2u

∂y2

)
+A

[
∂w

∂x

∂2w

∂x2
+ ν

∂w

∂y

∂2w

∂x∂y
+

1− ν
2

(
∂w

∂y

∂2w

∂x∂y
+
∂w

∂x

∂2w

∂y2

)]
= I0

∂2u

∂t2
− I1

∂3w

∂x∂t2
, (10a)

A

(
∂2v

∂y2
+

1− ν
2

∂2v

∂x2
+

1 + ν

2

∂2u

∂x∂y

)
+
An
4
∇2

(
∂2u

∂x∂y
− ∂2v

∂x2

)
+A

[
∂w

∂y

∂2w

∂y2
+ ν

∂w

∂x

∂2w

∂x∂y
+

1− ν
2

(
∂w

∂x

∂2w

∂x∂y
+
∂w

∂y

∂2w

∂x2

)]
= I0

∂2v

∂t2
− I1

∂3w

∂y∂t2
, (10b)

− (D +An)∇4w +N(w)− kLw + kP∇2w − I0
∂2w

∂t2

− I1
(

∂3u

∂x∂t2
+

∂3v

∂y∂t2

)
+ I2∇2∂

2w

∂t2
= −q (10c)

where, q = q(x, y, t) is the distributed transverse force; (A,D) are the
classical stretching coefficient and the bending stiffness coefficient, respec-
tively; An is an additional stiffness due to the effect of the couple stress;
and (I0, I1, I2) denote the mass moments of inertia. These quantities are
defined by:

(A,D) =

∫ h/2

−h/2

E(z)

1− ν2
(1, (z − z0)2)dz, An = l2m

1− ν
2

A, (11)

(I0, I1, I2) =

∫ h/2

−h/2
ρ(z)(1, (z − z0), (z − z0)2)dz, (12)
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where lm is the material length scale parameter (MLSP) which reflects the
effect of couple stress. In Equation (10c), the expression of N(w) is:

N(w) =
∂

∂x

(
Nx

∂w

∂x
+Nxy

∂w

∂y

)
+

∂

∂y

(
Nxy

∂w

∂x
+Ny

∂w

∂y

)
, (13)

in which:

Nx

Ny

Nxy

 = A


1 ν 0
ν 1 0

0 0
1− ν

2




∂u

∂x
+

1

2

(
∂w

∂x

)2

∂v

∂y
+

1

2

(
∂w

∂y

)2

∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y


(14)

It should be noted that when considering the effect of the physical neutral
surface, the classical stretching-bending coupling stiffness equals to zero
(B =

∫ h/2
−h/2

E(z)(z−z0)
1−ν2 dz = 0). Because the contribution of the first-order

mass moment (I1) is much smaller than that of the others (I0 and I2),
therefore, in this work, the first-order mass moment is ignored.

Considering the FG microplate with all edges simply supported, the
boundary conditions are described by:

at x = 0 and a: u = w = 0,
∂v

∂x
= 0,

∂2w

∂x2
= 0

at y = 0 and b: v = w = 0,
∂u

∂y
= 0,

∂2w

∂y2
= 0

(15)

3 Analytical Solutions

For simply supported FG microplate, the solutions (u, v, w) are assumed to
have the following form [28]:

u(x, y, t) =
1

16

∞∑
m=1

∞∑
n=1

αW 2
mn(t) sin 2αx

(
cos 2βy − 1 + νβ2/α2

)
v(x, y, t) =

1

16

∞∑
m=1

∞∑
n=1

βW 2
mn(t) sin 2βy

(
cos 2αx− 1 + να2/β2

)
w(x, y, t) =

∞∑
m=1

∞∑
n=1

Wmn(t) sinαx sinβy

(16)
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where, α = mπ/a, and β = nπ/b. It can be easily checked that the solutions
(16) satisfy the boundary conditions of the FG microplate (15). The transverse
load q(x,y) can be expanded in the double-Fourier sine series as:

q(x, y) =

∞∑
m=1

∞∑
n=1

Qmn sinαx sinβy (17)

where

Qmn =
4

ab

∫ a

0

∫ b

0
q(x, y) sinαx sinβy dx dy (18)

For some typical loads, the coefficients Qmn are given by [20, 21]:

Qmn =



q0 for sinusoidal load of intensity q0

16q0
mnπ2

for uniform load of intensity q0

4Q0

ab
sin

mx

2
sin

ny

2
for point load Q0 at the center

(19)

Substituting Equations (16) and (17) into Equation (10), and applying the
Bubnov–Galerkin approach, the following equation is obtained:

[I0 + I2(α
2 + β2)]Ẅmn

+ [(D +An)
(
α2 + β2

)2
+ kL + kP (α2 + β2)]Wmn

+

{
A

16
[4να2β2 + (3− ν2)(α4 + β4)]

}
W 3
mn = Qmn. (20)

Equation (20) is a nonlinear ordinary differential equation, in the follow-
ing sub-sections, this equation will be used to find the nonlinear deflection
and frequency of the FG microplate.

3.1 Nonlinear Bending Solution

Firstly, the solution for nonlinear bending analysis will be found. For the
static bending problem, Wmn = const, therefore, from Equation (20), the
equation for the static bending analysis is reduced to:{

A

16
[4να2β2 + (3− ν2)(α4 + β4)]

}
W 3
mn

+ [(D +An)(α2 + β2)2 + kL + kP (α2 + β2)]Wmn = Qmn. (21)
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Equation (21) is a quadratic equation, it has one real and two complex
conjugate roots, in which the real root is the nonlinear deflection of the FG
microplate:

WNL
mn = −c

(
27

2
Q̄mn +

3

2

√
12c3 + 81Q̄2

mn

)−1/3
+

(
1

2
Q̄mn +

1

18

√
12c3 + 81Q̄2

mn

)1/3

(22)

in which:

c =
(D +An)(α2 + β2)2 + kL + kP (α2 + β2)

A
16 [4να2β2 + (3− ν2)(α4 + β4)]

, (23)

Q̄mn =
Qmn

A
16 [4να2β2 + (3− ν2)(α4 + β4)]

. (24)

The linear deflection of the FG microplate can be derived from Equa-
tion (21):

WL
mn =

Qmn
(D +An)(α2 + β2)2 + kL + kP (α2 + β2)

. (25)

It can be observed that the effect of the von-Kármán’s geometrical non-
linearity is expressed by the first term on the left-hand side of Equation (21).
It should be emphasized that this shows the difference between nonlinear and
linear deflections of the FG microplate. Also from Equations (22) and (25),
it can be seen that the nonlinear and linear deflections of the FG microplate
decrease as the linear stiffness (kL) and the shear stiffness (kP ) of the elastic
foundation increase.

3.2 Nonlinear Vibration Solution

Secondly, the solution for nonlinear vibration analysis will be determined in
this sub-section. For the purpose of free vibration analysis, letting Qmn = 0,
Equation (20) leads to:[

I0 + I 2

(
α2 + β2

)]
Ẅmn

+
[
(D +An)

(
α2 + β2

)2
+ kL + kP

(
α2 + β2

)]
Wmn

+

{
A

16

[
4να2β2 + (3− ν2)(α4 + β4)

]}
W 3
mn = 0. (26)
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Introducing the following new coefficients:
Γ1 =

(D +An)(α2 + β2)2 + kL + kP (α2 + β2)

I0 + I2(α2 + β2)
,

Γ2 =
A
16

[
4να2β2 + (3− ν2)(α4 + β4)

]
I0 + I2(α2 + β2)

.

(27)

By using Equation (27), the nonlinear ordinary differential Equation (26)
is rewritten as:

Ẅmn + Γ1Wmn + Γ2W
3
mn = 0. (28)

It can be observed that Equation (28) is a cubic-Duffing nonlinear equa-
tion. The approximate solution of this equation can be found by many
analytical methods [29]. In this work, the Hamiltonian Approach [30] is
employed to find the approximate solution of this equation. Accordingly,
the approximate nonlinear frequency of the FG microplate can be found as
follows:

ωNL =

√
Γ1 +

3

4
Γ2W 2

max (29)

where Wmax is the amplitude of the FG microplate. Consider Equation (27),
the expression of the nonlinear frequency can be obtained:

ωNL =

√√√√√√√√√
[
(D +An)(α2 + β2)2 + kL + kP (α2 + β2)

]
I0 + I2(α2 + β2)

+
3

4

{
A
16

[
4να2β2 + (3− ν2)(α4 + β4)

]}
I0 + I2(α2 + β2)

W 2
max

(30)

The linear frequency of the FG microplate can be derived from the
expression of the nonlinear frequency (30) by letting Wmax = 0 as follows:

ωL =

√
(D +An)(α2 + β2)2 + kL + kP (α2 + β2)

I0 + I2(α2 + β2)
. (31)

Clearly, the coefficients of the elastic foundation (kL, and kP ) lead to an
increase of the frequency of the FG microplate.
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4 Numerical Results

4.1 Verification Study

Since the results for nonlinear bending and vibration of the imperfect FG
microplate with porosities are not available in the literature, only the results
for the perfect FG microplate are used to validate the obtained solutions. The
obtained results are compared with those of Lou and He [21]. Note that the
results for the perfect FG microplate can be recovered from the results for
the imperfect FG microplate by letting the porosity volume fraction equal to
zero (δ = 0). In the verification study, the elastic foundation is not taken into
account, and the material properties are chosen as below:

Ec = 14.4 GPa, Em = 1.44 GPa, ρc = 12.2× 103 kg/m3,

ρm = 1.22× 103 kg/m3, ν = 0.38, h = 17.6 µm

Figure 3 shows the comparison of the dimensionless deflections (w/h)
obtained in this work and those of Lou and He [21]. A very good agree-
ment between the obtained results and those of Lou and He [21] can be
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Figure 3 Comparison of dimensionless deflections of the perfect FG microplate (a/h = 8,
b = a, lm/h = 0.2, k = 1, and q0 = 1.0 N/m2).
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Table 1 Comparison of the dimensionless linear frequencies of the perfect FG microplate
(a=10h, b=a)

k = 0 k = 2 k = 5

lm/h Ref. [21] Present Ref. [21] Present Ref. [21] Present
First mode (m = 1, n = 1)
0 6.1103 6.1103 5.2254 5.2254 5.7296 5.7296
0.2 6.5491 6.5491 5.7346 5.7346 6.1964 6.1964
0.4 7.7174 7.7174 7.0445 7.0445 7.4226 7.4226
0.6 9.3453 9.3453 8.8049 8.8049 9.1065 9.1065
0.8 11.2349 11.2349 10.7975 10.7975 11.0405 11.0405
1.0 13.2749 13.2749 12.9154 12.9154 13.1146 13.1146
Second mode (m = 2, n = 1)
0 15.0936 15.0936 12.9491 12.9491 14.1736 14.1736
0.2 16.1776 16.1776 14.2108 14.2108 15.3283 15.3283
0.4 19.0634 19.0634 17.4570 17.4570 18.3616 18.3616
0.6 23.0848 23.0848 21.8193 21.8193 22.5270 22.5270
0.8 27.7525 27.7525 26.7573 26.7573 27.3114 27.3114
1.0 32.7917 32.7917 32.0056 32.0056 32.4421 32.4421

observed from this figure. In this comparison, the dimensionless load param-
eter is defined as P = q0a4

Ech4
, where q0 is the intensity of sinusoidal load.

Table 1 shows the comparison of the dimensionless linear frequencies (ω̄ =

ω a
2

h

√
ρm
Em

) for some values of the dimensionless MLSP (lm/h). It can be

seen that the obtained frequencies are the same as thoes of Lou and He [21].
The second comparative study was performed, the nonlinear frequencies

of the FG microplate obtained in this work and those found by Fan et al. [23]
using the non-uniform rational B-spline-based isogeometric technique are
compared and the comparison is shown in Table 2. A good agreement
between the present results and those obtained by Fan et al. [23] can be
observed from Table 2. Note that the results obtained by Fan et al. [23] using
the third-order shear deformation plate mode, so the results obtained in this
work are slightly larger than the results of Fan et al. [23].

The third comparative study, the frequency ratios of the simply supported
FG microplate obtained in this work and those of Setoodeh and Rezaei [24]
using the Homotopy analysis method are compared and represented in Table 3
for some values of the dimensionless MLSP and dimensionless initial ampli-
tude. The microplate composed of Al and Al2O3 is considered for this
comparison. It can be observed that the results obtained in this work are very
agreement with those achieved by Setoodeh and Rezaei [24].
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Table 2 Comparison of dimensionless nonlinear frequencies of a simply supported square
FG microplate

wmax/h = 0.2 wmax/h = 0.6 wmax/h = 1.0

k lm/h Present Ref. [23] Present Ref. [23] Present Ref. [23]

1 0 5.5348 5.4121 6.5442 6.4416 8.1984 8.1181
0.4 7.2757 7.1598 8.0703 7.9665 9.4613 9.3741
0.8 10.9473 10.8237 11.4907 11.3733 12.5069 12.3998

5 0 5.8609 5.6707 6.8208 6.6594 8.4184 8.2906
0.4 7.5244 7.3991 8.2940 8.1822 9.6507 9.5556
0.8 11.1092 11.0201 11.6442 11.5595 12.6465 12.5691

Table 3 Comparison of dimensionless nonlinear frequencies of a simply supported square
FG microplate (a/h = 50, k = 2)

wmax/h = 0.2 wmax/h = 0.6 wmax/h = 1.0

h/lm Present Ref. [24] Present Ref. [24] Present Ref. [24]
Classical 1.0229 1.0247 1.1903 1.2015 1.4689 1.4897
10 1.0218 1.0238 1.1820 1.1949 1.4503 1.4750
6 1.0202 1.0224 1.1690 1.1842 1.4207 1.4511
3 1.0149 1.0175 1.1267 1.1465 1.3222 1.3655
2 1.0103 1.0128 1.0894 1.1094 1.2324 1.2786
1 1.0039 1.0053 1.0346 1.0463 1.0933 1.1231

4.2 Parametric Study

In this sub-section, numerical illustrations are performed to evaluate the
impact of some important parameters on the nonlinear bending and free
vibration behaviors of the FG microplate with porosities. For this purpose,
an FG microplate with the following material properties is considered:

Ec = 14.4 GPa, Em = 1.44 GPa, ρc = 12.2× 103 kg/m3,

ρm = 1.22× 103 kg/m3, ν = 0.38, h = 17.6 µm

The dimensionless quantities are introduced:

w̄ =
100Emh

3

q0a4
w

(
a

2
,
b

2

)
, P =

q0a
4

Ech4
, Ω = ω

a2

h

√
ρm
Em

,

KL =
kLa

4

D
, KP =

kPa
2

D
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Table 4 Dimensionless nonlinear deflection w̄NL of a square FG microplate (Sinusoidal
load)

k = 0 k = 1 k = 5

δ lm/h FGM-I FGM-II FGM-I FGM-II FGM-I FGM-II

0 0 0.2635 0.2635 0.6167 0.6167 1.2011 1.2011

0.2 0.2294 0.2294 0.5176 0.5176 1.0270 1.0270

0.4 0.1652 0.1652 0.3492 0.3492 0.7157 0.7157

0.6 0.1126 0.1126 0.2264 0.2264 0.4755 0.4755

0.8 0.0779 0.0779 0.1517 0.1517 0.3235 0.3235

1 0.0558 0.0558 0.1065 0.1065 0.2293 0.2293

0.02 0 0.2664 0.2642 0.6368 0.6225 1.3042 1.2340

0.2 0.2319 0.2301 0.5334 0.5225 1.1090 1.0544

0.4 0.1670 0.1658 0.3587 0.3526 0.7653 0.7339

0.6 0.1139 0.1131 0.2320 0.2286 0.5047 0.4871

0.8 0.0788 0.0783 0.1553 0.1532 0.3417 0.3312

1 0.0564 0.0561 0.1089 0.1076 0.2415 0.2346

0.04 0 0.2694 0.2650 0.6585 0.6285 1.4314 1.2696

0.2 0.2345 0.2308 0.5504 0.5276 1.2086 1.0839

0.4 0.1689 0.1664 0.3688 0.3561 0.8240 0.7533

0.6 0.1152 0.1136 0.2380 0.2309 0.5384 0.4994

0.8 0.0797 0.0787 0.1590 0.1548 0.3625 0.3393

1 0.0571 0.0564 0.1115 0.1087 0.2553 0.2403

4.2.1 Bending
Tables 4 and 5 show the effects of the power-law index k, the porosity
volume fraction δ and the dimensionless MLSP lm/h on the dimensionless
nonlinear deflection of the square FG microplate with sinusoidal and uniform
loads, respectively. Input data is selected as a = 20h and q0 = 1 N/m2;
and the elastic foundation is not considered. It can be observed that when
δ = 0 (without the porosities), the imperfect FG microplate becomes to the
perfect FG microplate; therefore, the results for the FGM-I microplate are
equal to those for the FGM-II microplate. With the porosities (δ 6= 0), the
dimensionless nonlinear deflection of the imperfect FG microplate increases
as the power-law index k and the porosity volume fraction δ increase, and
reduces if increasing the dimensionless MLSP lm/h. As expected, when the
porosities are considered, the dimensionless deflection of the imperfect FG
microplate is always larger than that of the perfect FG microplate. Tables 4
and 5 reveal that the dimensionless nonlinear deflections of the FGM-II
microplate are always smaller than those of the FGM-I microplate. It means
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Table 5 Dimensionless nonlinear deflection w̄NL of a square FG microplate (Uniform load)
k = 0 k = 1 k = 5

δ lm/h FGM-I FGM-II FGM-I FGM-II FGM-I FGM-II

0 0 0.4272 0.4272 0.9998 0.9998 1.9472 1.9472
0.2 0.3719 0.3719 0.8391 0.8391 1.6649 1.6649
0.4 0.2678 0.2678 0.5661 0.5661 1.1602 1.1602
0.6 0.1826 0.1826 0.3670 0.3670 0.7708 0.7708
0.8 0.1264 0.1264 0.2460 0.2460 0.5244 0.5244
1 0.0905 0.0905 0.1727 0.1727 0.3717 0.3717

0.02 0 0.4319 0.4284 1.0324 1.0092 2.1143 2.0005
0.2 0.3760 0.3730 0.8648 0.8471 1.7978 1.7093
0.4 0.2708 0.2688 0.5815 0.5716 1.2407 1.1897
0.6 0.1846 0.1834 0.3762 0.3707 0.8182 0.7897
0.8 0.1278 0.1270 0.2517 0.2484 0.5540 0.5369
1 0.0915 0.0910 0.1766 0.1744 0.3915 0.3804

0.04 0 0.4368 0.4295 1.0675 1.0189 2.3204 2.0582
0.2 0.3802 0.3742 0.8923 0.8553 1.9594 1.7571
0.4 0.2783 0.2689 0.5979 0.5772 1.3258 1.2212
0.6 0.1867 0.1842 0.3858 0.3744 0.8728 0.8096
0.8 0.1292 0.1276 0.2578 0.2509 0.5877 0.5501
1 0.0925 0.0914 0.1807 0.1762 0.4138 0.3895

that with porosity phases spreading mostly around the middle zone of the
cross-section and the amount of porosities decrease linearly to zero at the
top and bottom of the cross-section, the FGM-II microplate has a greater
stiffness than the FGM-I microplate; therefore, the deflections of the FGM-
II microplate are less than those of the FGM-I microplate. These results is
useful for estimating the reliability of size-dependent FG microplate models
developed in the future.

To illustrate the effect of the geometrical nonlinearity on the static
bending response of the imperfect FG microplate, Figure 4 represents the
load–deflection curves for an imperfect FG microplate. This figure is plotted
with a = 15h, b = a, lm/h = 0.2, δ = 0.1, and the elastic foundation is
not considered. Two cases including the sinusoidal and uniform loads are
examined to plot this figure. This figure reveals that the nonlinear deflection
is smaller than the linear one with the same applied load. This phenomenon
can be explained by the intrinsic stiffening effect when considering the effect
of geometrical nonlinearity. The difference between the linear and nonlinear
deflections becomes more obvious as increasing value of applied load.
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Figure 4 Linear and nonlinear deflections of the imperfect FG microplate.
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Table 6 Dimensionless nonlinear deflection w̄NL of a square FG microplate (Sinusoidal
load)

KL = 0, KP = 0 KL = 10, KP = 0 KL = 10, KP = 10

k δ FGM-I FGM-II FGM-I FGM-II FGM-I FGM-II

0 0 0.2541 0.2541 0.2479 0.2479 0.1679 0.1679

0.02 0.2569 0.2548 0.2507 0.2486 0.1698 0.1684

0.05 0.2612 0.2559 0.2549 0.2497 0.1726 0.1691

0.1 0.2688 0.2577 0.2624 0.2515 0.1777 0.1703

1 0 0.5885 0.5885 0.5745 0.5745 0.3903 0.3940

0.02 0.6074 0.5941 0.5929 0.5799 0.4029 0.3997

0.05 0.6384 0.6027 0.6232 0.5883 0.4236 0.4097

0.1 0.6989 0.6178 0.6822 0.6031 0.4640 0.7628

5 0 1.1523 1.1523 1.1246 1.1246 0.7628 0.7836

0.02 1.2492 1.1836 1.2192 1.1552 0.8279 0.8180

0.05 1.4388 1.2355 1.4044 1.2058 0.9540 0.8864

0.1 1.9844 1.3384 1.9374 1.3062 1.3201

Table 7 Dimensionless nonlinear deflection w̄NLof a square FG microplate (Uniform load)

KL = 0, KP = 0 KL = 10, KP = 0 KL = 10, KP = 10

k δ FGM-I FGM-II FGM-I FGM-II FGM-I FGM-II

0 0 0.4119 0.4119 0.4019 0.4019 0.2722 0.2722

0.02 0.4164 0.4130 0.4064 0.4031 0.2752 0.2730

0.05 0.4235 0.4148 0.4133 0.4048 0.2799 0.2741

0.1 0.4358 0.4178 0.4253 0.4077 0.2880 0.2761

1 0 0.9541 0.9541 0.9313 0.9313 0.6327 0.6327

0.02 0.9847 0.9631 0.9612 0.9401 0.6531 0.6387

0.05 1.0350 0.9771 1.0103 0.9537 0.6867 0.6479

0.1 1.1330 1.0016 1.1060 0.9776 0.7522 0.6642

5 0 1.8680 1.8680 1.8231 1.8231 1.2366 1.2366

0.02 2.0252 1.9188 1.9766 1.8727 1.3413 1.2703

0.05 2.3326 2.0029 2.2768 1.9548 1.5466 1.3261

0.1 3.2170 2.1697 3.1408 2.1176 2.1401 1.4370

The effect of the elastic foundation on the nonlinear deflection of the
imperfect FG microplate is represented in Tables 6 and 7 for sinusoidal load
and uniform load, respectively. These Tables are carried out with a = 10h,
and lm/h = 0.1. It is clearly that the stiffness coefficients lead to an increase
of the nonlinear deflection of the imperfect FG microplate.
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4.2.2 Vibration
The effect of the porosity volume fraction δ on the vibration behavior of the
FG microplate is presented in Figure 5. This figure is plotted with k = 5,
lm/h = 0.2, a = 8h, b = a and KL = KP = 0. It can be observed that
the linear frequencies of the FG microplate are independent of the initial
amplitude, while nonlinear frequencies of the FG microplate increase as
the initial amplitude increases. This figure also reveals that the frequencies
of the imperfect FG microplate are always larger than those of the perfect
FG microplate. In contrast to the results for the static bending problem, the
frequencies of the FGM-II microplate are always larger than those of the
FGM-I microplate.

Figure 6 shows the effect of the power-law index k on the nonlinear
vibration behavior of the imperfect FG microplate. This figure is plotted with
the input data as a = 8h, b = a, lm = 0.2h, wmax/h = 0.2 and without the
elastic foundation. It can be observed that the power-law index k has a rather
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Figure 5 Variation of the dimensionless frequency to the dimensionless initial amplitude.
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Figure 6 The effect of the power-law index k on the nonlinear vibration of the imperfect FG
microplate.

interesting effect on the vibration response of the imperfect FG microplate.
The nonlinear frequencies of the imperfect FG microplate initially decrease
to their minimum values with increasing the power-law index, then increase
again as value of the power-law index continues to increase.

With case of a = 20h, b = a, k = 5, wmax/h = 0.1 and KL = KP = 0,
Figure 7 shows the effect of the dimensionless MLSP lm/h on the nonlinear
vibration behavior of the imperfect FG microplate. It can be concluded that
MLSP has a great influence on the vibration response of the imperfect FG
microplate. In the framework of the modified couple stress theory [10], the
MLSP enhances the stiffness of the imperfect FG microplate; therefore, the
dimensionless nonlinear frequency of the imperfect FG microplate increases
when the dimensionless MLSP increases.

Final, the effect of the elastic foundation on the nonlinear vibration
behavior of the imperfect FG microplate is also examined and presented in
Figures 8 and 9. With case of a = 20h, b = a, lm = 0.1h, k = 5, wmax/h =
0.1, and KP = 0, the effect of the dimensionless linear stiffness coefficient
KL on the dimensionless frequency of the imperfect FG microplate is shown
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in Figure 8. And Figure 9 shows the effect of the dimensionless shear
stiffness coefficient KP on the dimensionless frequency of the imperfect FG
microplate with a = 20h, b = a, lm = 0.1h, k = 5, wmax/h = 0.2,
and KL = 10. As expected, the frequency of the imperfect FG microplate
increases with increasing value of the elastic foundation parameters because
the elastic foundation increases the stiffness of the imperfect FG microplate.

5 Conclusions

A size-dependent plate model based on the KPT with the von-Kármán’s geo-
metrical nonlinearity and the MCST was developed to examine the nonlinear
bending and free vibration behaviors of S-S imperfect FG microplates with
porosities resting on an elastic foundation. The solutions for the nonlinear
deflection and free frequency of the imperfect FG microplate are obtained
in the analytical forms. The numerical results are performed to evaluate the
reliability of the obtained solutions as well as study the influence of important
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parameters on the nonlinear free vibration and bending behaviors of the
imperfect FG microplate. Some important conclusions can be summarized
as follows:

– Because the geometrical nonlinearity of the microplate is considered,
the nonlinear deflection of the microplate is less than the linear one at
the same load, while the nonlinear frequency is larger than the linear one
for the same initial amplitude.

– Both the nonlinear deflection and frequency of the imperfect FG
microplate are always larger than those of the perfect FG microplate.
The nonlinear deflection increases by increasing the power-law index
and porosity volume fraction. The power-law index has an interesting
effect on the vibration response of the microplate.

– The couple stress effect is more significant for the microplate with a
larger value of the ratio lm/h. The MLSP enhances the stiffness of the
microplate; thereore, when the MLSP increases, the nonlinear deflection
reduces and the nonlinear frequency increases.

– The nonlinear frequency increases with increasing value of the elas-
tic foundation parameters; while the nonlinear deflection reduces by
increasing value of the elastic foundation parameters.

Acknowledgements

This work is supported by Thai Nguyen University of Technology (TNUT).

References

[1] P. Zahedinejad, C. Zhang, H. Zhang and S. Ju. ‘A Comprehensive
Review on Vibration Analysis of Functionally Graded Beams’, Inter-
national Journal of Structural Stability and Dynamics, 20(4), 2030002,
2020.

[2] D.K. Jha, T. Kant, R.K. Singh, ‘A critical review of recent research
on functionally graded plates’, Composite Structures, 96, pp. 833–849,
2013.

[3] A.S. Algamili, M.H.M.Khir, J.O. Dennis, et al. ‘A Review of Actuation
and Sensing Mechanisms in MEMS-Based Sensor Devices’, Nanoscale
Research Letters, 16, 16, 2021. https://doi.org/10.1186/s11671-021-0
3481-7

https://doi.org/10.1186/s11671-021-03481-7
https://doi.org/10.1186/s11671-021-03481-7


124 D. V. Hieu

[4] W.M. Zhang, H. Yan, Z.K. Peng, G. Meng, ‘Electrostatic pull-in insta-
bility in MEMS/NEMS: A review’, Sensors and Actuators A, 214,
pp. 187–218, 2014.

[5] A.C. ‘Eringen Nonlocal polar elastic continua’, International Journal of
Engineering Science, 10(1), pp. 1–16, 1972.

[6] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang J, P. Tong, ‘Experiments
and theory in strain gradient elasticity’, Journal of the Mechanics and
Physics of Solids, 51(8), pp. 1477–1508, 2003.

[7] R.D. Mindlin, H.F. Tiersten, ‘Effects of couple-stresses in linear elastic-
ity’, Archive for Rational Mechanics and Analysis, 11(1), pp. 415–448,
1962.

[8] R.A. Toupin, ‘Elastic materials with couple-stresses’. Archive for Ratio-
nal Mechanics and Analysis, 11(1), pp. 385–414, 1962.

[9] W.T. Koiter, ‘Couple stresses in the theory of elasticity, I and II’, Philo-
sophical Transactions of the Royal Society of London B, 67, pp. 17–44,
1964.

[10] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, ‘Couple stress based
strain gradient theory for elasticity’, International Journal of Solids and
Structures, 39(10), pp. 2731–2743, 2002.

[11] H.M. Ma, X.L. Gao, J.N. Reddy, ‘A microstructure-dependent Timo-
shenko beam model based on a modified couple stress theory’, Journal
of the Mechanics and Physics of Solids, 56, pp. 3379–3391, 2008.

[12] H.M. Ma, X.L. Gao, J.N. Reddy, ‘A nonclassical Reddy–Levinson beam
model based on a modified couple stress theory’, International Journal
for Multiscale Computational Engineering, 8, pp. 167–180, 2010.
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