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Abstract

The problem of thermoelastic stress wave propagation in an orthotropic
hollow cylinder is investigated using analytical methods. The fully coupled
classical theory of thermoelasticity is used to extract the equations for an
orthotropic cylinder. To solve the boundary value problem, heat conduc-
tion equation and equation of motion are divided into two different sets
of equations, the first set consists of uncoupled equations with considering
boundary conditions and the second set comprises coupled ones with initial
conditions. Finite Hankel transform (Fourier-Bessel expansion) is utilized to
solve the problem with respect to radial variable. Two different cases, pure
mechanical load and pure thermal load, were studied numerically to show
the effect of considering the thermomechanical coupling term in the heat
conduction equation. To show the effect of considering the coupling term
in the heat conduction equation, the temperature history is plotted for the
pure mechanical load case, where the temperature rises without applying any
thermal load. By applying boundary conditions on the inner surface of the
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cylinder, initiation of the stress waves from the inner surface of the cylinder,
propagation through the thickness in the radial direction and reflection from
the outer surface were observed in the plotted figures.

Keywords: Classical thermoelasticity, orthotropic cylinder, Hankel trans-
form, thermoelastic wave.

1 Introduction

Among the different mechanical elements in industries, cylinders are one of
the most applicable geometries. Also, using the composite materials in which
mechanical properties varies significantly in different directions is growing
rapidly due to significant features of these kinds of materials. The composite
orthotropic thick walled cylinders are used in a large number of devices such
as space crafts, maritime vehicles, etc. Thermal loads are applied on numer-
ous mechanical elements, and the resultant thermal stresses can end to failure
of structure. The classical and several generalized theories of thermoelasticity
were presented due to the importance of thermal loads in designing structures.
The coupled nature of thermoelasticity equations indicates that a change
in the temperature field produces a strain and reciprocally, time-dependent
deformation causes the change in temperature field. The strain rate term in the
energy equation, and the temperature gradient term in the equation of motion
are the mathematical indicators of the coupling phenomenon. The coupling
terms between these two sets of equations, especially the strain rate term in
the energy equation, makes solving the equations of the coupled classical
theory of thermoelasticity convoluted, where the both equations must be
solved simultaneously. Due to this complications in the equations, analytical
solutions have not been developed extensively.

El-Naggar et al. [1] studied thermal stresses in a rotating nonhomoge-
neous orthotropic hollow cylinder. The problem is considered to be axisym-
metric and coupling terms in the heat conduction equation are neglected.
They used finite difference method to solve the problem. Shahani and
Nabavi [2], used finite Hankel transform to solve quasi-static thermoelasticity
problem in a thick hollow isotropic cylinder. The inner and the outer surfaces
of the cylinder are subjected to time dependent thermal loadings and two
different kinds of mechanical boundary conditions, traction-displacement
and traction-traction, are considered to solve the problem. Jabbari et al. [3]
presented an exact solution for classical coupled thermoelasticity problem
for solid and hollow cylinders. The problem is considered to be radially
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symmetric and the cylinder is subjected to mechanical shock and temperature.
The Fourier expansion, eigenfunction methods and Laplace transformation
are used to solve the equations. Tokovyy and Ma [4] presented an analytical
solution to the axisymmetric thermoelasticity for an inhomogeneous layer.
They used direct integration and resolvent-kernel technique to obtain closed
form analytical solution. The problem is considered to be uncoupled and
steady state.

Shahani and Momeni [5] presented analytical solution for thermoelastic-
ity problem in a thick walled isotropic sphere. For solving the both quasi-
static and uncoupled dynamic problems a constant temperature is prescribed
on the inner boundary, and the inner and the outer surfaces of the sphere are
traction free. The boundary conditions are considered to be time-dependent
to obtain closed form relations for temperature filed and stress components.
They [6] also solved the coupled thermoelasticity problem in a thick walled
isotropic sphere. Likewise the previous work, analytical methods are used
to solve the problem and closed-form relations are extracted for temperature
distribution and the stress field components.

Mahmoudi and Atefi [7] obtained an analytical solution for thermal
stresses in a short hollow isotropic cylinder. The inner surface of the cylinder
is subjected to a time dependent thermal load, the heat flux is considered
to be zero on the outer surface and the both lateral surfaces have constant
temperature. They employed Fourier series to solve the problem.

Cho et al. [8] used Laplace transform and Hankel transform to obtain
dynamic thermal stresses in a thick orthotropic cylindrical shell. A constant
temperature distribution is considered to obtain stress components instead
of solving the heat conduction equation. Ding et al. [9]developed a solution
for dynamic plane strain thermoelasticity problem for an orthotropic cylinder
choosing the same method.

Yun et al. [10] obtained thermal stress distribution in a thick walled
cylinder subjected to thermal shock. They used Dirac function to model
boundary condition of thermal shock and Laplace transform to solve uncou-
pled heat conduction equation. The problem is considered to be quasi-static.
Dai et al. [11] used finite difference method and Newmark method to analyze
dynamic thermoelastic response of long hollow cylinder made of functionally
graded materials. The material of the hollow cylinder changes along the radial
direction to the power-law distribution.

Tokovyy et al. [12] constructed analytical solution for thermoelasticity
problem in a long solid cylinder with varying properties within radial direc-
tion. Both Dirichlet and Neumann boundary conditions are considered for
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the heat conduction equation. They considered the heat conduction equation
in the steady state form. Ying and Wang [13] obtained an exact solution for
elastodynamic response of short hollow cylinder subjected to thermal shock
based on the uncoupled theory of thermoelasticity. The inner and the outer
surfaces of the cylinder are considered to be traction free and the two ends
of cylinder are simply-supported. Expansion of trigonometric series method
and the separation of variables technique are used to solve the problem.

Nikkhah et al. [14] presented an elastodynamic solution for plane strain
response of functionally graded hollow cylinder. To solve the problem, the
equation of radial displacement is divided into two quasi-static and dynamic
parts and each part is solved analytically. Separation of variables method and
the orthogonal expansion technique are used to solve the problem.

Safari-Kahnaki et al. [15] studied thermoelastic stress wave propagation
in a functionally graded thick hollow cylinder subjected to thermomechanical
shock. The residual theorem and the fast Laplace inverse transform are used
to obtain the history of temperature and stress fields. The effects of cylinder
thickness and convection heat transfer coefficient on the dynamic behavior of
cylinder are discussed.

Vel [16] presented an exact solution for thermoelastic analysis of func-
tionally graded long hollow cylinder. The material is considered to be
cylindrical monoclinic and the properties vary as a function of radial coor-
dinate. In addition to the thermal and mechanical boundary conditions on
the inner and the outer surfaces, an axial force and torque are applied on the
cylinder.

Shahani and Sharifi [17] obtained analytical solution for uncoupled
dynamic thermoelasticity problem in an isotropic hollow cylinder. Time-
dependent thermal and mechanical boundary conditions are prescribed on
the inner and the outer surfaces to present closed form relations for stress
components. The finite Hankel transform and Laplace transform are used to
solve the problem. They also [18] studied thermal stress wave propagation
in an orthotropic hollow cylinder using classical uncoupled dynamic theory
of thermoelasticity. An exponentially decaying temperature is applied on the
inner surface, and then propagation and reflection of stress wave are studied
for two different types of mechanical boundary conditions.

Lata and Kaur [19] presented an investigation on thermomechanical
deformation of a homogeneous transversely isotropic thick circular plate. The
Laplace and Hankel transforms are used to solve the problem and the inver-
sion of transformations from the transformed domain is obtained numerically.
The effects of two temperature thermoelasticity on the deformation of the
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plate is also studied. Akbarov and Bagirov [20] investigated the propagation
and dispersion of longitudinal elastic waves in a bi-layered hollow cylinder
with initial inhomogeneous thermal stresses. The uncoupled classical theory
of thermoelasticity is used and the temperature source is heating or cooling
of the external free surfaces of the cylinder.

Selvamani et al. [21] used new modified couple stress theory to study
wave propagation in a composite hollow circular cylinder. To investigate the
effect of the wave number and the thickness, a different theory of thermoe-
lasticity is utilized and three partial differential equations are solved exactly.
Mirparizi et al. [22] studied thermal wave propagation and transient response
of functionally graded solid subjected to thermal shock using finite strain
theory. They employed the Newmark finite difference and FE methods to
investigate the effects of volume fraction.

Sharifi and Shahani [23] solved the classical coupled thermoelasticity
for an isotropic hollow cylinder. The problem is solved analytically and the
mechanical and the thermal boundary conditions are considered to be time
dependent. Combination of finite Hankel transform and Laplace transform is
used to solve the partial differential equations.

Jafarzadeh et al. [24] developed a new cylindrical shell super-element
with trigonometric shape functions to analyse the thermo-mechanical behav-
ior of thin composite vessels. The problem is formulated based on the
classical theory of shells and the efficiency and accuracy of the proposed
method are investigated.

Sharifi [25] studied the problem of thermal shock in an orthotropic
rotating disk using the Lord-Shulman coupled theory of thermoelasticity.
The inner boundary of the disk is constrained and subjected to a heat flux and
the outer boundary is traction-free and subjected to a constant temperature.
The problem is solved analytically using finite Hankel transform and the
effects of the angular velocity and the relaxation time are presented in figures.

To the best knowledge of the author the equations of classical coupled
thermoelasticity in orthotropic cylinder have not been extracted and solved
yet unlike the physical significance. In this paper coupled thermoelasticity
problem in an orthotropic hollow cylinder is solved analytically. For thermal
boundary conditions, the inner and the outer surfaces of the cylinder are
subjected to temperature which is known as the Dirichlet boundary condition
as well as the traction for mechanical boundary conditions which is known
as Cauchy boundary condition. The problem is solved using an innovative
method combined with the finite Hankel transform. Closed-form relations are
extracted for the distribution of temperature and stress fields. Two numerical
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examples are studied; pure mechanical load and pure thermal load. Distri-
butions of the temperature field and the stress components are presented as
figures for these two numerical examples. Propagation of thermal stress wave
was observed after plotting stress components which is a result of considering
inertia term in the thermoelasticity equations. To verify the results of this
solution, the specific case of a hollow orthotropic cylinder subjected to the
uniform constant temperature distribution is considered and the stress com-
ponents histories are compared with those obtained by Ding et al. [9] which
shows full compliance. The main difference between this work and previous
papers such as [18] is considering coupling term in the energy equation.
Existence of this term in the energy equation makes the problem complicated,
but the effect of coupling term can be seen in the pure mechanical load case
where a temperature gradient is induced without applying any thermal load.

2 Formulation

A long hollow orthotropic cylinder with inner radius of a and outer radius of
b is presumed. The length of the cylinder in the axial direction is sufficient
to satisfy the plane strain condition. As well as this, symmetric mechanical
and thermal boundary conditions are applied to the cylinder. Due to the
symmetry in boundary condition and geometry, stress and strain components
become independent of the circumferential coordinate and there is only radial
dependence of the temperature and displacement distributions. Hence, the
stress-strain components relations are [26]:

σrr
σϕϕ
σzz
τϕz
τrz
τrϕ

 =


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66




εrr − αr∆T
εϕϕ − αϕ∆T
εzz − αz∆T

γϕz
γrz
γrϕ

 (1)

where αr, αϕ and αz are thermal expansion coefficients in three different
directions and cij are the elastic constants. cij and elastic moduli have
following relations:

c11 =
(1− ν23ν32)

1− νt
E1; c12 =

(ν21 + ν31ν23)

1− νt
E1;
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c22 =
(1− ν13ν31)

1− νt
E2; c13 =

(ν31 + ν21ν32)

1− νt
E1;

c33 =
(1− ν12ν21)

1− νt
E3; c23 =

(ν32 + ν12ν31)

1− νt
E2;

c44 = G23; c55 = G13; c66 = G12; (2)

where νij are the Poisson’s ratios and νt is:

νt = ν12ν21 + ν23ν32 + ν13ν31 + ν12ν23ν31 + ν21ν32ν13 (3)

where 1, 2 and 3 portray r, ϕ and z directions, respectively. Due to sym-
metry in geometry and boundary conditions, it can be concluded that τrϕ =
τrz=τzϕ= 0, and so, the equations of motion reduce to:

∂σrr
∂r

+
1

r
(σrr − σϕϕ) = ρü (4)

where ρ is the density. The strain components can be expressed as a function
of the radial displacement u in the following form:

εrr =
∂u

∂r
; εϕϕ =

u

r
; εϕz = εzr = εrϕ = 0 (5)

The equation of motion can be extracted in terms of radial displace-
ment by using Equation (5) and Equation (1) and substituting them into
Equation (4):

∂2u

∂r2
+

1

r

∂u

∂r
− c22
c11

u

r2
− β11
c11

∂θ

∂r
+

1

r
θ

(
β22 − β11

c11

)
=

ρ

c11
ü (6)

where:

β11 = c11αr + c12αϕ + c13αz (7)

β22 = c12αr + c22αϕ + c23αz (8)

and
θ = T (r, t)− T0 (9)

in T0 the cylinder is stress free. The energy equation in the indicial form is:

kijT,ij − ρcṪ − T0βij ε̇ij = −W (10)
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where W is the internal heat generation. Due to considering boundary
conditions to be axisymmetric, expanding Equation (10) leads to:

k∇2T − ρcṪ − T0β11ε̇11 − T0β22ε̇22 = −W (11)

Neglecting internal heat generation, using Laplace operator in the cylin-
drical coordinate and Equations (5) and (8), the energy equation reduces to:

k

(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
− ρc∂θ

∂t
− T0β11

(
∂u̇

∂r

)
− T0β22

(
u̇

r

)
= 0 (12)

in which k is the thermal conduction coefficient in radial direction and c is
the specific heat. Thus, the equations of the coupled thermoelasticity in an
orthotropic hollow cylinder are:

∂2θ

∂r2
+

1

r

∂θ

∂r
− 1

α∗
∂θ

∂t
− T0

β11
k

(
∂u̇

dr

)
− T0

β22
k

(
u̇

r

)
= 0 (13)

∂2u

∂r2
+

1

r

∂u

∂r
− ν2

r2
u− β11

c11

∂θ

∂r
+

1

r
θ(
β22 − β11

c11
) = γ2ü (14)

where:

α∗ =
k

ρc
(15)

ν2 =
c22
c11

(16)

γ2 =
ρ

c11
(17)

The last two terms of Equation (13) which include the strain rates, are the
thermo-mechanical coupling terms. These terms and the last two terms of the
left hand side of Equation (14) are the reason of interaction between thermal
and mechanical fields. The radial and hoop stress components, σrr and σθθ
are related to the radial displacement and the temperature field as follows:

σrr = c11
∂u

∂r
+ c12

u

r
− β11θ (18)

σθθ = c12
∂u

∂r
+ c22

u

r
− β22θ (19)
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The thermal boundary conditions which are prescribed on the inner and
the outer surfaces of the cylinder are:

θ(a, t) = f(t) (20)

θ(b, t) = g(t) (21)

where f(t) and g(t) are known time-dependent functions. The thermal initial
condition of the cylinder is:

θ(r, 0) = F1(r) (22)

As the mechanical boundary conditions, tractions are applied on both the
inner and the outer surfaces of the cylinder:

σrr(a, t) = P1(t) (23)

σrr(b, t) = P2(t) (24)

By substituting (23) and (24) in (18), we have:

∂u

∂r

∣∣∣∣
r=a

+ h1u(a, t) = B1(t) (25)

∂u

∂r

∣∣∣∣
r=b

+ h2u(b, t) = B2(t) (26)

where:

h1 =
c12
c11a

(27)

h2 =
c12
c11b

(28)

B1(t) =
1

c11
P1(t) +

β11
c11

f(t) (29)

B2(t) =
1

c11
P2(t) +

β11
c11

g(t) (30)

For the radial displacement field, initial conditions are considered in the
form of general functions of the radial position as follows:

u(r, 0) = F2(r) (31)

u̇(r, 0) = F3(r) (32)

and a dot over the quantity is the partial derivative of it with respect to time.
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3 The Method of Solution

To solve the coupled thermoelasticity equations, θ(r, t) and u(r, t) are
resolved into two components:

u(r, t) = u1(r, t) + u2(r, t) (33)

θ(r, t) = θ1(r, t) + θ2(r, t) (34)

Applying Equation (34), the boundary value problem related to Equa-
tions (13), (20) to (22) are resolved into the following two separate boundary
value problems:

∂2θ1
∂r2

+
1

r

∂θ1
∂r
− 1

α∗
∂θ1
∂t

= 0 (35)

θ1(a, t) = f(t) (36)

θ1(b, t) = g(t) (37)

θ1(r, 0) = 0 (38)

and

∂2θ2
∂r2

+
1

r

∂θ2
∂r
− 1

α∗
∂θ2
∂t
− T0

β11
k

(
du̇

dr

)
− T0

β22
k

(
u̇

r

)
= 0 (39)

θ2(a, t) = 0 (40)

θ2(b, t) = 0 (41)

θ2(r, 0) = F1(r) (42)

In the same way, Equations (14), (25) and (26) can be resolved into the
following boundary value problems by applying the Equation (33):

∂2u1

∂r2
+

1

r

∂u1
∂r
− ν2

r2
u1 − γ2ü1 = 0 (43)

∂u1
∂r
|r=a + h1u1(a, t) = B1(t) (44)

∂u1
∂r
|r=b + h2u1(b, t) = B2(t) (45)

u1(r, 0) = 0 (46)

u̇1(r, 0) = 0 (47)
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and

∂2u2

∂r2
+

1

r

∂u2
∂r
− ν2

r2
u2 − γ2ü2 =

β11
c11

∂θ

∂r
− 1

r
θ

(
β22 − β11

c11

)
(48)

∂u2
∂r

∣∣∣∣
r=a

+ h1u2(a, t) = 0 (49)

∂u2
∂r

∣∣∣∣
r=b

+ h2u2(b, t) = 0 (50)

u2(r, 0) = F2(r) (51)

u̇2(r, 0) = F3(r) (52)

The Equations (35) to (38) and (43) to (47) can be solved using the finite
Hankel transform [27]:

H[θ1(r, t); ζn] = θ1(ζn, t) =

∫ b

a
rθ1(r, t)K1(ζn, r)dr (53)

H[u1(r, t); ξm] = u1(ξm, t) =

∫ b

a
ru1(r, t)K2(ξm, r)dr (54)

where K1(ζn, r) and K2(ξm, r) are the kernels of the transformation. The
proper kernel of transformation depends on the general form of the equa-
tions and the boundary conditions. For the present problem the kernels of
transformations are as follows [28]:

K1(r, ζn) = J0(ζnr)Y0(ζnRi)− J0(ζnRi)Y0(ζnr) (55)

K2(r, ξm) = {Jν(ξmr)[ξmY′ν(ξma) + h1Yν(ξma)]

−Yν(ξmr)[ξm J′ν(ξma) + h1Jν(ξma)]} (56)

where ζn and ξm are the positive roots of the following characteristics
equations:

J0(ζnb)Y0(ζna)− J0(ζna)Y0(ζnb) = 0 (57)

[ξmY′ν(ξma) + h1Yν(ξma)][ξmJ′ν(ξmb) + h2Jν(ξmb)]

− [ξmY′ν(ξmb) + h2Yν(ξmb)]

× [ξm J′ν(ξma) + h1Jν(ξma)] = 0 (58)

The inverse transforms are defined as [28]:

H−1[θ1(ζn, t); r] = θ1(r, t) =

∞∑
n=1

anθ1(ζn, t)K1(r, ζn) (59)
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H−1[u1(ξm, t); r] = u1(r, t) =

∞∑
m=1

bmu1(ξm, t)K2(r, ξm) (60)

where:

an =
1∫ b

a rK
2
1 (r, ζn)dr

=
π2

2

ζ2n{J0(ζnb)}
2

{J0(ζna)}2 − {J0(ζnb)}2
(61)

bm =
1∫ b

a rK
2
2 (r, ξm)dr

=
π2ξ2me

2
2

2{(h22 + ξ2m[1− ( ν
ξmb

)2])e21 − (h21 + ξ2m[1− ( ν
ξma

)2])e22}
(62)

in which

e1 = ξmJ′ν(ξma) + h1Jν(ξma) (63)

e2 = ξmJ′ν(ξmb) + h2Jν(ξmb) (64)

Applying the finite Hankel transform to the Equations (35) and (43),
yields:

∂θ1(ζn, t)

∂t
+ α∗ζ2nθ1(ζn, t) = α∗

[
2J0(ζna)

πJ0(ζnb)
g(t)− 2

π
f(t)

]
= A1(t)

(65)

∂2u1(ξm, t)

∂t2
+

(
ξm
γ

)2

u1(ξm, t) =
1

γ2

[
2e1
πe2

B2(t)−
2

π
B1(t)

]
= A2(t)

(66)

Equations (65) and (66) are non-homogeneous ordinary differential equa-
tions. The solutions of these kinds of equations can be easily obtained as
follows:

θ1(ζn, t) =

∫ t

0
A1(τ)e−α

∗ζ2n(t−τ)dτ (67)

u1(ξm, t) =
γ

ξm

∫ t

0
A2(τ)sin

(
ξm
γ

(t− τ)

)
dτ (68)
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Using the inversion relations, Equations (59) and (60) we have:

θ1(r, t) =
∞∑
n=1

anK1(r, ζn)

∫ t

0
A1(τ)e−α

∗ζ2n(t−τ)dτ (69)

u1(r, t) =
∞∑
m=1

γ

ξm
bmK2(r, ξm)

∫ t

0
A2(τ)sin

(
ξm
γ

(t− τ)

)
dτ (70)

As is seen, the first set of the equations have been solved. The following
forms are considered for θ2(r, t) and u2(r, t) to solve the second set of the
equations [6]:

θ2(r, t) =

∞∑
n=1

Q(t)K1(r, ζn) (71)

u2(r, t) =
∞∑
m=1

S(t)K2(r, ξm) (72)

whereQ(t) and S(t) are unknown functions of time. It should be emphasized
that, the above forms for θ2(r, t) and u2(r, t) satisfy the related boundary
conditions hence (49) and (50). Substituting Equations (59), (70), (71) and
(72) into (39) and (48) yields:

(Q̇+ α∗ζn
2Q)K1(r, ζn)

= −α
∗T0
k

(bmu̇1 + Ṡ)

×
[
β11

(
∂K2 (r, ξm)

∂r

)
+ β22

(
K2(r, ξm)

r

)]
(73)(

S̈ +

(
ξm
γ

)2

S

)
K2(r, ξm)

= − 1

γ2

[
β11
c11

∂K1 (r, ζn)

∂r
− 1

r

(
β22 − β11

c11

)
K1(r, ζn)

]
× (anθ1 +Q) (74)
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The orthogonality of the Bessel functions are obtained as follows [27]:∫ b

a
rK1(r, ζn)K1(r, ζp)dr = Nnδnp (75)∫ b

a
rK2(r, ξm)K2(r, ξp)dr = Mmδmp (76)

where δ is the Kronecker delta and:

Nn =
π2

2

ζn
2{J0(ζnb)}2

{J0(ζna)}2 − {J0(ζnb)}2
(77)

Mm =
1

ξ2m

{
b2
dk2
dr

∣∣∣∣2
r=b

− a2dk2
dr

∣∣∣∣2
r=a

+ (ξ2m − 1)
[
b2k22(b)− a2k22(a)

]}
(78)

Multiplying Equation (36a) by rK1(r, ζn) and Equation (36b) by
rK2(r, ξm), integrating between a and b, and then using the orthogonality
relations, result in:

Q̇+ α∗ζn
2Q

=


−

α∗T0
∫ b
a rK1(r, ζn)[
β11

(
∂K2(r,ξm)

∂r

)
+ β22

(
K2(r,ξm)

r

)]
dr

kNn


× (bmu̇1 + Ṡ) (79)

S̈ +

(
ξm
γ

)2

S

=


−

∫ b
a rK2(r, ξm)[

β11
c11

∂K1(r,ζn)
∂r − 1

r

(
β22−β11
c11

)
K1(r, ζn)

]
dr

γ2Mm


× (anθ1 +Q) (80)
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The following parameters are defined to simplify above equations:

U1 =


−

α∗T0
∫ b
a rK1(r, ζn)[
β11

(
∂K2(r,ξm)

∂r

)
+ β22

(
K2(r,ξm)

r

)]
dr

kNn


(81)

U2 =


−

∫ b
a rK2(r, ξm)[

β11
c11

∂K1(r,ζn)
∂r − 1

r

(
β22−β11
c11

)
K1(r, ζn)

]
dr

γ2Mm


(82)

Now, Equations (79) and (80) can be written in the simplified form:

Q̇+ α∗ζn
2Q = U1(bmu̇1 + Ṡ) (83)

S̈ +

(
ξm
γ

)2

S = U2(anθ1 +Q) (84)

By substituting Equation (42) into (71) the proper form of initial condi-
tions can be obtained:

Q(0)K1(r, ζn) = F1(r) (85)

Using the orthogonality relation (66) leads to:

Q(0) =

∫ b
a rK1(r, ζn)F1(r)dr

Nn
(86)

The initial conditions for S(t) can be obtained in a similar way:

S(0) =

∫ b
a rK2(r, ξm)F2(r)dr

Mm
(87)

Ṡ(0) =

∫ b
a rK2(r, ξm)F3(r)dr

Mm
(88)
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It is seen that Equations (83) and (84) are coupled. These coupled equa-
tions can be uncoupled by some mathematical operations. Differentiating
Equations (83) and (84) with respect to time results in:

...
Q + α∗ζn

2Q̈ = U1(bm
...
u 1 +

...
S ) (89)

...
S +

(
ξm
γ

)2

Ṡ = U2(anθ̇1 + Q̇) (90)

Substituting Q̇ from Equation (83) in the Equation (90) leads to:

...
S +

(
ξm
γ

)2

Ṡ = U2[anθ̇1 + U1(bmu̇1 + Ṡ)− α∗ζn2Q] (91)

Now by substituting Q from Equation (84) into Equation (91) we have:

...
S +

(
ξm
γ

)2

Ṡ = U2

[
anθ̇1 + U1

(
bmu̇1 + Ṡ

)

− α∗ζn2
(

1

U2
(S̈ +

(
ξm
γ

)2

S)− anθ1

)]
(92)

As is seen Equation (92) is independent of Q. Substituting
...
S from

Equation (89) into Equation (90)leads to:

...
Q + α∗ζn

2Q̈ = U1

[
bm

...
u 1 + U2(anθ̇1 + Q̇)−

(
ξm
γ

)2

Ṡ

]
(93)

Now by substituting Ṡ from Equation (83) into Equation (93) we have:

...
Q + α∗ζn

2Q̈ = U1

[
bm

...
u 1 + U2(anθ̇1 + Q̇)

−
(
ξm
γ

)2( 1

U1

(
Q̇+ α∗ζn

2Q
)
− bmu̇1

)]
(94)

Rewriting Equations (92) and (94), leads to:

d3S

dt3
+ α∗ζ2n

d2S

dt2
+

((
ξm
γ

)2

− U1U2

)
dS

dt
+ α∗ζ2n

(
ξm
γ

)2

S
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= bmU1U2u̇1 + anU2(θ̇1 + α∗ζ2nθ1) (95)

d3Q

dt3
+ α∗ζ2n

d2Q

dt2
+

((
ξm
γ

)2

− U1U2

)
dQ

dt
+ α∗ζ2n

(
ξm
γ

)2

Q

= bmU1
d

dt

(
ü1 +

(
ξm
γ

)2

u1

)
+ anU1U2θ̇1 (96)

Equations (95) and (96) are ordinary differential equations. Substituting
Equations (65) and (66) into Equations (95) and (96) results in:

d3S

dt3
+ α∗ζ2n

d2S

dt2
+

((
ξm
γ

)2

− U1U2

)
dS

dt
+ α∗ζ2n

(
ξm
γ

)2

S

= U2(bmU1u̇1 + anA1(t)) (97)

d3Q

dt3
+ α∗ζ2n

d2Q

dt2
+

((
ξm
γ

)2

− U1U2

)
dQ

dt
+ α∗ζ2n

(
ξm
γ

)2

Q

= U1

(
bmȦ2(t) + anU2θ̇1

)
(98)

Q(t, ξm) and S(t, ζn) can be obtained by solving Equations (97) and (98).
The solutions of the Equations (97) and (98), depend on the mechanical and
the thermal boundary conditions, thus Q(t, ξm) and S(t, ζn) are presented in
the numerical examples section. Now, the solutions for both parts of θ(r, t)
and u(r, t) are obtained and the closed form relations for temperature and
displacement are:

θ(r, t) =

∞∑
n=1

anθ1(t)K1(r, ζn) +

∞∑
m=1

∞∑
n=1

Q(t, ξm)K1(r, ζn) (99)

u(r, t) =

∞∑
m=1

bmu1(t)K2(r, ξm) +

∞∑
m=1

∞∑
n=1

S(t, ζn)K2(r, ξm) (100)

4 Numerical Examples

In this section two numerical examples are considered in order to study
the response of the orthotropic cylinder under external loads. The following
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material properties are employed in the calculations:

a = 1 m; b = 2 m; P = 100 MPa; θ0 = 100, α∗ = .112E − 6W/m2K

E11 = 19.8 GPa; E22 = 48.3 GPa; E33 = 19.8 GPa; G12 = 8.9 GPa;

G23 = 8.9 GPa; G31 = 6.19 GPa; ν12 = .27; ν23 = .27; ν31 = .3

α11 = 15E − 6 1/K; α22 = 23E − 6 1/K; α33 = 15E − 6 1/K;

4.1 Pure Mechanical Load

In the case when only mechanical load is applied on the inner surface of the
cylinder, thermal and mechanical boundary conditions are:

θ(a, t) = 0 (101)

θ(b, t) = 0 (102)

σrr(a, t) = −P (103)

σrr(b, t) = 0 (104)

Thermal and mechanical initial conditions are:

θ(r, 0) = 0 (105)

u(r, 0) = 0 (106)

u̇(r, 0) = 0 (107)

Thus we have:

Q(0) = 0 (108)

S(0) = 0 (109)

Ṡ(0) = 0 (110)

Using thermal boundary conditions and Equation (65) we have:

A1(t) = 0 (111)

θ1(ζn, t) = 0 (112)
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Using mechanical boundary conditions and Equations (29) and (30) we
have:

B1 = − 1

c11
P (113)

B2 = 0 (114)

A2(t) =
2P

πγ2c11
(115)

Substituting Equation (113) into Equation (68) gives:

u1(ξm, t) =
2P

πξ2mc11

(
1− cos

(
ξm
γ
t

))
(116)

Substituting Equations (112) and (116) into Equations (69) and (70)
gives:

θ1(r, t) = 0 (117)

u1(r, t) =
2P

πc11

∞∑
m=1

bm
ξ2m

(
1− cos

(
ξm
γ
t

))
K2(r, ξm) (118)

This way Equations (88) and (98) yield:

d3S

dt3
+ α∗ζ2n

d2S

dt2
+

((
ξm
γ

)2

− U1U2

)
dS

dt
+ α∗ζ2n

(
ξm
γ

)2

S

= Rsin

(
ξm
γ
t

)
(119)

d3Q

dt3
+ α∗ζ2n

d2Q

dt2
+

((
ξm
γ

)2

− U1U2

)
dQ

dt
+ α∗ζ2n

(
ξm
γ

)2

Q = 0

(120)

where:

R =
2bmU1U2P

πξmγc11
(121)
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Solving Equations (119) and (120) results in:

S(t) =
Rγ

ξmU1U2
cos

(
ξm
γ
t

)
+

3∑
i=1

cie
αit (122)

Q(t) =
1

U2

3∑
i=1

(
α2
i +

(
ξm
γ

)2
)
cie

αit (123)

where αi’s are the roots of following equation:

x3 + α∗ζn
2x2 +

((
ξm
γ

)2

− U1U2

)
x+ α∗ζn

2

(
ξm
γ

)2

= 0 (124)

It should be mentioned that Q(t) is obtained by using Equation (84). The
constants ci’s can be obtained using Equations (108) to (110).

c1c2
c3

 =


1 1 1

α1 α2 α3

α2
1 +

(
ξm
γ

)2

α2
2 +

(
ξm
γ

)2

α2
3 +

(
ξm
γ

)2


−1

×

−
Rγ

ξmU1U2
0
0

 (125)

Equation (124) is a cubic equation and has three roots, one of which
is a negative real number and the two others are complex conjugate with
negative real parts. Because of the negative power of the exponential terms in
Equations (122) and (123), they vanish over time passing. In the following
figures, history of the stress components and the temperature are shown.
Figures 1 and 2 present the history of dynamic radial and hoop stresses.

As it is seen in Figure 1, dilatation wave which initiated at the inner
surface of the cylinder, moves forward from the inner surface and after
colliding outer surface reflects into the medium in the opposite direction. Due
to the traction free boundary condition of the outer surface, the propagated
wave becomes reversed after collision by outer surface.

As a matter of fact, compressive radial stress wave produces tensile hoop
stress. But as is seen from Figure 2, at the initial moments as the compressive



Analytical Solution for Thermoelastic Stress Wave Propagation 259

Figure 1 History of dynamic radial stress for different radial positions (case i).

 
Figure 2 History of dynamic hoop stress for different radial positions (case i).

stress wave reaches any radial position, tangential stress component becomes
compressive and then increases gradually with time. The reason of this
phenomenon is the resistance of the nearby points in the medium which exerts
to any point.

Due to existence of strain rate terms in the energy equation, a change in
the amount of strain can produce a temperature change. In this example, there
is not any thermal load applied to the cylinder, but because of the coupling
term a change in temperature is observed. Figure 3 shows this temperature
difference with respect to the reference temperature.

Figures 4 and 5 show through-thickness variation of hoop and radial
stresses. Velocity of the propagated wave is the reverse square root of the
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Figure 3 History of temperature for different radial positions (case i).

 
Figure 4 Through-thickness variation of dynamic radial stress (case i).

 
Figure 5 Through-thickness variation of dynamic hoop stress (case i).
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factor of the second derivative of displacement respect to the time, in the
motion equation and can be obtained using the following equation:

Ve =
1

γ
= 4.0493× 103(m/s) (126)

The first time dilatation wave reaches to different radial positions can be
computed using the velocity of wave. For example:

t∗ =
r − a
Ve

=
1.2− 1

4049
= 4.94× 10−5(sec) (127)

It is seen from the Figures 4 and 5 that at the same time as computed in
Equation (127), the stress wave has been reached the radial position r = 1.2.

As is mentioned due to resistance which exerted to any point by medium,
tangential component becomes compressive at the initial moments and then
proceeds from negative to positive. This reality is obviously shown in the
Figure 5.

4.2 Pure Thermal Load

In this case, it is considered that the inner surface of the cylinder is sub-
jected to a constant temperature. So, thermal and mechanical boundary
conditions are:

θ(a, t) = θ0 (128)

θ(b, t) = 0 (129)

σrr(a, t) = 0 (130)

σrr(b, t) = 0 (131)

Thermal and mechanical initial conditions are:

θ(r, 0) = 0 (132)

u(r, 0) = 0 (133)

u̇(r, 0) = 0 (134)

Thus we have:

Q(0) = 0 (135)

S(0) = 0 (136)

Ṡ(0) = 0 (137)
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Using the thermal boundary conditions and Equations (65) and (66)
together with Equations (29) and (30), yield:

A1(t) = −2α∗θ0
π

(138)

A2(t) = −2θ0β11
πγ2c11

(139)

Using Equations (33a) and (33b), leads to:

θ1(ζn, t) = − 2θ0
πζ2n

(1− e−α∗ζ2nt) (140)

u1(ξm, t) = − 2θ0β11
πξ2mc11

(
1− cos

(
ξm
γ
t

))
(141)

Substituting Equations (138) and (139) into Equations (69) and (70),
results in:

θ1(r, t) = −2θ0
π

∞∑
n=1

an
ζ2n

(1− e−α∗ζ2nt)K1(r, ζn) (142)

u1(r, t) = −2θ0β11
πc11

∞∑
m=1

bm
ξ2m

(
1− cos

(
ξm
γ
t

) )
K2 (r, ξm) (143)

Equations (97) and (98) then can be written as:

d3S

dt3
+ α∗ζ2n

d2S

dt2
+

((
ξm
γ

)2

− U1U2

)
dS

dt
+ α∗ζ2n

(
ξm
γ

)2

S

= −U2

(
bmU1

2θ0β11
πξmγc11

sin

(
ξm
γ
t

)
+ an

2α∗θ0
π

)
(144)

d3Q

dt3
+ α∗ζ2n

d2Q

dt2
+

((
ξm
γ

)2

− U1U2

)
dQ

dt
+ α∗ζ2n

(
ξm
γ

)2

Q

= −U1

(
anU2

2θ0α
∗

π
e−α

∗ζ2nt

)
(145)
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Solving the above equations, we arrive at:

S(t) = − 2anθ0U2

πζ2n( ξmγ )2
− 2bmθ0β11

πξ2mc11
cos

(
ξm
γ
t

)
+

3∑
i=1

cie
αit (146)

Q(t) = −2anθ0
πζ2n

e−α
∗ζ2nt +

1

U2

3∑
i=1

(
α2
i +

(
ξm
γ

)2
)
cie

αit (147)

where αi’s are the roots of Equation (124) and the constants ci can be
obtained using Equations (66) to (68):

c1c2
c3

 =
2θ0
π


1 1 1

α1 α2 α3

α2
1 +

(
ξm
γ

)2

α2
2 +

(
ξm
γ

)2

α2
3 +

(
ξm
γ

)2


−1

×



anU2

ζ2n

(
ξm
γ

)2 +
bmβ11
ξ2mc11

0

anU2

ζ2n

 (148)

The stress components are shown in Figures 6 and 7. Applying thermal
load on the inner surface at the earlier moments causes a thermal shock which
is observed in figures. Similar to the mechanical load, dilatation wave which
is produced at the inner surface moves forward from the inner surface and
after colliding outer surface reflects into the medium in the opposite direction.

The temperature field has the exponential distribution with time, and it
takes time the thermal load effect reaches any radial position and makes a
change in stress components. Contrary to the pure mechanical load case, in
the pure thermal load, radial stress wave is tensile and produces compres-
sive hoop stress. When the tensile wave reaches a specific radial position,
the tangential stress component also becomes suddenly tensile due to the
resistance of the nearby points in the medium and decays gradually with
time.
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Figure 6 History of dynamic radial stress for different radial positions (case ii).

 
Figure 7 History of dynamic hoop stress for different radial positions (case ii).

 
Figure 8 History of temperature for different radial positions (case ii).
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Figure 9 Through-thickness variation of dynamic radial stress (case ii).

 
Figure 10 Through-thickness variation of dynamic hoop stress (case ii).

Figure 8 shows the temperature difference with respect to the reference
temperature. Due to plotting the figure in short period of time, the coupling
effect is the main part of the temperature history. Indeed the figure shows
the effect of the coupling terms and there is no trace of the heat conduction
mechanism but over time passing the heat conduction becomes the dominant
part of the temperature difference distribution and the effect of the coupling
terms becomes negligible.

Figures 9 and 10 shows the through-thickness variation of radial and hoop
stress components.

As is mentioned, due to resistance of nearby points, tangential component
becomes tensile at the initial moments and then proceeds from positive to
negative. This reality is obviously shown in the Figure 10.
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5 Validation

5.1 Uniformly Heated Orthotropic Cylinder

To validate current work, the special case of dynamic thermal stresses in a
hollow orthotropic cylinder subjected to constant temperature distribution is
considered. In these kinds of problems, to simplify the solution, a uniform
constant temperature is considered for all radial positions instead of solving
the heat conduction equation. The history of non-dimensional radial and hoop
stresses are plotted in Figures 11 and 12. Due to acting thermo-mechanical
loadings on both the inner and the outer surfaces of the cylinder, there are
two thermo-elastic waves. The first one propagates from inner surface and the
second one initiates from outer surface. The corresponding obtained results
by Ding et al. [9] are shown on the same figures. It can be seen that the
results of this work are in good agreement with the results of Ding et al. [9].
To calculate the stresses following material properties are employed:

a = 50 mm; b = 100 mm; θ0 = 200, c11 = 17.075 GPa

c12 = 6.757 GPa; c13 = 7.289 GPa; c22 = 59.645 GPa;

c23 = 6.752 GPa; c33 = 17.074 GPa; ρ = 1700 kg/m3

α11 = 4E − 5 1/K; α22 = 1E − 5 1/K; α33 = 4E − 5 1/K;

The following relation is used to make the time dimensionless.

t =
Vet

a
(149)

Figure 11 Variation of radial stress for r = (a+b)/2.
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Figure 12 Variation of hoop stress for r = (a+b)/2.

5.2 Coupled Thermoelasticity Problem in Isotropic Cylinder

As is mentioned, isotropic cylinders are special case of orthotropic ones in
which there are different material properties in three reference directions. An
orthotropic cylinder reduces to isotropic one by selecting same amount for
material properties in different directions.

The analytical solution of the fully coupled thermoelasticity problem
in isotropic cylinder is recently solved by Sharifi and Shahani [23]. The
following properties are employed for comparing the result of the current
work with those which obtained for isotropic cylinder.

a = 1 m; b = 2 m; ν = .3; θ0 = 100◦C

E = 70 GPa; ρ = 2707 kg/m3; k = 204 w/mk

α = 23E − 6 1/K; c = 903 J/kgK; T0 = 293 K

The inner surface of the cylinder is subjected to a constant temperature
and the outer surface is traction free. Figures 13 and 14 show the history of
dynamic radial and hoop stress in cylinder.

Figure 15 shows the temperature difference with respect to the reference
temperature. As it can be seen in the figures, selecting the same material
properties in different directions for the orthotropic cylinder leads to the same
results as in isotropic one.

Comparing the results of the orthotropic cylinder with those plotted
for isotropic cylinder, shows significant differences in the amplitude of the
figures and the velocity of wave propagation. Considering Figures 6 and 13
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Figure 13 History of dynamic radial stress in isotropic cylinder.

 
Figure 14 History of dynamic hoop stress in isotropic cylinder.

 
Figure 15 History of temperature in isotropic cylinder.
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shows that the maximum radial stress is reduced for the orthotropic case
by seven times approximately as well as hoop stresses which are plotted in
Figures 7 and 14. In addition the temperature difference which is created due
to existence of the coupling term is reduced by half in the orthotropic cylinder.

Velocity of wave propagation in the orthotropic cylinder is less than what
it is in the isotropic cylinder. According to this fact it takes more time for the
stress wave to reach any radial position in the orthotropic cylinder.

5.3 Orthotropic Cylinder Subjected to a Constant Displacement

As the third verification and to show the power of the presented method,
the hypothetical problem of an orthotropic cylinder subjected to a constant
displacement is presented. Finite difference method is one of the most
common numerical techniques to solve the engineering problems, however,
there are lots of complexities in applying the boundary conditions especially
the Cauchy (traction) boundary conditions in cylindrical coordinates. For
simplicity, a constant displacement of 5 mm is applied on the inner surface of
the cylinder, and the outer surface displacement is considered to be zero. The
discretization rules for the finite difference method are [29]:

∂2u

∂t2
=

1

(∆t)2
(un+1
k − 2unk + un−1k ) (150)

∂2u

∂r2
=

1

(∆r)2
(unk+1 − 2unk + unk−1) (151)

∂u

∂r
=

1

2∆r
(unk+1 − unk−1) (152)

And to calculate the displacement at the next time step we have:

un+1
k = 2unk − un−1k + d1 ∗ (unk+1 − 2unk + un−1k ) +

d2
rk
∗ (unk+1 − unk−1)

− d3
r2k
∗ (unk) (153)

Where:

d1 =
∆t2

γ2∆r2
(154)
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Figure 16 History of displacement in orthotropic cylinder.

d2 =
∆t2

2γ2∆r
(155)

d3 =
ν2∆t2

γ2
(156)

Figure 16 shows the comparison between the results of the finite dif-
ference method and the finite Hankel transform for the history of displace-
ment in the hypothetical case of orthotropic cylinder subjected to constant
displacement.

It can be seen that the results of the analytical solution are in good
agreement with the result of finite difference method.

References

[1] El-Naggar, A.M., et al., Thermal stresses in a rotating non-homogeneous
orthotropic hollow cylinder. Heat and Mass Transfer. 39(1) (2002). 41–
46.

[2] Shahani, A.R. and S.M. Nabavi, Analytical solution of the quasi-static
thermoelasticity problem in a pressurized thick walled cylinder sub-
jected to transient thermal loading. Applied Mathematical Modeling.
31(9) (2007). 1807–1818.

[3] Jabbari, M., H. Dehbani, and M.R. Eslami, An Exact Solution for
Classic Coupled Thermoelasticity in Cylindrical Coordinates. Journal
of Pressure Vessel Technology. 133(1) (2011). 1–10.



Analytical Solution for Thermoelastic Stress Wave Propagation 271

[4] Tokovyy, Y. and C.-C. Ma, Analytical solutions to the axisymmetric
elasticity and thermoelasticity problems for an arbitrarily inhomoge-
neous layer. International Journal of Engineering Science. 92 (2015).
1–17.

[5] Shahani, A.R. and S. Momeni Bashusqeh, Analytical solution of the
thermoelasticity problem in a pressurized thick-walled sphere subjected
to transient thermal loading. Mathematics and Mechanics of Solids.
19(2) (2014). 135–151.

[6] Shahani, A.R. and S. Momeni Bashusqeh, Analytical Solution of the
Coupled Thermo-Elasticity Problem in a Pressurized Sphere. Journal of
Thermal Stresses. 36(12) (2013). 1283–1307.

[7] Mahmoudi, H. and G. Atefi, Analytical solution for thermal stresses in
a hollow cylinder under periodic thermal loading. Engineering science
engineers, part C: Journal of mechanical proceedings of the institution
of mechanical. 226(7) (2012). 1705–1724.

[8] Cho, H., G.A. Kardomateas, and C.S. Valle, Elastodynamic Solution for
the Thermal Shock Stresses in an Orthotropic Thick Cylindrical Shell
Journal of Applied Mechanics. 65(1) (1998). 184–193.

[9] Ding, H.J., H.M. Wang, and W.Q. Chen, A solution of a non-
homogeneous orthotropic cylindrical shell for axisymmetric plane strain
dynamic thermoelastic problems. Journal of Sound and Vibration.
263(4) (2003). 815–829.

[10] Yun, Y., I.-Y. Jang, and L. Tang, Thermal stress distribution in thick wall
cylinder under thermal shock. Journal of Pressure Vessel Technology.
131(2) (2009). 1–6.

[11] Dai, H.-L., Y.-N. Rao, and H.-J. Jiang, Thermoelastic dynamic response
for a long functionally graded hollow cylinder. Journal of Composite
Materials. 47(3) (2012). 315–325.

[12] Tokovyy, Y., A. Chyzh, and C.-C. Ma, An analytical solution to the
axisymmetric thermoelasticity problem for a cylinder with arbitrarily
varying thermomechanical properties. Acta Mechanica, (2017). 1–17.

[13] Ying, J. and H.M. Wang, Axisymmetric thermoelastic analysis in a finite
hollow cylinder due to nonuniform thermal shock. International Journal
of Pressure Vessels and Piping. 87(12) (2010). 714–720.

[14] Nikkhah, M., F. Honarvar, and E. Dehghan, Elastodynamic solution for
plane-strain response of functionally graded thick hollow cylinders by
analytical method. Applied Mathematics and Mechanics. 32(2) (2011).
189–202.



272 H. Sharifi

[15] Safari-Kahnaki, A., S.M. Hosseini, and M. Tahani, Thermal shock anal-
ysis and thermo-elastic stress waves in functionally graded thick hollow
cylinders using analytical method. International Journal of Mechanics
and Materials in Design. 7(3) (2011). 167–184.

[16] Vel, S.S., Exact thermoelastic analysis of functionally graded
anisotropic hollow cylinders with arbitrary material gradation. Mechan-
ics of Advanced Materials and Structures. 18(1) (2011). 14–31.

[17] Shahani, A.R. and H. Sharifi Torki, Analytical solution of the thermoe-
lasticity problem in thick-walled cylinder subjected to transient thermal
loading. Modares Mechanical Engineering. 16(10) (2016 (inPersian)).
147–154.

[18] Shahani, A.R. and H. Sharifi Torki, Determination of the thermal stress
wave propagation in orthotropic hollow cylinder based on classical the-
ory of thermoelasticity. Continuum Mechanics and Thermodynamics.
30(3) (2018). 509–527.

[19] Lata, P. and I. Kaur, Thermomechanical interactions in transversely
isotropic thick circular plate with axisymmetric heat supply. Structural
Engineering and Mechanics. 69 (2019). 607–614.

[20] Akbarov, S.D. and E.T. Bagirov, The dispersion of the axisymmetric lon-
gitudinal waves propagating in the bi-layered hollow cylinder with the
initial inhomogeneous thermal stresses. Waves in Random and Complex
Media, (2021).

[21] Selvamania, R., S. Mahesha, and F. Ebrahimi, Refined couple stress
dynamic modeling of thermoelastic wave propagation reaction of
LEMV/CFRP composite cylinder excited by multi relaxation times.
Waves in Random and Complex Media, (2021).

[22] Mirparizi, M., A.R. Fotuhi, and M. Shariyat, Nonlinear coupled ther-
moelastic analysis of thermal wave propagation in a functionally graded
finite solid undergoing finite strain. Journal of Thermal Analysis and
Calorimetry. 139 (2020). 2309–2320.

[23] Sharifi Torki, H. and A.R. Shahani, Analytical Solution of the Coupled
Dynamic Thermoelasticity Problem in a Hollow Cylinder. Journal of
Stress Analysis. 5(1) (2020). 121–134.

[24] Jafarzadeh, A., A. Taghvaeipour, and M. Eslami, A Cylindrical
Superelement for Thermo-Mechanical Analysis of Thin Composite Ves-
sels. European Journal of Computational Mechanics, (2020). 173–198.

[25] Sharifi, H., Generalized coupled thermoelasticity in an orthotropic rotat-
ing disk subjected to thermal shock. Journal of Thermal Stresses. 45(9)
(2022). 695–719.



Analytical Solution for Thermoelastic Stress Wave Propagation 273

[26] Decolon, C., Analysis of Composite Structures. 2002, London: Hermes
Penton Ltd.

[27] Sneddon, I.N., The Use of Integral Transform. 1972, New York: Mc-
Graw-Hill Book Company.

[28] Cinelli, G., An extension of the finite hankel transform and applications.
International Journal of Engineering Science. 3 (1965). 539–559.

[29] Gsell, D., T. Leutenegger, and J. Dual, Modeling three-dimensional
elastic wave propagation in circular cylindrical structures using a finite-
difference approach. The Journal of the Acoustical Society of America.
116(6) (2004). 3284–3293.

Biography

Hamid Sharifi received the bachelor’s degree in mechanical engineering
from Shahrood University of Technology in 2013, the master’s degree in
mechanical engineering from K. N. Toosi University of Technology in
2016. He is currently PhD candidate in engineering at Louisiana Tech
University, College of Engineering & Science. His research areas include
thermoelasticity, elastic wave propagation, and applied mathematics.




	Introduction
	Formulation
	The Method of Solution
	Numerical Examples
	Pure Mechanical Load
	Pure Thermal Load

	Validation
	Uniformly Heated Orthotropic Cylinder
	Coupled Thermoelasticity Problem in Isotropic Cylinder
	Orthotropic Cylinder Subjected to a Constant Displacement


