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Abstract

The purpose of this paper is to study numerically the influence of the mag-
netic field, buoyancy force and viscous dissipation on the convective flow and
temperature of the fluid in a square cavity, lid-driven cavity, and lid-driven
cavity with an obstacle at the center. The continuity, momentum and energy
equations are coupled including buoyancy and magnetic forces, and energy
equation contains Joule heating and viscous dissipation. The equations are
solved in terms of stream function, vorticity and temperature by using poly-
nomial radial basis function (RBF) approximation for the inhomogeneity and
particular solution. The numerical solutions are obtained for several values
of Grashof number (Gr), Hartmann number (M ) for fixed Prandtl number
Pr = 0.71 and fixed Reynolds number Re = 100 with or without viscous
dissipation. It is observed that in the absence of obstacle, viscous dissipation
changes the symmetry of the isotherms, and the dominance of buoyancy
force increases with an increase in Gr, whereas decreases when the intensity
of magnetic field increases. The obstacle in the lid-driven cavity causes a
secondary flow on its left part. The effect of moving lid is weakened on the
flow and isotherms especially for large Gr when the cavity contains obstacle.
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1 Introduction

The analysis of the fluid flow and heat transfer in enclosures is one of the
most widely studied problems in thermo-fluids area. It has recently attracted
the interest of many researchers because of the wide range of industrial
applications such as crystal growth, cooling system, air conditioning and
solar technology. On the other hand, magnetohydrodynamics (MHD), which
focuses on the fluid flows under the magnetic field, has many engineering
applications such as MHD pumps, geothermal energy extraction and nuclear
fusion. Colaço, Dulikravich & Orlande (2009) studied the effect of magnetic
field on convection heat transfer in a square cavity. They solved the problem
in terms of stream function and temperature neglecting viscous dissipation
by using RBF approximation. Bakhshan & Ashoori (2012) analyzed the
fluid behavior in a rectangular enclosure under the influence of the slope
orientation of magnetic field. They observed that Nusselt number increases
with increasing Grashof and Prandtl numbers and decreasing the slope of
orientation of magnetic field. MHD free convection flow in a rectangular
enclosure problem is solved by modified ADI and SLOR (Successive Line
Over Relaxation) methods in (Rudraiah & Barron, 1995). They indicated that
the convective heat transfer rate is reduced when the intensity of magnetic
field increases. Aydın (1999) numerically investigated the mixed convection
flow in a shear- and buoyancy-driven cavity. The magnetic effect on mixed
convection flow in a lid-driven cavity has been added by Kefayati, Gorji-
Bandpy, Sajjadi & Ganji (2012). The numerical results are obtained by using
the Lattice Boltzmann method (LBM). They observed that the increase in the
Richardson number increases the heat transfer. Nasrin & Parvin (2011) have
also analyzed MHD mixed convection flow and heat transfer in a lid-driven
cavity with sinusoidal wavy bottom surface.

In the above studies, viscous dissipation term has been neglected in the
energy equation. Viscous dissipation represents a source of heat because of
the friction between the fluid particles. It is characterized by Eckert number.
The effect of viscous dissipation was first studied by Gebhart (1962). Later,
Kumar (2009) analyzed the heat transfer of the boundary layer flow over
stretching plate with viscous dissipation effect in the presence of magnetic
field. Kishore, Rajesh & Verma (2010); Nyabuto, Sigey, Okelo & Okwoyo
(2013) also investigated the effects of viscous dissipation on MHD natural
convection flow. They showed that temperature increases with increasing
values of Eckert number. Gürbüz & Tezer-Sezgin (2018) studied the effect
on viscous dissipation on MHD flow and heat transfer applying Stokes
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approximation (Re << 1) with small value of Grashof number 90. They
found that both Stokes flow and isolines concentrate through the cold wall
due to the viscous dissipation effect.

In this study, 2D steady, laminar MHD convection flow of an incompress-
ible and electrically conducting, dissipative viscous fluid in square cavity,
lid-driven cavity and lid-driven cavity with a solid obstacle is considered.
A uniform magnetic field is applied in the x− direction. The governing equa-
tions are obtained from Navier-Stokes equations with Lorentz and Buoyancy
forces and energy equation including Joule heating and viscous dissipation
terms. RBF approximation has been applied to these equations in terms of
stream function, vorticity and temperature. The results are validated with
the convection flow problem in the absence of magnetic field and viscous
dissipation. The main aim of this study is to show the effect of the magnetic
field and viscous dissipation on the convective flow in cavities with or without
obstacles.

2 Physical Problem and Mathematical Formulation

We consider fully developed, steady, laminar flow of an incompressible,
electrically conducting fluid in a cross-section of square channel with or
without solid obstacle under the influence of a uniform horizontally applied
magnetic field. The governing equations are the continuity equation, the
momentum equations including buoyancy and Lorentz forces, and the energy
equation including Joule heating and viscous dissipation terms (Müller &
Bühler, 2001; Rogers, 1992). The two-dimensional MHD convection flow
is represented with Poisson’s type equations in terms of stream function,
temperature and vorticity

∇2ψ = −ω, (1)
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∂x . The non-dimensional parameters Re,
M and Pr are Reynolds number, Hartmann number and Prandtl number,
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respectively, defined as Re = LU0/ν, M = LµH0

√
σ/ρν, and Pr =

ρcpν/λ. Grashof number Gr = gβ(Thot − Tcold)L3/ν2 is the ratio of buoy-
ancy force to viscous force. Eckert number Ec = U2

0 /(cp(Thot − Tcold)) can
be interpreted as the ratio of kinetic energy to the accumulated enthalpy. Here,
ν, σ, µ, ρ, cp, β, λ and g are kinematic viscosity, electrical conductivity, mag-
netic permeability, the density, specific heat, thermal expansion coefficient,
the thermal conductivity of the fluid and the gravitational acceleration vector,
respectively.

3 Radial Basis Function (RBF) Approximation

All the Equations (1–3) are Poisson’s type equations considering the right
hand sides f(x, y) as inhomogeneity. We solve them iteratively by using
RBF approximation. In this method (Chen, Fan & Wen, 2012), the inhomo-
geneity f(x, y) and the particular solution û of a partial differential equation
Lu(x, y) = f(x, y) are approximated

f(x, y) '
n∑
j=1

ajϕj(r) and û(x, y) =
n∑
j=1

ajΨj(r), (x, y) ∈ Ω (4)

where r =
√

(x− xj)2 + (y − yj)2 is the Euclidean distance and n is
the number of unknown coefficients, ϕj(r)’s are the radial basis func-
tions. Boundary condition Bu(x, y) = g(x, y) is going to be satisfied by
a particular solution û which in turn is also approximated by RBFs as∑n

j=1 ajBΨj(r) = g(x, y), (x, y) ∈ ∂Ω where Ψj’s are linked to ϕj’s
through LΨj(r) = ϕj(r).

The undetermined coefficients aj in the approximation (4) are found
collocating the unknown functions f(x, y) and g(x, y) at N + L = n
collocation points (xi, yi) on the boundary and interior of the domain as

n∑
j=1

ajBΨj(rk) = g(xk, yk), 1 ≤ k ≤ N,

n∑
j=1

ajϕj(rl) = f(xl, yl), 1 +N ≤ l ≤ n (5)

which are combined to give one linear system [A]{a} = {b} for the solution

vector {a} =
[
a1 · · · an

]T
. The coefficient matrix and the right hand side
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vector are given as

[A] =



BΨ1(r1) BΨ2(r1) · · · BΨn(r1)
...

...
. . .

...
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ϕ1(rN+1) ϕ2(rN+1) · · · ϕn(rN+1)

...
...

. . .
...
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
n×n

, {b} =


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...
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...
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n×1

.

Solution of this whole system provides the coefficients aj’s, 1 ≤ j ≤ n,
and the approximate solution û(x, y) =

∑n
j=1 ajΨj(r). Now, applica-

tion to MHD convection Equations (1–3) gives û representing ψ, ω or T ,
respectively.

3.1 Application to MHD Convection Flow Equations

Polynomial type RBF ϕ(r) = 1 + r is used for the approximations of the
inhomogeneity and boundary function which gives Ψ(r) = r2

4 + r3

9 from
backward integration in ∇2Ψ = ϕ for approximating the solution itself.
The system of Equations (1–3) are solved with an iterative process. Given
an initial estimate for vorticity, stream function Equation (1) is solved. The
unknown vorticity wall conditions are obtained from the finite difference
discretization of stream function equation which uses interior values (Gürbüz
& Tezer-Sezgin, 2015). Then, we solve the vorticity Equation (2). The energy
Equation (3) is solved with the use of the new values of velocity components
and initial estimate for temperature. The iteration continues until a preas-
signed tolerance (ε) is reached between two successive iterations. In each
iterations, all the space derivatives are computed by using coordinate matrix
ϕ which is constructed by ϕij = 1 + rij

∂D

∂x
=
∂ϕ

∂x
ϕ−1D,

∂D

∂y
=
∂ϕ

∂y
ϕ−1D

where D denotes u, v, ω and T .

4 Numerical Results and Discussion

The steady convection flow in a square cavity, a lid-driven cavity and a lid-
driven cavity with an obstacle at the center under the influence of a uniform
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horizontally applied magnetic field is analyzed by using RBF approximation.
Convergence tolerance is tested and 10−4 accuracy is sufficient enough to
show the behavior of the flow and the temperature. Also, we use relaxation
parameters α and β, 0 ≤ α, β ≤ 1 for the vorticity and the temperature,
respectively, to accelerate the convergence.

4.1 Square Cavity

First, the Equations (1–3) are solved iteratively with initial estimates for ω
and T and the boundary conditions shown in Figure 1.

Numerical results are obtained for several values ofGr (103 ≤ Gr ≤ 105)
and moderate Hartmann number values M (0 ≤ M ≤ 50) with fixed
Pr = 0.71, Re = 100 to see the effect of viscous dissipation by taking
Ec = 0 or Ec = 1. The boundary is discretized by taking N = 80 points and
sufficient number of interior points to demonstrate the flow, temperature and
pressure behaviors in the cavity. The numerical results are shown in terms of
streamlines, isotherms and equivorticity contours.

In Figure 2, we show convection flow and temperature behavior in the
square cavity for increasing values of Gr neglecting applied magnetic field
(M = 0) and viscous dissipation (Ec = 0) which are in good agreement with
the results in (Al-Najem, Khanafer & El-Refaee, 1998). As Gr increases, the
stream function value also increases and center vortex tends to be divided into
two vortices. Similarly, vorticity is divided at the center of the cavity forming
vortices and boundary layers near the left and right walls. Isotherms variation

Figure 1 Square cavity with boundary conditions.
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Figure 2 The effect of Grashof number on Ψ, ω and T at fixed M = 0, Ec = 0 (Square
cavity).

is more pronounced with an increase in Grashof number due to dominance of
buoyancy effect.

Figure 3 indicates the effect of the magnetic field on the flow and tem-
perature profiles for fixed Re = 100, Gr = 104 and Ec = 0. Results
are in well agreement with the ones obtained in (Al-Najem et al., 1998;
Colaço, Dulikravich & Orlande, 2009). Hartmann number effect on the flow
is the boundary layer formation near the walls which are perpendicular to the
applied magnetic field (Hartmann layers). External magnetic field impact is
most pronounced on isotherms. It reduces the dominance of convective heat
transfer from the left wall to the right wall (which was observed for large Gr
number). When M reaches to the value of 50, the temperature comes back to
the uniform distribution between the vertical walls which indicates that heat
conduction becomes dominant.
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Figure 3 The effect of Hartmann number on Ψ, ω and T at fixed Gr = 104, Ec = 0 (Square
cavity).

When we add viscous dissipation term in the energy equation by taking
Ec= 1, flow characteristics are shown in Figures 4–5 with respect to Gr
increase and M increase. Main vortex of the streamlines moves to the right
bottom corner forming boundary layer with an increase in Gr up to 105. As
Grashof number is taken up to 105, the symmetry of vorticity and isotherms
are altered, and they form boundary layers near the cold wall. Temperature
values increase through the center of the cavity, but decrease through the
right cold wall showing heat transfer from the left wall through upper adia-
batic wall and sharp decrease to the cold wall. This means that the thermal
convection is completely changed for dissipative viscous fluid only when Gr
is reached to 105 which can be seen from the third row of Figure 4 with the
third row of Figure 2.

In Figure 5, the impacts of both the magnetic field and the buoyancy force
are searched on the solution for dissipative viscous fluid. For Gr = 104 the
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Figure 4 The effect of Grashof number on Ψ, ω and T at fixed M = 0, Ec = 1 (Square
cavity).

magnetic field effect on the dissipative flow is the same as in the case of
Ec = 0 (Figure 3). When Gr reaches to 105 viscous dissipation effect starts
to be observed. Streamlines, isotherms and equivorticity lines all concentrate
near the right bottom corner and form boundary layer near the cold right wall.

4.2 Lid-Driven Cavity

The proposed method has been applied to the convection flow in lid-driven
cavity under the effect of a uniform horizontally applied magnetic field. The
problem configuration and the boundary values are shown in Figure 6. The
numerical results are obtained for Hartmann number values in the range
(0−80) and Grashof number is taken up to 104 (102 ≤ Gr ≤ 104) for fixed
Reynolds number value of 100. Solution is depicted in terms of streamlines,
vorticity contours and isotherms.
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Figure 5 The effects of magnetic field and buoyancy on Ψ, ω and T at fixed Ec = 1,
Gr = 104 and Gr = 105 (Square cavity).

Figure 6 Lid-driven cavity.

In Figure 7, the increase in the Grashof number is considered on the
flow and temperature behaviors in the absence of the magnetic field and
viscous dissipation effects. These results are in well agreement with the ones
obtained in Yapıcı & Obut (2015), since Ec = 0 corresponds to the heat
transfer without viscous dissipation. AsGr increases, central vortex of stream
function moves through the center of the cavity with an increasing magnitude.
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Figure 7 The effect of Grashof number on the flow and temperature for M = 0, Ec = 0,
Re = 100 (lid-driven).

Lid-driven effect can be seen on the flow. Isotherms bend through the center
and concentrate near the hot bottom wall since buoyancy force dominates the
flow (Gr contains thermal expansion coefficient and thermal conductivity of
the fluid).

Figure 8 presents the variation of the Hartmann number for fixed Gr =
103 and Ec = 0. It is observed that as the magnetic field intensity increases,
the main flow shifts through the moving top lid with a decrease in the mag-
nitude. With a further increase in M flow concentrates in front of the moving
lid and forming a side layer which is an expected behavior of MHD flow.
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Figure 8 The effect of Hartmann number on the flow and temperature for Gr = 103, Ec =
0, Re = 100 (lid-driven).

For largerM even secondary flow with small magnitude starts to develop and
the rest of the cavity is almost stagnant. Magnetic field effect on isotherms is
opposite to the effect ofGr. This means that further increase in M causes the
convection to be suppressed as in the case of a small Gr.

The effect of viscous dissipation on the MHD convection flow can be seen
in Figures 9–10 by taking Ec = 1. Figure 9 depicts the variations of Gr on
the flow and temperature when Ec = 1. One can see that boundary layer is
developed near the moving top lid when Gr is increased, and the increase
in Gr causes the extension of circulation of the fluid through the center of
the cavity as in the case of Ec = 0. Thus, viscous dissipation does not
cause a significant change on the flow when we compare to Figure 7. On the
other hand, isotherms tend to bend inside the cavity between adiabatic walls
with the effects of moving lid, and an increase in Gr. Viscous dissipation
effect together with the buoyancy force cause the temperature values to drop
suddenly near the upper lid forming boundary layer instead of concentrating
through the hot wall as in the case of Ec = 0 (Figure 7).

The effects of both magnetic field and viscous dissipation can be seen in
Figure 10. The flow behavior is the same as in the case Ec = 0 (Figure 8).
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Figure 9 The effect of Grashof number on the flow and temperature for M = 0, Ec = 1
(lid-driven).

Figure 10 The effect of Hartmann number on the flow and temperature for Gr = 103,
Re = 100, Ec = 1 (lid-driven).
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Figure 11 Lid-driven cavity with obstacle.

Figure 12 The effect of Grashof number on the flow and temperature for M = 0, Ec = 0,
Re = 100 (lid-driven with obstacle).
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Figure 13 The effect of Grashof number on the flow and temperature for M = 0, Ec = 1,
Re = 100 (lid-driven with obstacle).

However, viscous dissipation impact is most pronounced on the temperature
contours. Magnetic field has a cooling effect on isotherms pushing the heat
through the moving lid and forming a boundary layer near the cold wall.

4.3 Lid-Driven Cavity with an Obstacle

As a last test problem, the MHD convection flow is considered in a lid-
driven cavity containing a square obstacle with heated walls at the center
of the cavity. The outer walls of the cavity are taken as cooled. The external
magnetic field still applies horizontally. The geometry of the problem and
related boundary conditions are shown in Figure 11. The effect of the block-
age on the flow and fluid temperature is studied again for problem parameters
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Figure 14 The effect of Hartmann number on the flow and temperature for Gr = 103,
Ec = 0, Re = 100 (lid-driven with obstacle).

0 ≤ M ≤ 80, 103 ≤ Gr ≤ 105, Re = 100 with Ec = 0 or Ec = 1. The
boundary conditions for the stream function on the obstacle (ψobs) are taken
by looking at the average ψ values at the center of the cavity in the absence
of the obstacle and heat transfer.

As Gr increases when M = 0, Ec = 0, a secondary flow is developed
on the left of the blockage. Fluid flows near the left and right sides of the
obstacle in terms of layers and the effect of moving lid is weakened especially
when Gr is further increased to Gr = 105. Isotherms concentrate near the
hot obstacle walls with heat transfer from the upper obstacle wall through the
upper moving cold lid (Figure 12). These results are in well agreement with
the results in (Islam, Sharif & Carlson, 2012).

Figure 13 shows that the effect of Gr on the flow and the temperature
when the viscous dissipation is present (Ec = 1). When it is compared with
Figure 12, one can see that viscous dissipation does not cause a significant
change on the flow as in the case of cavity without an obstacle. However,
viscous dissipation effect causes the isotherms to concentrate evenly through
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Figure 15 The effect of Hartmann number on the flow and temperature for Gr = 103,
Ec = 1, Re = 100 (lid-driven with obstacle).

Figure 16 The effect of Hartmann number on the flow and temperature for Gr = 105,
Ec = 0, Re = 100 (lid-driven with obstacle).
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Figure 17 The effect of Hartmann number on the flow and temperature for Gr = 105,
Ec = 1, Re = 100 (lid-driven with obstacle).

the upper moving cold lid and the side walls of the cavity instead of concen-
trating around the hot walls of the obstacle as in the case Ec = 0 shown in
Figure 12.

The effect of the increase in the Hartmann number is similar to the effect
in the absence of obstacle when Gr = 103 is fixed and Ec = 0. That is
main flow is shifted through the upper lid and when M is further increased,
a secondary flow around the obstacle is developed with a vortex on the left
upper corner of the obstacle. The magnitude of the flow is decreased when
M is increased. Both the flow and the temperature are out of the effect of
moving upper lid when external magnetic field influence is further increased
as can be seen in Figure 14.

For a fixed moderate Gr = 103, the effect of increasing M is the same
with Ec = 0 or Ec = 1 when the Figures 14–15 are compared. But,
for larger Gr = 105, the increase in the Hartmann number M is more
pronounced on isotherms for Ec = 1 as their concentration on the obstacle
walls leave their place to a uniform heat transfer from inner to outer cavity
walls (Figures 16–17).

5 Conclusion

The MHD convection flow in a square cavity and a lid-driven cavity are
solved by using polynomial RBF approximation. This numerical technique
is easy to implement compared to other domain discretization methods since
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the points can be arranged arbitrarily. Also, the solution is obtained in a
considerably low computational cost. We consider the effects of viscous
dissipation, magnetic field and buoyancy force on the convection flow. AsGr
increases for cavities without obstacle, isotherms undergo an inversion in the
cavity due to the convection dominance. However, heat conduction becomes
dominant with an increasing intensity of the magnetic field. When the viscous
dissipation is present, flow behavior does not change significantly, but tem-
perature variation is more pronounced. Isotherms values drop suddenly near
the upper lid forming boundary layer in a lid-driven cavity. For square cavity
problem viscous dissipation effect is suddenly observed when Gr reaches to
105. Symmetric behavior of the flow and temperature are destroyed. When the
lid-driven cavity includes an obstacle at the center, the effect of the moving lid
is weakened for large Grashof number and as Hartmann number is increased,
viscous dissipation causes a uniform heat transfer from hot obstacle walls to
cold cavity walls again for large Gr values.
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