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Abstract

The finite element method is a powerful tool for solving most of the structural
problems. This technique has been used extensively, since the complexity
of the elastic field equations does not allow the specialist to find analytical
solutions, especially for the three-dimensional structures. It is well-known
that the finite element formulation yields the approximate stress responses.
To remedy this defect, the Airy stress function is utilized in this study. The
stress function formulation leads to a valid solution since it satisfies equilib-
rium and compatibility equations simultaneously. Two cuboid isoparametric
elements are formulated for solving three-dimensional elastic structures. To
demonstrate the performance of the proposed technique, various benchmark
problems are analyzed. The errors between the exact, displacement-based
finite element and recommended scheme solution are also calculated. All the
obtained outcomes show the good merit of the presented new elements.
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Notation

U Interior of a closed curve G in the xy-plane
um Displacement fields in the member
σxx Vertical stress component in x-direction
ν Poisson’s ratio
V Scalar potential
fsim Simulation values
f , g and h Uniform functions defining position on G
L Set of linear differential operatives
σyy Vertical stress component in the y-direction
ϕ Shape function
MAPE Mean absolute percentage error
σm Stress fields in the member
σzz Vertical stress component in z-direction
µ Modulus of elasticity
r Position vector
fana Analytical values

Introduction

Finite element method has different elements to solve a great variety of
problems. Displacement techniques are common ways to formulate a new
element. The weakness of this scheme is mostly leading to inaccurate
stresses. There are several ways to remedy this fault and improve the
responses. In one of the studies, an 8-node element was selected, and the
Airy function was utilized to establish a new element by Fu et al. in 2008 [1].
The performance of this element was carefully evaluated by the researchers,
which showed some improvements. It should be reminded that the Airy stress
function can give more accurate stress. This function is determined so that
the prescribed boundary conditions at a far field and the continuity condition
of the traction force, along with the displacement field at the interface are
satisfied exactly.

In another study, Lee and Bathe studied some influences achieved
by 8-node and 12-node and also Lagrangian (Q9, Q16) elements by
using numerical analyses with different meshes [2]. Their obtained results
showed that displacement outcomes of the 8-node element were more
accurate than when 12-node was selected. In 1999, Kikuchi et al.
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modified the 8-node model by defining a new principle of 8-node
spaces and using the Cartesian quadratic polynomial space. This prin-
ciple was established when the quadrilateral had eight nodes. How-
ever, this element could not properly represent the behavior of the
Cartesian quadratic polynomials in the fully isoperimetric cases [3]. Li
et al. proposed a new 8-node element by paying attention to Kikuchi’s
research. Their study led to the simpler formulations for this ele-
ment [4].

In 2003, Rajendran and Liew used two different shape functions, namely
metric set and isoperimetric set, as the trial and test functions, respectively
[5]. In their study, the 8-node element was utilized based on unsymmetrical
element stiffness matrix. Their formulations represented an excellent perfor-
mance for this element. These findings highly fitted the results of several
exact solutions. In 2006, Li and Wang proposed a new 8-node spline element.
According to their study, accurate outcomes for several problems can be
achieved by utilizing a relatively complicated mathematical treatment [6]. In
another research, Long et al. established a new coordinate system. This was
followed by developing 8-node element by Soh et al. [7] and Cen et al. [8],
respectively.

There are other studies focusing on systematical discussions of this topic
based on the finite element method [9]. The principle of minimum potential
energy forms the basis of the method in all of these researches [10, 11]. In
another study, a new formula was established for elasticity problems [12].
Although the error in this approach was obvious, this technique led to the
direct and simple solution for determining the strain values. For this purpose,
a formula was obtained by using poor performance of the current direct
formulations, based on the strain and material property distribution. In 2012,
Cervera et al. proposed an analytical solution for bifurcation, localization,
stress bounded and the DE cohesion conditions for the elasticity problems
[13]. This study showed that a mixed displacement-pressure formulation was
suitable and provided accurate performance for predicting correct failure
mechanisms with the localized patterns of plastic deformation in plasticity
problems. Artioli et al. recognized a numerical solution for 2D elasticity
problems. In their study, the theory of strain was considered along with
mixed Hellinger–Reissner variational formulation. Recently, Rezaiee-Pajand
and Karimipour presented three new triangular elements [14]. In their investi-
gation, complementary energy functional, along with the Airy stress function,
were utilized within an element for the analysis of plane problems. To validate
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the results, extensive numerical studies were accomplished. The findings
clearly demonstrated the accuracies of structural displacements, as well as,
stresses.

So far, the properties of the 8-node element and its improvement by
stress function were revealed. According to the available literature, there
have been some activities in utilizing the Airy function for solving structural
problems. In Fosdick and Schuler research, a generalized Airy stress function
was presented, which preserved smoothness and also completeness [15]. The
generalized form identified the explicit additional pieces that were needed for
completeness in the multiply connected domains. This study by Fosdick and
Schuler was performed for the case when a body force field was presented.
In another research, Zavelani-Ross established a finite element technique
for plane stress problems [16]. To solve in-plane free vibration arch shape
members, Nieh et al. presented an analytical solution in 2003 [17]. They
considered the effect of the extensibility of the arch shape members and
neglected the effect of shear deformation. In order to establish an analytical
solution for the free vibration of arch members with varying curvature, a
series solution was proposed. As a result, the suggested scheme played an
accurate role in predicting arc behavior.

In another investigation, Serra proposed approximate analytical and
numerical solutions [18]. In this study, the arch shape members were ana-
lyzed under the static loads, and two approximate solutions were utilized.
Furthermore, the related code for the latter solution was given. In 1988,
HarikGhassan and Salamoun defined an analytical strip method for solving
the rectangular plates [19]. In their investigation, the plate was modelled
as a system of plate strips and beam segments rigidly connected to each
other. For this structure, the closed-form solution was derived. By avoiding
the polynomial representation and minimization procedure, they took advan-
tages of the semi-analytical finite strip method in the mentioned study. The
obtained outcomes indicated that the stiffened and unstiffened rectangular
plates with different edge and loading conditions could be solved exactly by
their method.

In order to determine the shear behavior of plate elements, Karttunen
et al. used an exact elasticity solution [20]. They presented a general exact
3-D plate solution. Their element had four nodes. In fact, the general
plate solution was derived by a bi-harmonic mid-surface function. This
function was appropriate for the thick plate elements. Furthermore, the
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3-D Navier equations of elasticity and the Kirchhoff constraints were used
for the development of the finite element model. In 1989, Arya presented
an analytical and finite element solution for some problems by using a
viscoplastic model [21]. This researcher performed a nonlinear structural
analysis. The proposed scheme could analyze thick-walled cylinder, thin
rotating disk and thick-walled sphere. The analytical expressions derived
for the stress and the strain rates for these components were general in
nature. Moreover, they considered both the time-depended mechanical and
thermal loadings. The achieved consequences showed that the possibility
of the viscoplastic model could play an appropriate role in the nonlinear
structural analyses.

Zhang et al. presented a Three-dimensional damage analysis by using
FEM [22]. They proposed the damage of members in three-dimensional
space. In order to reduce the number of degrees of freedoms, an auto-
matic mesh generation algorithm was employed. To illustrate the mesh-
independence, a double-notched tension beam was simulated with two
different meshes. According to the obtained outcomes, the projected com-
putational method was adept of accurately catching the damage progress
under complicated boundary conditions. Shang et al. used FEM for solving
Euler–Bernoulli beam problems [23]. They presented a dynamic analysis
scheme. By this technique, analysis of a bar was achieved by using several
enhancement stages. In this process, error measures and nonlinear strains
were projected. The obtained results demonstrated that the presented scheme
had good accuracy. In 2018, two-dimensional orthotropic elasticity problems
were solved by the help of Airy stress function [24]. A simple 8-node
element with 16-DOF was utilized in this procedure. All numerical tests
demonstrated that this quadratic element could reach the exact solutions in
constant and linear stress cases. In 2016, a new technique was utilized to
solve boundary value problems [25]. Unlike the displacement technique,
these problems were solved by the help of implicit function, which relates
linearized strain and stress. These investigators assumed that the stress and
the displacement were unknowns. Then, both the equilibrium equations and
continuity of displacements were enforced precisely. The mentioned actions
led to estimate the unknowns of the stress and displacement and created an
efficient scheme.

Based on the available literature, some plane elements have been pre-
sented by using Airy stress functions, so far. To solve the three-dimensional
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problems, solid elements, based on the assumed displacement, are mostly
utilized. To the best knowledge of the authors, no hybrid three-dimensional
rectangular element has been proposed up to this date, which has utilized the
Airy stress functions. Since this kind of elements is very useful in the use of
irregular meshes, two new three-dimensional hybrid rectangular elements are
presented in this article. Both suggested elements are isoparametric types.
All formulations utilize Airy stress functions. Comprehensive studies are
performed to calculate and validate the obtained displacement and stress. All
findings clearly demonstrate very good accuracies.

Research Significance

The presented method employs the Airy stress function. This scheme reduces
the general formulation to a single governing equation in terms of a single
unknown. In this article, the mentioned governing equation is utilized by
the finite element technique. Since the stress function formulation satisfies
both equilibrium and compatibility conditions, it can lead to good responses
for displacement as well as stress. According to the literature review, many
studies have been done for increasing the response accuracy of the plane
structures. Airy-stress function is one of the useful schemes, which leads
to the suitable outcomes with good accuracy and low computation time. So
far, no three-dimensional elements, based on the Airy stress function have
been suggested. This study aims to perform some stress analyses by two new
cuboid isoparametric elements. Solved problems will demonstrate that the
authors’ elements are able to analyze three-dimensional elasticity problems
efficiently.

Energy Functional for Airy Stress Function

Energy methods are a useful tool to solve different problems. These schemes
are based on complementary energy formulas. In the finite element method,
the complementary energy functional can be written in the next form:

ΠC = Π∗
C + V ∗

C =
1

2

∫∫∫ 1

V e

σTCσdV −
∫ 1

Γ
T TUds (1)
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This equation has the following parts:

σ =



σx
σy
σz
τxy
τxz
τyz


(2)

C =
E

(1 + µ)(1− 2µ)

×



1− µ µ µ 0 0 0

µ 1− µ µ 0 0 0

µ µ 1− µ 0 0 0

0 0 0
1− 2µ

2
2 0

0 0 0 0
1− 2µ

2
2

0 0 0 0 0
1− 2µ

2


(3)

T =

TxTy
Tz

 (4)

U =

uv
w

 (5)

Where, Π∗
C and V ∗

C are the complementary energy within the element
and along the element boundaries, respectively. Furthermore, σ is the stress
vector, T is the surface traction force vector through the element boundaries,
U is the displacement vector along the element boundaries, and C is the
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elastic flexibility matrix. It should be mentioned that Young’s modulus (E)
and Poisson’s ratio (µ) in all directions are constant. The relation between the
Airy stress function, ϕ, and the stress vector, σ, is as follows:

σ =



σx
σy
σz
τxy
τxz
τzy


=



∂2ϕ

∂y2

∂2ϕ

∂x2

∂2ϕ

∂z2

− ∂2ϕ

∂x∂y

− ∂2ϕ

∂x∂z

− ∂2ϕ

∂z∂y



= R̃(ϕ) (6)

Utilizing the direction cosines, the surface force vector can be written by:

T =

TxTy
Tz

 =

 l 0 0 m m 0
0 m 0 l 0 l
0 0 n 0 n n




σx
σy
σz
τxy
τxz
τzy


= LR̃ (ϕ) (7)

L =

 l 0 0 m m 0
0 m 0 l 0 l
0 0 n 0 n n

 (8)

Where l, m and n are the direction cosines of the outer normal n in
the element boundaries. By substituting equations (6) and (7) into (1), the
complementary energy functional can be written in the next form:

ΠC = Π∗
C + V ∗

C =
1

2

∫∫∫ 1

V e

R̃(ϕ)TCR̃(ϕ)dV −
∫ 1

Γ
(LR̃ (ϕ))TUds

(9)

So far, based on the basic relationships of the finite element method, the
element complementary energy functional containing the Airy stress function
is established.
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Analytical Solutions by Stress Function

In the three-dimensional problems, without body forces, the Airy stress
satisfies the following equation:

∇6ϕ =
∂6ϕ

∂y6
+ 3

∂6ϕ

∂x3∂y3
+
∂6ϕ

∂x6
+ 3

∂6ϕ

∂x3∂z3
+
∂6ϕ

∂z6
+ 3

∂6ϕ

∂y3∂z3
(10)

In order to choose appropriate trial functions for establishing a new element
model, the next principles should be taken into account:

(1) The basic analytical solutions of the stress function should be selected,
which include the terms from the lowest-order to the higher-order.

(2) The resulting stress fields should possess completeness in the Cartesian
Coordinates.

In this study, two new 3D elements are formulated. One of them is an
eight-node rectangular prism or cuboid element, which is named A3D8.
As it is demonstrated in Figure 1, this element possesses eight nodes and
twenty-four degrees of freedom. The second suggested element, which is
called A3D20, has twenty nodes and sixty degrees of freedom. According
to Figure 1, all the nodes are located in the element sides and corners. These
types of elements are suggested to reach appropriate displacement, as well
as, stress outputs. Their convergence powers to the exact solutions are also
studied. According to the number of nodes and degrees of freedom in the
element, stress function can be determined.

Figure 1 Tow proposed cuboid elements, A3D8 and A3D20.
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Calculating the Interpolation Functions

At this stage, the degrees of freedom for the new elements are defined. As it
is presented in Figure 1, the element nodal displacement vector, qe, for A3D8
has the next form:

qe8 =

[
u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4 u5

v5 w5 u6 v6 w6 u7 v7 w7 u8 v8 w8

]
(11)

A3D20 has the following degrees of freedom:

qe12 =


u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4

w4 u5 v5 w5 u6 v6 w6 u7 v7 w7 u8

v8 w8 u9 v9 w9 u10 v10 w10 u11 v11 w11

u12 v12 w12 u13 v13 w13 u14 v14 w14 u15 v15

w15 u16 v16 w16 u17 v17 w17 u18 v18 w18 u19

v19 w19 u20 v20 w20


(12)

Where, ui, vi and wi are the nodal displacements belonged to the x, y
and z directions, respectively. Based on these degrees of freedom, there are
different analytical solutions for the stress function. All of them are presented
in Tables 1 and 2. Both suggested elements are isoparametric types. In the
subsequent lines, the interpolation functions are found. For A3D8, the next
relationships are calculated and verified:

N8 =



N1

N2

N3

N4

N5

N6

N7

N8


=



1

8
(1− ξ)(1− η)(1− ζ)

1

8
(1 + ξ)(1− η)(1− ζ)

1

8
(1 + ξ)(1 + η)(1− ζ)

1

8
(1− ξ)(1 + η)(1− ζ)

1

8
(1− ξ)(1− η)(1 + ζ)

1

8
(1 + ξ)(1− η)(1 + ζ)

1

8
(1 + ξ)(1 + η)(1 + ζ)

1

8
(1− ξ)(1 + η)(1 + ζ)



(13)
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Similarly, the following interpolation functions are found for A3D20:

N20 =



N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

N17

N18

N19

N20



=



1

8
(1 + ξ1ξ)(1 + η1η)(1 + ζ1ζ)

1

8
(1 + ξ2ξ)(1 + η2η)(1 + ζ2ζ)

1

8
(1 + ξ3ξ)(1 + η3η)(1 + ζ3ζ)

1

8
(1 + ξ4ξ)(1 + η4η)(1 + ζ4ζ)

1

8
(1 + ξ5ξ)(1 + η5η)(1 + ζ5ζ)

1

8
(1 + ξ6ξ)(1 + η6η)(1 + ζ6ζ)

1

8
(1 + ξ7ξ)(1 + η7η)(1 + ζ7ζ)

1

8
(1 + ξ8ξ)(1 + η8η)(1 + ζ8ζ)

1

4
(1− ξ2)(1 + η9η)(1 + ζ9ζ)

1

4
(1 + ξ10ξ)(1− η2)(1 + ζ10ζ)

1

4
(1− ξ2)(1 + η11η)(1 + ζ11ζ)

1

4
(1 + ξ12ξ)(1− η2)(1 + ζ12ζ)

1

4
(1− ξ2)(1 + η13η)(1 + ζ13ζ)

1

4
(1 + ξ14ξ)(1− η2)(1 + ζ14ζ)

1

4
(1− ξ2)(1 + η15η)(1 + ζ15ζ)

1

4
(1 + ξ16ξ)(1− η2)(1 + ζ16ζ)

1

4
(1 + ξ17ξ)(1 + η17η)(1− ζ2)

1

4
(1 + ξ18ξ)(1 + η18η)(1− ζ2)

1

4
(1 + ξ19ξ)(1 + η19η)(1− ζ2)

1

4
(1 + ξ20ξ)(1 + η20η)(1− ζ2)



(14)
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After a lot of searching and examining functions, all parts of stress
function are found and listed in Tables 1 and 2. This action is a very tedious
job and is based on the trial-and-error process. To be valid functions, they
must satisfy the governing equation 10. Having these functions, the stress
components are calculated and inserted in Tables 1 and 2. It should be
mentioned that two types of coordinate systems, which are illustrated in
Figure 1, are used in this study. One of them is the Cartesian Coordinates,
and the other is the Natural Coordinates.

Formulating the New Elements

At the first step, the Airy stress function can be defined in terms of unknown
parameters. A general form of this function is as follows:

ϕ =
n∑

i=1

ϕiβi (15)

Where, n is the number of analytical solution, ϕi, and βi are unknown
constants. They are given in the next line:

ϕ = [ϕ1 ϕ2 . . . . . . ϕn] and β = [β1 β2 . . . . . . βn] (16)

Upon substitution of Equation (15) into the Π∗
C part of Equation (9), the

subsequent equation will be achieved:

Π∗
C =

1

2
βTMβ (17)

V ∗
C = −βMβT (18)

M =

∫∫∫ 1

V e

STCSdV (19)

Here, S and M are the matrix expressions. These matrices are needed for
performing the stress analysis. As it is shown in Tables 1 and 2, the S matrix
is established according to the obtained components of stresses. The values
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for A3D8 have the following forms:

S8 =


0 0 2 0 0 0 0 0 2x 0 6x 0 0 2x 0
2 0 0 0 0 2z 6x 2y 0 0 0 2z 0 0 0
0 0 0 0 2 0 0 0 0 2x 0 0 6z 0 2y
0 −1 0 0 0 −2y 0 −2x −2y 0 0 0 0 0 0
0 0 0 0 0 −2x 0 0 0 −2z 0 −2x 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 −2y −2x



×


2x2 2z2 12y2 0 0 2x3 − 6yx2 0 6yz2 − 2z3

2y2 0 0 12x2 0 6xy2 − 2y3 6xz2 − 2z3 0
0 2y2 0 0 12z2 0 2x3 − 6zx2 2y3 − 6zy2

−4xy 0 0 0 0 −6x2y + 6y2x 0 0
0 0 0 0 0 0 −6x2z + 6z2x 0
0 −4yz 0 0 0 0 0 −6y2z + 6z2y


(20)

A3D20 has the following formula:

S20 =


0 0 0 2y 0 0 0 0
2 0 0 0 0 0 0 6x
0 0 0 0 0 2x 0 0
0 −1 0 0 0 0 −1 0
0 0 −1 0 0 0 −1 0
0 0 0 0 −1 0 1 0

 (21)

0 2yx 0 0 6y 2x 0

2y 0 2z 0 0 2y 2z

0 0 0 2x 0 0 −2x

−2x −2y 0 0 0 −2x− 2y 0

0 0 −2x −2z 0 0 −2x + 2z

0 0 0 0 0 0 0

0 0 0 6yx 2x2 12y2 6yz

0 12x2 6xy 0 2y2 0 0

6z 0 0 0 0 0 0

0 0 −3x2 −3y2 −4xy 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −3y2

0 2z2 0 0 0 0 2x2 − 2z2

0 0 0 6xz 2z2 0 2y2 + 2x2

6zy 2y2 12z2 0 2x2 6zx −2y2 + 2x2

0 0 0 0 0 0 −4xy

0 0 0 −3x2 −4xz −3z2 −4xz

−3z2 −4zy 0 0 0 0 4zy
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6yx 6yz 0 0 0 2x3 + 5yx2 12y2x

6xy 0 6xy 20x3 12x2y 6xy2 + 2y3 0

0 −6zy 6zx 0 0 0 0

−3x2 − 3y2 0 0 0 −4x3 −6x2y − 6y2x −4y3

0 0 −3x2 − 3z2 0 0 0 0

0 −3y2 + 3z2 0 0 0 0 0

20y3 12y2z 6yz2 − 2z3 0 0 0 0

0 0 0 0 0 12x2z 6xz2 + 2z3

0 0 2y3 − 6zy2 12z2y 20z3 0 2x3 + 6zx2

0 0 0 0 0 0 0

0 0 0 0 0 −4x3 −6x2z − 6z2x

0 −4y3 −6y2z + 6z2y −4z3 0 0 0

0 0 0 2x4 + 12y2x2 6x3y 20y3x 30y3 20y3z 12y2z2 − 2z4

0 30x4 20x3y 12x2y2 + 2y4 6xy3 0 0 0 0

12z2x 0 0 0 0 0 0 0 2y4 − 12z2y2

0 0 −5x4 −8x3y − 8y3x −9x2y2 −5y4 0 0 0

−4z3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −5y4 −8y3z + 8z3y

6z3y 0 0 0 0 0 0 6x3y − 6z3y

0 0 0 20x3z 12x2z2 − 2z4 6zx3 0 6xy3 + 6xz3

6zy3 20z3y 30z4 0 2x4 − 12z2 6zx3 20z3x −6zy3 + 6zx3

0 0 0 0 0 0 0 −9x2y2

0 0 0 −5x4 −8x3z + 8z3x −9z2x2 −5z4 −9z2x2

−9z2y2 −5z4 0 0 0 0 0 +9z2y2

Both authors’ elements are isoparametric types. Based on this fact, the
following equation can be established:

x =
n∑

i=1

N0
i (ξ, η, ζ)xi, y =

n∑
i=1

N0
i (ξ, η, ζ)yi, z =

n∑
i=1

N0
i (ξ, η, ζ)zi

(22)

Here, (xi, yi) refer to the Cartesian coordinates of the node i and N0
i (ξ, η, ζ)

is its shape function. Therefore, the matrixM can be written in the next form:

M =

∫ 1

−1

∫ 1

−1

∫ 1

−1
S(ξ, η, ζ)TCS(ξ, η, ζ)|j|dξdηdζ (23)
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Where, |j| is the Jacobian determinant, and can be found by derivation of x, y
and z with respect to (ξ, η, ζ). By substitution of Equation (18) into the value
of V ∗

C of Equation (9) yields:

V ∗
C = −βTHqe (24)

H =

∫ 1

Γ
STLTNdS (25)

Matrices, N and H can be obtained according to the below relationships:

N8 =

[
N0

1 0 N0
2 0 N0

3 0 N0
4 0 N0

5 0 N0
6 0 N0

7 0 N0
8

0 N0
1 0 N0

2 0 N0
3 0 N0

4 0 N0
5 0 N0

6 0 N0
7 0

0 0 N0
1 0 N0

2 0 N0
3 0 N0

4 0 N0
5 0 N0

6 0 N0
7

]
[

0 0
N0

8 0
0 N0

8

]
(26)

N20 =

[
N0

1 0 N0
2 0 N0

3 0 N0
4 0 N0

5 0 N0
6 0 N0

7 0 N0
8

0 N0
1 0 N0

2 0 N0
3 0 N0

4 0 N0
5 0 N0

6 0 N0
7 0

0 0 N0
1 0 N0

2 0 N0
3 0 N0

4 0 N0
5 0 N0

6 0 N0
7

]
0 N0

9 0 N0
10 0 N0

11 0 N0
12 0 N0

13 0 N0
14

N0
8 0 N0

9 0 N0
10 0 N0

11 0 N0
12 0 N0

13 0
0 N0

8 0 N0
9 0 N0

10 0 N0
11 0 N0

12 0 N0
13

(27)[
0 N0

15 0 N0
16 0 N0

17 0 N0
18 0 N0

19 0 N0
20 0 0

N0
14 0 N0

15 0 N0
16 0 N0

17 0 N0
18 0 N0

19 0 N0
20 0

0 N0
14 0 N0

15 0 N0
16 0 N0

17 0 N0
18 0 N0

19 0 N0
20

]
Furthermore, H has the next form:

H =

∫ 1

Γ12

STLTNds+

∫ 1

Γ23

STLTNds+

∫ 1

Γ34

STLTNds

+

∫ 1

Γ45

STLTNds+

∫ 1

Γ56

STLTNds+

∫ 1

Γ61

STLTNds (28)

Where, Γij represents the element edge. The direction cosines of the outer
normal of each element edge, l and m can be expressed as follows:

l =
dy

ds
, m = −dx

ds
, n = −dz

ds
(29)

By inserting Equations (17) and (18) into Equation (9), the subsequent
element complementary energy function can be found:

ΠC =
1

2
βTMβ − βTHqe (30)
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To find the solution by using the principle of minimum complementary
energy, ΠC should be minimized:

∂ΠC

∂β
= 0 (31)

After calculating the nodal displacement vector, qe, the unknown constant
vector, β can be achieved by the next relation:

β = M−1Hqe (32)

Substitution of Equation (32) into (30) yields:

ΠC =
1

2
qeTK∗qe (33)

K∗ = (M−1H)
T
H (34)

In the last equation, matrix K∗ are named the equivalent stiffness matrix.
This matrix is used in the conventional finite element technique. Utilizing the
element nodal displacement vector, qe the element stresses can be written as:

σ = SM−1Hqe (35)

Having the stress function for each element, stresses at all points will
be in hand. In fact, the stress value at any point within the element can
be determined by inserting the Cartesian coordinates of that point into
Equation (35).

The present analysis is performed by the following steps:

1. All terms of the stress functions, ϕi, are found by using a trial-and-error
procedure. 8-nodes element has 24 terms, and 20-nodes element has
sixty terms. To be valid, these functions should satisfy Equation (10).

2. By performing derivative on stress functions, all the stress components
are calculated.

3. Both values of the stress functions and stress components are shown in
Tables 1 and 2.

4. S matrix is established according to the obtained components of stresses.
5. Having S, and using Equation (23), M matrix will be available.
6. Utilizing S, N and Equation (28) will lead to H .
7. Equation (34) will lead to K∗, which is the equivalent stiffness matrix.
8. Nodal displacements are found by the finite-element process, and

Equation (35) gives the stress components.
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Numerical Examples

In order to assess the performance of the two new elements, seven different
problems are analyzed. As it was mentioned so far, this formulation is based
on the variational principle containing the Airy stress function. It is expected
to have proper accuracy in both displacements and stresses.

Example 1: In Figure 2, a straight prismatic bar is subject to a gravitational
load. The dimensions of the bar are 1m × 1m × 2m. This structure is fixed
at the top, which leads to uxA = uyA = uzA = uxB = uyB = uzB =
uxC = uyC = uzC = uxD = uyD = uzD = 0. Supposing that the structure
is loaded alongside the z-direction by its weight force. As it is shown in
the figure, the coordinate system is located at the body centre. It should be
mentioned that in all tables, FEM indicates the obtained solutions by using the
finite element scheme, which is based on the displacement formulation. The
sparseness shows the distance of the obtained outcomes from the centerline.
MAPE demonstrates the mean absolute percentage error between the average
obtained outcomes and exact solution.

According to Figure 2, the body forces can be expressed as follows:

Fx = 0, Fy = 0, Fz = −ρg (36)

In the last equations, ρ is the density and g is the gravity acceleration.
Furthermore, the material properties used in this structure areE = 4×107 Pa,
ν = 0.25 and ρ = 2000 kg/m3. A total number of 500 collocation points
are equally spaced on T and also 300 points are arranged inside G for

Figure 2 Straight prismatic bar under its weight.
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Table 3 Displacement values for problem one
−uz (mm)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution
−0.25 0.2424 0.2404 0.2397 0.2055 0.2345

−0.50 0.4526 0.4487 0.4471 0.4141 0.4375

−0.75 0.6291 0.6237 0.6211 0.5944 0.6100

Reference −1.00 0.7729 0.7663 0.7627 0.7392 0.7500

[26] −1.25 0.8845 0.8770 0.8726 0.8500 0.8600

−1.50 0.9642 0.9561 0.9511 0.9285 0.9450

−1.75 1.0119 1.0036 0.9982 0.9754 0.9900

MAPE (%) 2.871 2.003 1.552 3.728
−0.25 0.2397 0.2384 0.2365 0.2055 0.2345

−0.50 0.4494 0.4455 0.4451 0.4141 0.4375

A3D8 −0.75 0.6261 0.6207 0.6185 0.5944 0.6100

−1.00 0.7700 0.7640 0.7592 0.7392 0.7500

−1.25 0.8815 0.8740 0.8697 0.8500 0.8600

−1.50 0.9612 0.9528 0.9489 0.9285 0.9450

−1.75 1.0009 1.0006 0.9963 0.9754 0.9900

MAPE (%) 1.327 1.257 1.087 3.728
−0.25 0.2389 0.2362 0.2340 0.2055 0.2345

−0.50 0.4415 0.4387 0.4370 0.4141 0.4375

−0.75 0.6154 0.6137 0.6110 0.5944 0.6100

−1.00 0.7532 0.7521 0.7505 0.7392 0.7500

A3D20 −1.25 0.8700 0.8619 0.8605 0.8500 0.8600

−1.50 0.9500 0.9467 0.9456 0.9285 0.9450

−1.75 1.0007 0.9939 0.9915 0.9754 0.9900

MAPE (%) 0.034 0.023 0.019 3.728

interpolation. The obtained displacement and stress consequences by the
authors’ technique are compared with the available analytical solutions and
the finite element method. All the mentioned answers are demonstrated in
Tables 3 and 4. According to these tables, the variations of displacement and
stress are presented.
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Table 4 Stress values for problem one
−σzz (kPa)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution
−0.25 36.34 36.02 35.88 36.30 35.6

−0.50 30.87 30.60 30.44 31.81 30.0

−0.75 25.57 25.35 25.19 25.91 25.0

Reference −1.00 20.42 20.24 20.10 20.31 20.0

[23] −1.25 15.32 15.18 15.06 15.08 15.0

−1.50 10.20 10.13 10.04 10.01 10.0

−1.75 5.11 5.07 5.02 5.00 5.0

MAPE (%) 2.232 1.390 0.673 1.975
−0.25 35.81 35.73 35.62 36.30 35.6

−0.50 31.13 31.09 30.09 31.81 30.0

−0.75 25.25 25.19 25.10 25.91 25.0

−1.00 20.83 20.83 20.08 20.31 20.0

A3D8 −1.25 15.34 15.10 15.05 15.08 15.0

−1.50 10.21 10.21 10.01 10.01 10.0

−1.75 5.20 5.08 5.00 5.00 5.0

MAPE (%) 0.25 0.13 0.08 1.975
−0.25 35.72 35.62 35.61 36.30 35.6

−0.50 31.11 30.81 30.08 31.81 30.0

−0.75 25.20 25.10 25.09 25.91 25.0

−1.00 20.74 20.62 20.07 20.31 20.0

A3D20 −1.25 15.25 15.07 15.04 15.08 15.0

−1.50 10.20 10.10 10.00 10.01 10.0

−1.75 5.10 5.02 5.00 5.00 5.0

MAPE (%) 0.14 0.09 0.02 1.975

As it is seen in Tables 3 and 4, the suggested elements can predict the
z-direction displacement and stress components with high accuracy com-
pared to the previously presented elements. Furthermore, by increasing the
node numbers and utilizing A3D20, the accuracy was even better. It is clear
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Figure 3 Bending effect of the cantilever beam.

that the amount of MAPE was decreased by increasing sparseness values.
In fact, the exact solution with the sparseness of 100% can be obtained by
A3D20. The performances of both suggested elements in calculating the
stress components were more accurate than the displacement components.

Example 2: In this part, another benchmark problem is solved for
demonstrating the performance of the new elements. The bending effect is
considered in this example. Figure 3 shows a cantilever beam with uxA =
uyA = uzA = uxB = uyB = uzB = uxC = uyC = uzC = uxD =
uyD = uzD = 0. As it is seen in Figure 5, the structural dimensions are
1m× 2m× 1m. For this problem, the material properties are assumed to be
E = 4× 107 Pa, ν = 0.25 and ρ = 2000 kg/m3.

To investigate the bending effect of this beam, the numerical results of
deflection along the y-axis are calculated by the proposed method. These
answers are compared with the finite element results and also with the
outcomes of reference 23 in Table 5. As it was mentioned in the previous
example, the same number of elements is used.

According to the obtained results, the computational accuracy of the
authors’ formulation is high for this problem. The numerical solutions seem
to converge when the degree of sparseness increases. In fact, the discrepancy
between the suggested approach at full sparseness and FEM is only 0.05%.

Example 3: In this part, a cylinder with 10 m internal radius, 10 m
thickness and 20 m height are considered. As it is shown in Figure 4, this
structure is subjected under a centrifugal load. It should be reminded that
this problem is solved with the following dimensionless material parameters,
E = 2.1 × 105, ν = 0.33 and ρ = 1. According to the body symmetry,
only one-quarter of the cylinder domain needs to be analyzed. Based on
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Table 5 Displacement outcomes of the cantilever beam
uzz (mm)

Sparseness Sparseness Sparseness
Z (m) = 20% = 60% = 100% FEM

0.25 −0.095 −0.094 −0.094 −0.093

0.50 −0.246 −0.245 −0.243 −0.242

Reference [26] 0.75 −0.431 −0.429 −0.425 −0.424

1.00 −0.634 −0.631 −0.625 −0.626

1.25 −0.846 −0.842 −0.834 −0.837

1.50 −1.060 −1.054 −1.044 −1.050

1.75 −1.270 −1.263 −1.250 −1.258
A3D8 0.25 −0.095 −0.094 −0.093 −0.093

0.50 −0.245 −0.243 −0.242 −0.242

0.75 −0.427 −0.426 −0.425 −0.424

1.00 −0.628 −0.626 −0.626 −0.626

1.25 −0.839 −0.837 −0.837 −0.837

1.50 −1.055 −1.051 −1.050 −1.050

1.75 −1.262 −1.259 −1.258 −1.258
0.25 −0.095 −0.094 −0.093 −0.093

0.50 −0.244 −0.243 −0.242 −0.242

0.75 −0.426 −0.425 −0.424 −0.424

A3D20 1.00 −0.627 −0.626 −0.625 −0.626

1.25 −0.838 −0.837 −0.837 −0.837

1.50 −1.053 −1.051 −1.050 −1.050

1.75 −1.260 −1.259 −1.258 −1.258

Figure 4, appropriate symmetrical displacement constraints are also applied
to the symmetric planes.

It is obvious that for this structure, the stress fields are more complex than
the two previous solved problems. The results of radial and hoop stresses
at specified locations are arranged, respectively. All findings are obtained
from the proposed method, available references [26] and FEM. They are
represented in Tables 6 and 7. Similar to the former two examples, the MAPE
of the suggested scheme reduces with increased sparseness. Once again, it is
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Figure 4 Thick cylinder subjected to centrifugal load.

observed that good agreement between authors’ elements, and the available
analytical solutions.

For cylindrical shape problem, both A3D8 and A3D30 can calculate
the displacement and stress components with high accuracy. However, the
performance of A3D20 was better than A3D8. On the other hand, in this type
of problems, the performance of proposed elements in order to calculate the
radial stress components was more effective than hoop stress components.

Example 4: To analysis a complex state of stresses, the body in Figure 5
is solved under four circumstances of the loading. For the first case, it is
assumed that 10 kg/m2 the distributed load is applied in EFGH surface in the
z-direction. It should be mentioned that the face ABCD is fixed in all cases,
uxA = uyA = uzA = uxB = uyB = uzB = uxC = uyC = uzC = uxD =
uyD = uzD = 0. Once again, the same dimensionless material parameters,
E = 2.1× 105, ν = 0.3 and ρ = 1, are used for all different situations. After
performing the required analysis, the obtained outputs are inserted in Table 8.

Example 5: In case two, 20 kg/m2 the distributed load is applied in EFGH
surface in the negative y-direction. In addition, 10 kg/m2 force is applied
in EFGH surface in the z-direction. All the obtained results for stress and
displacement component in the z-direction with different sparseness from the
central axis are represented in Tables 9 and 10.

Example 6: In case three, 30 kg/m2 is applied to BFGH face in the
x-direction. In addition, 20 kg/m2 force is applied to EFGH face in the
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Table 6 Radial stresses for the thick cylinder
σr (kPa)

Sparseness Sparseness Sparseness Sparseness Analytical
r (m) = 20% = 60% = 80% = 100% FEM Solution
11.25 2.723 2.221 2.424 2.340 2.434 2.367

12.50 4.068 3.603 3.673 3.691 3.740 3.620

Reference 13.75 4.562 4.247 4.132 4.271 4.233 4.099

[26] 15.00 4.482 4.269 4.027 4.245 4.108 4.010

16.25 4.005 3.789 3.489 3.751 3.568 3.484

17.50 3.194 2.902 2.582 2.888 2.647 2.604

18.75 1.942 1.652 1.357 1.684 1.442 1.430

MAPE (%) 17.694 7.492 1.594 7.073 2.394
11.25 2.461 2.432 2.384 2.370 2.434 2.367

12.50 3.611 3.594 3.546 3.542 3.740 3.620

13.75 4.228 4.213 4.154 4.152 4.233 4.099

15.00 4.231 4.221 4.057 4.050 4.108 4.010

A3D8 16.25 3.594 3.571 3.502 3.497 3.568 3.484

17.50 2.714 2.688 2.634 2.624 2.647 2.604

18.75 1.602 1.482 1.454 1.450 1.442 1.430

MAPE (%) 4.842 2.248 1.735 1.215 2.394
11.25 2.432 2.401 2.371 2.365 2.434 2.367

12.50 3.602 3.575 3.545 3.521 3.740 3.620

13.75 4.209 4.182 4.152 4.100 4.233 4.099

15.00 4.112 4.082 4.046 4.012 4.108 4.010

A3D20 16.25 3.555 3.530 3.491 3.485 3.568 3.484

17.50 2.695 2.677 2.612 2.608 2.647 2.604

18.75 1.503 1.473 1.441 1.433 1.442 1.430

MAPE (%) 0.815 0.118 0.017 0.008 2.394

negative y-direction. Finally, 10 kg/m2 force is applied to the EFGH surface
in the z-direction. All the achieved results for the stress and displacement
components, in the z-direction with different sparseness from the central axis,
are represented in Tables 11 and 12.
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Table 7 Hoop stresses for the thick cylinder
σt (kPa)

Sparseness Sparseness Sparseness Analytical
r (m) = 20% = 60% = 100% FEM Solution
11.25 33.88 28.69 29.92 31.48 30.66

12.50 29.71 26.29 27.00 28.24 27.47

Reference 13.75 26.27 24.24 24.53 25.55 24.86

[23] 15.00 23.27 22.45 22.38 23.21 22.61

16.25 20.51 20.84 20.43 21.10 20.60

17.50 17.96 19.36 18.63 19.12 18.74

18.75 15.78 18.03 17.05 17.21 16.97

MAPE (%) 5.542 3.520 1.200 2.392
11.25 32.11 31.89 31.24 31.48 30.66

12.50 29.37 29.06 28.84 28.24 27.47

13.75 26.17 25.89 25.43 25.55 24.86

A3D8 15.00 23.76 23.57 23.11 23.21 22.61

16.25 21.73 21.42 21.00 21.10 20.60

17.50 19.82 19.48 19.54 19.12 18.74

18.75 18.09 17.86 17.43 17.21 16.97

MAPE (%) 3.170 2.407 1.7942 2.392
11.25 31.42 31.03 30.67 31.48 30.66

12.50 28.06 27.84 27.50 28.24 27.47

13.75 25.67 25.26 24.89 25.55 24.86

A3D20 15.00 23.21 22.97 22.67 23.21 22.61

16.25 21.19 20.91 20.65 21.10 20.60

17.50 19.45 19.01 18.80 19.12 18.74

18.75 17.59 17.28 17.00 17.21 16.97

MAPE (%) 0.421 0.122 0.038 2.392

According to the obtained results, the computational accuracy of the
authors’ formulation is high for this problem. The numerical solutions seem
to converge when the degree of sparseness increases and the discrepancy
between the suggested approach at full sparseness and FEM is only 0.07%.
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Figure 5 Body under four different loadings.

Table 8 Stress consequences for case one
σzz (kPa)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution

0.25 46.52 46.38 46.13 46.30 45.71

0.50 41.91 41.81 41.52 41.81 40.12

0.75 35.85 35.74 35.66 35.91 35.74

1.00 31.39 31.15 30.95 30.31 30.27

A3D8 1.25 25.81 25.72 25.49 25.08 25.21

1.50 20.82 20.68 20.45 20.01 20.01

1.75 10.43 10.24 10.19 10.00 10.00

MAPE (%) 3.342 2.423 0.680 1.975
0.25 45.93 45.78 45.63 46.30 45.71

0.50 41.25 41.06 40.10 41.81 40.12

0.75 35.66 35.50 35.67 35.91 35.74

1.00 30.95 30.83 30.17 30.31 30.27

A3D20 1.25 25.49 25.10 25.19 25.08 25.21

1.50 20.45 20.21 20.01 20.01 20.01

1.75 10.19 10.08 10.00 10.00 10.00

MAPE (%) 0.681 0.171 0.082 1.975
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Table 9 Stress consequences for case two
σzz (kPa)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution

0.25 51.58 51.34 51.13 51.30 50.71

0.50 46.83 46.38 46.24 46.81 45.12

0.75 41.38 41.07 40.86 40.91 40.74

1.00 36.49 36.22 35.94 35.31 35.27

A3D8 1.25 30.98 30.72 30.48 30.08 30.21

1.50 25.73 25.48 25.23 25.01 25.01

1.75 15.54 15.38 15.17 15.00 15.00

MAPE (%) 2.420 1.973 1.413 2.175
0.25 50.92 50.75 50.69 51.30 50.71

0.50 46.24 46.13 45.09 46.81 45.12

0.75 40.86 40.74 40.69 40.91 40.74

A3D20 1.00 35.94 35.83 35.16 35.31 35.27

1.25 30.48 30.21 30.17 30.08 30.21

1.50 25.23 25.09 25.01 25.01 25.01

1.75 15.17 15.08 15.00 15.00 15.00

MAPE (%) 0.412 0.137 0.071 2.175

Table 10 Displacement outcomes for case two
uz (mm)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution

0.25 0.3501 0.3475 0.3457 0.3055 0.3345

0.50 0.5591 0.5573 0.5551 0.5141 0.5375

0.75 0.7771 0.7746 0.7721 0.6944 0.7100

1.00 0.8810 0.8786 0.8768 0.8392 0.8500

A3D8 1.25 0.9921 0.9897 0.9872 0.9500 0.9600

1.50 1.0772 1.0689 1.0662 1.0285 1.0450

1.75 1.1221 1.1190 1.1171 1.1754 1.1100

MAPE (%) 4.015 3.487 3.007 3.728
0.25 0.3426 0.3402 0.3354 0.3055 0.3345

0.50 0.5525 0.5485 0.5471 0.5141 0.5375

0.75 0.7293 0.7234 0.7111 0.6944 0.7100

1.00 0.8731 0.8662 0.8527 0.8392 0.8500

A3D20 1.25 0.9847 0.9770 0.9616 0.9500 0.9600

1.50 1.0644 1.0588 1.0511 1.0285 1.0450

1.75 1.1152 1.1133 1.1112 1.1754 1.1100

MAPE (%) 2.752 1.543 0.885 3.728
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Table 11 Stress consequences for case three
σzz (kPa)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution

0.25 63.38 63.12 62.95 62.30 62.41

0.50 58.72 58.59 58.32 57.41 56.80

0.75 52.93 52.71 52.51 52.71 51.74

1.00 48.46 48.11 47.94 47.21 47.17

A3D8 1.25 43.03 42.84 42.51 41.18 41.32

1.50 37.61 37.35 37.19 36.01 36.01

1.75 27.85 27.64 27.13 26.00 26.00

MAPE (%) 4.008 3.257 2.943 2.575
0.25 62.72 62.54 62.38 62.30 62.41

0.50 58.04 57.29 56.79 57.41 56.80

0.75 52.16 51.91 51.80 52.71 51.74

1.00 47.74 47.37 47.18 47.21 47.17

A3D20 1.25 42.28 41.61 41.36 41.18 41.32

1.50 37.13 37.00 36.01 36.01 36.01

1.75 27.02 26.18 26.00 26.00 26.00

MAPE (%) 1.373 0.137 0.090 2.575

Table 12 Displacement outcomes for case three
uz (mm)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution

0.25 0.4705 0.4672 0.4657 0.4255 0.4545

0.50 0.6819 0.6785 0.6762 0.6241 0.6675

0.75 0.8469 0.8443 0.8412 0.8144 0.8300

1.00 0.9883 0.9861 0.9848 0.9592 0.9700

A3D8 1.25 1.1225 1.1198 1.1171 1.0700 1.0800

1.50 1.1834 1.1799 1.1768 1.1485 1.1650

1.75 1.2458 1.2425 1.2396 1.2954 1.2300

MAPE (%) 4.110 3.824 3.183 3.918
0.25 0.4613 0.4578 0.4553 0.4255 0.4545

0.50 0.6726 0.6699 0.6671 0.6241 0.6675

0.75 0.8384 0.8337 0.8310 0.8144 0.8300

1.00 0.9829 0.9742 0.9707 0.9592 0.9700

A3D20 1.25 1.1145 1.1082 1.0813 1.0700 1.0800

1.50 1.1742 1.1676 1.1654 1.1485 1.1650

1.75 1.2369 1.2336 1.2300 1.2954 1.2300

MAPE (%) 2.793 1.513 0.072 3.918
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Table 13 Stress consequences for case four
σzz (kPa)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution

0.25 51.43 51.19 50.81 50.18 50.29

0.50 46.77 46.38 46.13 45.29 45.68

0.75 40.96 40.69 40.38 39.59 39.62

1.00 36.29 36.00 35.85 35.08 35.05

A3D8 1.25 31.04 30.75 30.49 29.06 29.20

1.50 26.17 25.84 25.37 24.84 24.84

1.75 16.09 15.88 15.29 14.88 14.88

MAPE (%) 2.138 1.275 0.840 1.635
0.25 50.60 50.41 50.20 50.18 50.29

0.50 45.98 45.77 45.67 45.29 45.68

0.75 40.02 39.79 39.70 39.59 39.62

1.00 35.62 35.41 35.06 35.08 35.05

A3D20 1.25 30.16 29.75 29.14 29.06 29.20

1.50 25.01 24.84 24.84 24.84 24.84

1.75 15.01 14.88 14.88 14.88 14.88

MAPE (%) 0.371 0.257 0.081 1.635

Example 7: In case four, the structure presented Figure 5 is solved under
the concentrate couple forces applied in the middle of EF and GH in both
negative and positive z-direction. These couple forces are 10 kg. For this
situation, the surface ABCD is also fixed, which leads to uxA = uyA =
uzA = uxB = uyB = uzB = uxC = uyC = uzC = uxD = uyD = uzD = 0.
Tables 13 and 14 demonstrate the obtained results of stress and displacement
along the z-direction.

As it is seen in Tables 13 and 14, the presented elements can fore-
cast the z-direction displacement and stress components with high accuracy
compared to the FEM. Furthermore, by increasing the number of nodes
and using A3D20, the accuracy was raised. Besides, the amount of MAPE
was decreased by increasing the sparseness content. This clearly proved
that the analytical responses can be achieved when A3D20 was used since
the sparseness was 100%. It was demonstrated that for the complex stress
cases, the performances of both A3D8 and A3D20, in calculating the stress
components, were more accurate than finding the displacement components.
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Table 14 Displacement outcomes for case four
uz (mm)

Sparseness Sparseness Sparseness Analytical
Z (m) = 20% = 60% = 100% FEM Solution

0.25 0.4713 0.4685 0.4653 0.4255 0.4545

0.50 0.6759 0.6773 0.6749 0.6241 0.6675

0.75 0.8528 0.8409 0.8381 0.8144 0.8300

1.00 0.9950 0.9751 0.9724 0.9592 0.9700

A3D8 1.25 1.0071 1.0973 1.0942 1.0700 1.0800

1.50 1.1882 1.1797 1.1768 1.1485 1.1650

1.75 1.2345 1.2468 1.2432 1.2954 1.2300

MAPE (%) 3.793 2.513 2.008 3.918
0.25 0.4614 0.4584 0.4553 0.4255 0.4545

0.50 0.6726 0.6702 0.6671 0.6241 0.6675

0.75 0.8372 0.8347 0.8311 0.8144 0.8300

1.00 0.9692 0.9663 0.9617 0.9592 0.9700

A3D20 1.25 1.0905 1.0870 1.0836 1.0700 1.0800

1.50 1.1742 1.1711 1.1687 1.1485 1.1650

1.75 1.2391 1.2363 1.2342 1.2954 1.2300

MAPE (%) 1.793 0.998 0.655 3.918

Conclusion

In this paper, a novel scheme for developing two stress-based elements
was proposed. Both suggested elements had three-dimensional isoparamet-
ric shapes, which are suitable for meshing irregular domain. According to
comprehensive numerical studies, these formulations can solve the three-
dimensional problem accurately. Indeed, the proposed elements can give
precise responses for both displacement and stress. As it was demonstrated
in this article, the entire element construction procedure was different from
those of the traditional models. Based on this study, the following issues can
be addressed:

(1) Airy stress function was taken as the functional variable, and by min-
imizing the complementary energy functional, proper formulation was
established and two new three-dimensional isoparametric elements were
generated.

(2) To demonstrate the abilities of the new suggested elements, a variety of
the famous benchmark problems were solved.
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(3) Findings clearly showed that these elements can give both good dis-
placements and stress responses.

(4) Based on the numerical experiences, the orders of accuracy in these two
new elements were A3D8 and A3D20.

(5) Accuracy of proposed elements in order to calculate the stress compo-
nents was more than the displacement components and was more precise
than those presented by previous investigations.

(6) For cylindrical structures, both A3D8 and A3D30 could calculate the
displacement and stress components with high accuracy. However, the
performance of A3D20 was more than A3D8. On the other hand, in
this type of problems, the performance of proposed elements in order to
calculate the radial stress components was more effective than the hoop
stress components.
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