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Abstract

In this paper, nonlinear and nonlocal thermo-elastic behavior of a micro-
tube reinforced by Functionally Distributed Carbon Nanotubes, with internal
and external piezoelectric layers, in the presence of nonlinear viscoelastic-
Hetenyi foundation, and axial fluid flow inside the microtube is studied.
Nonlinear partial differential equations governing the system are derived
using Reddy’s third-order shear deformations theory along with the Von-
Karman theory including the effect of fluid viscosity. Then, the equations are
converted to time-dependent ordinary nonlinear equations using the Galerkin
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method. Afterward, the governing equations of the microtube’s lateral dis-
placements are solved using the multiple scales method. The analysis of
the piezoelectric’s parametric resonance is performed by obtaining trivial
and nontrivial stationary solutions and plotting characteristic curves of the
frequency response and voltage response. At the end, the effect of different
parameters including the flow velocity, excitation voltage, parameters of
the foundation, viscosity parameter, thermal loading and nanotubes’ volume
fraction index on the nonlinear behavior of the system, under parametric
resonance condition, is investigated.

Keywords: Microtube, piezoelectric, reinforced, viscoelastic foundation.

1 Introduction

Micro and nano-electromechanical systems are widely used as the active parts
of accelerometers, gyroscopes, chemical sensors, and switches. Therefore,
the study of the nonlinear behavior of microtubes reinforced with carbon
nanotubes carrying fluid is receiving more attention [1–3]. Moreover, the
application of micro/nanotubes has grown during the last recent decades in
high-tech industries such as drug delivery applications, electrical board cool-
ing, bio-sensors, and semiconductors [1, 4–6]. The interaction between fluid
and solid on the boundaries and velocity profile are the keys in the nonlinear
dynamic modeling of these problems [7], emphasizing the importance of such
studies further.

[8, 9] studied theoretically and experimentally the dynamic instability of
cantilever pipes carrying fluid in the first mode of vibration, and showed
that the instability is a hoop instability. [10] performed a dynamic analysis
on fluid conveying tubes and demonstrated that the mass of the fluid needs
to be included in the modeling to have acceptable accuracy. [11–13] stud-
ied the linear and nonlinear vibration and dynamic instability of nano and
microtubes conveying fluid. [14] developed a size-dependent beam model to
study the nonlinear free vibration of functionally graded carbon nanobeams
(FG-CNT). He utilized Hamilton’s principle to derive the equations of
motion.

Linear and nonlinear models of Winkler and Pasternak are used in most
of the current studies on the dynamic behavior of fluid conveying tubes on
elastic foundations, where the stiffness of the foundation is modeled by a
linear spring having a uniform distribution of forces. [15] used the finite
element method along with the linear Winkler foundation to analyze the effect
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of elastic foundation on the dynamic behavior of the tubes and showed that an
increase in the stiffness of the foundation will increase the natural frequency
of the system and critical velocity of the fluid. [16] applied multiple scales
method to the viscoelastic fluid conveying tubes and investigated the condi-
tion of dynamic stability including different parameters and showed that at
high fluid velocities, the system experiences flutter instability. [17] included
the effect of initial imperfection in the stability analysis of the nano-pipes.
They modeled the FG-CNT as an Euler-Bernouli beam. [7] investigated the
nonlinear free and forced vibration of the tubes on a nonlinear elastic founda-
tion using a modified power-law function, including the effect of porosity as
imperfection. [18] looked into the flow-induced vibration on the fatigue life
of the FG-CNTs. [19] explored the nonlinear vibration of fluid-conveying
cantilevered pipe under the action of an axial base excitation, considering
both 2D and 3D effects. [20] used a quasi-zero stiffness system to model the
vibration of the fluid-conveying pipe with two nonlinear isolators.

[21] used differential quadratic method to discretize the governing equa-
tions of fluid conveying nanotubes, and by involving the effect of coupled
modes proved that at higher velocities of fluid flow flutter instability occurs.
[22] investigated the problem of vibration and instability of single-walled
carbon fluid conveying nanotubes. He used the nonlocal elasticity theory and
noticed that the natural frequency of the system is decreased by an increase in
the nonlocal shear parameter. He also found that an increase in the elasticity
parameters increases the natural frequency and critical velocities correspond-
ing to the flutter instability. [23] studied nonlinear dynamic instability of
composite piezoelectric plates reinforced with nanotubes having geometrical
deficiencies. Their research was focused on the effects of parameters such
as excitation voltage and distribution pattern of nanotubes on the parametric
resonance of the plates.

To investigate the effect of longitudinal piezoelectric excitation on the
vibration of fluid conveying carbon nanotubes, [24] analyzed the stability
and nonlinear vibration of nanotubes using Winkler elastic foundation and
demonstrated that the foundation’s effect is not negligible. [25] conducted
an electro-thermo-mechanical study on the nonlinear dynamic response of
reinforced cylindrical piezoelectric shells and showed that the amplitude of
excitation voltage is the main parameter governing the response. [26] used
elasticity theory to investigate the free vibration of the cylindrical piezoelec-
tric panel that is reinforced with nanotubes under simply supported boundary
condition, and illustrated the effects of volumetric fraction index, their dis-
tribution pattern, the thickness of the piezoelectric layer, and dimension
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ratios on the behavior of the system. [27, 28] employed the modified couple
stress and Timoshenko beam theory to investigate the problem of buckling
and nonlocal vibration of functionally graded piezoelectric nanoplate and
demonstrated the effects of dimensions, nonlocal stress parameter, volumetric
fraction index, and coefficients of Winkler and Pasternak foundation on the
natural frequency.

Past studies have not investigated the effect of the nonlinear Hetenyi
foundation on the nonlinear and nonlocal behavior of sandwiched piezo-
electric fluid conveying microtubes reinforced with carbon nanotubes using
Reddy’s third-order shear deformations theory and Eringen’s nonlocal model
under parametric resonance conditions. In the current research, this problem
is studied for the piezoelectric microtubes with a FG-X nanotube pattern
of reinforcement. FG-X pattern is one of the most common patterns that
results in a higher critical load [29]. The slip boundary condition is assumed
for the fluid and governing equations of axial, rotational, and radial motion
are derived. Afterward, the effect of different parameters on the nonlinear
behavior of the system under parametric excitation of the piezoelectric, at
flow velocities lower than flutter instability, and under parametric resonance
is studied.

2 Modeling Single-Walled Microtubes Reinforced with
Carbon Nanotubes

Nanotubes with a large Young modulus have high tensile strength and can
be used to reinforce composites. Figure 1 depicts a schematic of a fluid
conveying microtube reinforced with nanotubes.

The slip condition is assumed for the flow on the inner wall surface of
the tube, and both ends of the tube are assumed to have a simply supported
boundary condition. Vf is the Flow velocity through the axial direction of the
tube and the piezoelectric microtube is excited in the radial direction on a
nonlinear Hetenyi foundation.

Hetenyi foundation is assumed to have a continuous structure while
keeping its contact with the tube during the deformation during the large
deformation.

As can be seen in Figure 2 the tube has a length of L, radius R, tube
thickness h and piezoelectric thickness of hp. The cross-sectional area of
the micro tube and the cross-sectional area of the fluid conveying section is
approximated to be Ab = 2πR(h+ 2hp) and Af = π(R− h/2− hp)2.
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Figure 1 Fluid conveying microtube on a Hetenyi foundation under piezoelectric excitation.

The volume fraction index of the nanotubes, using the rule of mixtures,
can be written as [27]

VCNT = w(z)V ∗
CNT

V ∗
CNT =

wCNT

wCNT + ρCNT/ρm(1− wCNT )

Vf + Vm = 1 (1)

where m and f subscripts denote matrix and reinforcing agent, respectively.
The equation above is based on a linear variation of the volume fraction
of nanotubes in the thickness direction. Here VCNT , wCNT and ρCNT are
the volume fraction, mass fraction, and density of the carbon nanotubes and
w(z) = 1 is corresponding to the uniform distribution along the thickness
direction.

The volume fraction for the FG-X pattern, Figure 2, is

VCNT (z) = 2

(
2 |z|
h

)
V ∗
CNT (FG-X CNTRC) (2)

Using the Equations (1) and (2), Young modulus along the axial direction
and effective shear modulus of the composite tube can be written as

E11 = η1VCNTE
CNT
11 + VmEm
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Figure 2 FG-X pattern for carbon nanotubes in the microtube.

η2

E22
=
VCNT

ECNT
22

+
Vm
Em

η3

G12
=
VCNT

GCNT
12

+
Vm
Gm

(3)

Here ECNT
11 and ECNT

22 are Young’s modulus and GCNT
12 is the shear

modulus of the nanotubes.Em andGm are the properties related to the matrix
and ηi, i = 1, 2, 3, is the efficiency parameter and Poisson’s ratio in the
thickness direction is

v12 = V ∗
CNTv

CNT
12 + Vmvm (4)

The following nonlinear equation shows the relation between the force
and displacement of the viscoelastic foundation [24].

qe(x, t) = K1w(x, t)−K2
∂4w(x, t)

∂4x
+K3w(x, t)3 + Cvẇ(x, t) (5)

where qe is the force per unit area and w(x, t) indicates the deflection of
the microtube. Here, w(x, t) shows the displacement of the points on the
microtube in the lateral direction and qe is the applied force along the contact
line over a unit length of the tube.

Parameters K1 = kw and K3 = knl are the linear stiffness and nonlinear
Winkler foundation parameters and K2 = kh is the shear layer stiffness of
the Hetenyi foundation. Cv is the damping coefficient of the foundation.
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Using the shear deformation theory, the displacement field in the x and z
direction for the inner points of the beam can be expressed as [30]

U(x, z, t) = u(x, t) + zφx(x, t)− c1z
3φx(x, t)− c1z

3∂w(x, t)

∂x

W (x, z, t) = w(x, t) (6)

where c1 = 4
3h2

, c2 = 3c1 and φx are representing the rotation of the
vector perpendicular to the cross-sectional area of the microtube. From the
Reddy’s third-order shear deformation theory, the relation between strain and
displacement is rewritten as

εxx = u,x + 1/2(w,x)2 + zφx,x − c1z3(w,xx + φx,x) (7)

Considering the effect of linear thermal gradient (variation) between
the upper and lower surfaces of the core, the stress-strain relation of the
piezoelectric microtubes in the thickness direction can be written as [28],

σxx =


E11(z)εxx − e31Ez, R+

h

2
≤ z ≤ R+

h

2
+ hp

E11(z)(εxx − ε11∆T ), R− h

2
≤ z ≤ R+

h

2

E11(z)εxx − e31Ez, R− h

2
− hp ≤ z ≤ R−

h

2

(8)

In the equation above,Ez is the electrical field applied to the piezoelectric
and e31 is the piezoelectric constant. In Equations (2–8),E11(z), the effective
axial modulus, and α11, the thermal expansion coefficient in the longitudinal
direction of the CNTRC micro-tube, are

EFG-CNT
11 (z) = η1VCNT (z)ECNT

11 + Vm(z)Em

α11 =
VCNT (z)ECNT

11 αCNT
11 + Vm(z)Emαm

VCNT (z)ECNT
11 + Vm(z)Em

(9)

Here ECNT
11 and Em are the Young Modulus of the carbon nanotubes and

matrix, and η1 is the efficiency coefficient of the distribution pattern along
the axial direction. Moreover, in Equation (8), αCNT

11 and αm are the thermal
expansion coefficients of the CNT and the matrix, respectively.

Due to the small thickness of the piezoelectric, the self-induced electric
potential will be negligible compared to the external excitation voltage, which
is applied to the piezoelectric in the thickness direction. According to the
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above assumptions, the relation between the applied voltage and input electric
field intensity can be written as,

Ez =
Vp(t)

hp
(10)

Applying the Reddy’s third-order shear deformation theory, axial force,
Nx, bending moment, Mx, and third-order bending moment, Tx, involving
the thermal gradient and piezo-electric-related effects, can be derived by
conducting an integration on the cross-sectional area of the microtube, as
follows.

Nx = A11εm +B11εb + E11εhb +NPiezo
x −N∆T

x

Mx = B11εm +D11εb + F11εhb +MPiezo
x −M∆T

x

Tx = E11εm + F11εb +H11εhb + TPiezo
x − T∆T

x (11)

In the equation above A11, B11 and D11 are the components of the
matrix of axial stiffness, bending-axial coupling, and bending, respectively
and E11, F11 and H11 are the components of bending stiffness matrices for
the microtube.

By performing a time integration over the cross-sectional area of the
microtube for the strain energy stored and using the Green’s theorem and
dual integration over the cross-sectional area of the microtube, and linear
integration over the circumference of this area, it reads,∫ t2

t1

δUdt =

∫ t2

t1

∫ L

0

∫
Ab

σxδεxdAdxdt

=

∫ t2

t1

∫ L

0

∫
Ab

σx

(
∂(δu)

∂x
+
∂w

∂x

∂(δw)

∂x
+ z

∂(δφx)

∂x

− c1z
3∂

2δw

∂x2
− c1z

3∂(δφx)

∂x

)
dAdxdt (12)

Using Equation (6) and performing a time integration of kinetic energy, it
reads∫ t2

t1

δTMicrotubedt

= δ

∫ t2

t1

(
1

2

∫ L

0

∫ 2π

0

(∫ +h/2

−h/2
ρ(z)(U̇2 + Ẇ 2)dz

)
Rdθdx

)
dt

(13)
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Velocity components of the fluid flow can be written as

Vx(x, t) = U̇ + Vf cos θ

Vz(x, t) = Ẇ − Vf sin θ (14)

where θ = −∂w
∂x and Vf is the modified flow velocity using the Knudson

number [31]. Using the Equation (14), the kinetic energy of the fluid flow is
given as,

TFluid =
1

2

∫ L

0

∫
Af

ρf ((U̇ + Vfcosθ)
2 + (Ẇ − Vfsinθ)2)dAfdx (15)

The Virtual work done on the flow by the curvature of the microtube
includes the effects of tangential and centripetal acceleration and assuming
constant density and flow velocity (V̇f = 0), its variation can be written
as [32],

δWFluid = −I0fV
2
f

∫ L

0

∂2w

∂x2
(sin θδu+ cos θδw))dx (16)

Using the Navier-Stokes Equations, the variation of the work done by the
viscous flow can be expressed as [13],

δWViscosity = −
∫ L

0

(
− µeAf

∂3u

∂x2∂t
− µeAfVf

∂3w

∂x3
sinθ

+ µeAfVf

(
∂2w

∂x2

)2

cosθ

)
δUdz

−
∫ L

0

(
− µeAf

∂3w

∂x2∂t
− µeAfVf

∂3w

∂x3
cosθ

− µeAfVf
(
∂2w

∂x2

)2

sinθ

)
δWdz (17)

Also, variation of the virtual work done on the foundation is given by [12]:

δWFoundation =

∫ L

0
qe(x, t)δwdx

=

∫ L

0
(K1w −K2∇4w +K3w

3 + Cvẇ)δwdx (18)



74 M. Azhdarzadeh et al.

Including the effects of all external works δWext and using the Hamilton’s
principle and linearization of trigonometric terms, the governing equations,
and related boundary conditions are derived.

δ

∫ t2

t1

(T − U)dt+

∫ t2

t1

δWextdt = 0 (19)

Based on the nonlocal Eringen elasticity theory and knowing the fact that
stress in a point in the microtube is a function of the strain in other points,
nonlocal stress field along x-direction can be expressed as [33],

σxx − e0a
2∂

2σxx
∂x2

= E11εxx (20)

where a is the internal characteristic length, such as the distance between
atoms, e0 is the material constant and E11 is the elasticity modulus. By
introducing εxx from Equation (7) into Equation (20), it reads

σxx − e0a
2∂

2σxx
∂x2

= E11(u,x + (z − z0)φx,x − c1(z − z0)3(w,xx + φx,x) + 1/2w2
,x)

(21)

After some mathematical manipulation, the nonlinear nonlocal governing
equations, including the effects of fluid flow and excitation voltage of the
piezoelectric, in terms of displacement coefficients can be found as

A11
∂2u

∂x2
+B11

∂2φx
∂x2

− c1E11

(
∂3w

∂x3
+
∂2φx
∂x2

)
+A11

∂2w

∂x2

∂w

∂x
−
(

1− e0a
2 ∂

2

∂x2

)

×

(
I0ü+ Î1φ̈x − c1I3

∂ẅ

∂x
− VfI0f

∂ẇ

∂x

∂w

∂x
− I0fVf

2∂
2w

∂x2

∂w

∂x

− µeAf
∂3u

∂x2∂t
+ µeAfVf

∂3w

∂x3

∂w

∂x
+ µeAfVf

(
∂2w

∂x2

)2
)

= 0

(22)

c1E11
∂3u

∂x3
+ c1F11

∂3φx
∂x3

− c1
2H11

(
∂4w

∂x4
+
∂3φx
∂x3

)
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[4pt] + c1E11
∂3w

∂x3

∂w

∂x
+ c1E11

(
∂2w

∂x2

)2

−
(

1− e0a
2 ∂

2

∂x2

)

×

[
− ∂

∂x

(
Nx

∂w

∂x

)
+ c1I3

∂ü

∂x
+ c1I4

∂φ̈x
∂x

+ I0ẅ − c1
2I6

∂2ẅ

∂x2

− I0fVf

(
∂u̇

∂x

∂w

∂x
+ u̇

∂2w

∂x2

)
− Î1fVf

(
∂φ̇x
∂x

∂w

∂x
+ φ̇x

∂2w

∂x2

)

+ 2I0fVf

(
∂ẇ

∂x

)
− I0fVf

(
ẇ
∂2w

∂x2

∂w

∂x

)

− µeAf
∂3w

∂x2∂t
− µeAfVf

∂3w

∂x3
+ µeAfVf

(
∂2w

∂x2

)2
∂w

∂x

+ I0fVf
2∂

2w

∂x2
+ ηAVPiezo

∂2w

∂x2
+ Cvẇ +K1w

−K2
∂4w

∂x4
+K3w

3

]
= 0 (23)

B11
∂2u

∂x2
+D11

∂2φx
∂x2

− c1

(
∂3w

∂x3
+
∂2φx
∂x2

)
F11 +B11

∂2w

∂x2
+
∂w

∂x

− c1E11
∂2u

∂x2
− c1F11

∂2φx
∂x2

+ c1
2

(
∂3w

∂x3
+
∂2φx
∂2x

)
H11

− c1E11
∂2w

∂x2

∂w

∂x
−
(

1− e0a
2 ∂

2

∂x2

)
+

(
I1ü+ I2φ̈x − c1I4

∂ẅ

∂x
− Î1fVf

∂ẇ

∂x

∂w

∂x

)
= 0 (24)

Here ü, φ̈x and ẅ are axial, rotational, and lateral accelerations. In
Equations (22) to (24), the cross-sectional moments including the tube and
fluid sections are given as

I0 = I0b + I0f , Î1 = I1 − c1I3, Î2 = I2 − 2c1I4 + c2
1I6

I3 = I3b + I3f , Î4 = I4 − c1I6, I6 = I6b + I6f (25)
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To obtain the dimensionless governing equations of motion, we introduce
the following transformation of the parameters and variables.

û =
u

L
, x̂ =

x

L
, ŵ =

W

h
, k1 =

L4K1

D11
, k2 =

K2

D11
,

k3 =
L4h2K3

D11
, en =

e0a

L
, η =

L

R
, β =

h

R
, ρb =

ρf
ρnt

,

f =
Af
Ant

, V =
Vf
ω∗L

, t̂ = ω∗t, µeb = µ

√
L4

I0ntD11
,

Cv =
√
I0ntD11cv, VPiezo =

Ap11L
2d31

D11hp
V̂Piezo , ω

∗ =

√
D11

I0ntL
4

(26)

Here, ω∗ is the reference frequency and V is the dimensionless voltage
applied. Ap11 is the first order axial stiffness of the piezoelectric layer, D11

is the total bending stiffness and d31 is the strain constant of piezoelectric
layers. k1, k2 and k3 are the linear Winkler stiffness, stiffness of the shear
layer for Hetenyi foundation, and nonlinear dimensionless Winkler stiffness.
en is the nonlocal dimensionless stress index, and η and β are dimension
ratios. ρb, f, V and µeb are dimensionless density, the ratio of the cross-
sectional area that fluid is being conveyed to the microtube’s cross-sectional
area, dimensionless fluid velocity, and dimensionless viscosity. For simplicity
in the following equations the superscript ‘−’ is dropped.

3 Boundary Condition and Approximate Solution

The Study of the nonlinear behavior of the plates and beam-like structures
shows that the low-frequency modes are often dominant [34], therefore in
the Galerkin approximation a couple of the first modes that satisfy boundary
conditions are used to convert the coupled partial differential equations to
nonlinear ordinary equations in the time domain. Considering coupling effect
of the first and second modes and assuming simple supported (SS) boundary
conditions, lateral displacement of the microtube can be approximated as,

w(x, t) = w1(t)sinπx+ w2(t)sin2πx (27)

where w1(t) and w2(t) are time-dependent amplitudes of the first and second
modes. As the governing equations encompass a nonlinear coupled system of
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equations, similar to [35] and [36], and neglecting the effects of rotary inertia,
in-plane inertia, and shear forces, an approximate solution of u and φx, for
the SS microtube can be written as

u(x, t) = U1(t)sinπx+ U2(t)sin2πx (28)

φx(x, t) = Φx1(t)cosπx+ Φx2(t)cos2πx (29)

where Um(t) and φxm(t) for m = 1, 2 are corresponding axial and rotational
modes. Using the shape of the first mode of vibration for the lateral displace-
ment, Equation (27), and introducing approximate solutions for Equation (28)
and Equation (29) in the governing equations of the lateral motion, Equa-
tion (24), and applying the Galerkin method, differential equation of the
motion is derived as

ẅ1 + (ω2
1 + a1V

2 + a2V
dc
P iezo + a2V

ac
P iezocosΩt)w1 + a3µebV w2

+ a4cvẇ1 + a5µebẇ1 + a6V ẇ2 + a7w1
3 + a8w1

2w2

+ a9w1w2
2 + a10w2

3 = 0

ẅ2 + b1µebV w1 + (ω2
2 + b2V

2 + b3V
dc
Piezo + b3V

ac
PiezocosΩt)w2

+ b4V ẇ1 + b5µebẇ2 + b6cvẇ2 + b7w1
3 + b8w1

2w2

+ b9w1w2
2 + b10w2

3 = 0 (30)

where ωn1 is the natural frequency of the first lateral mode of the tube and ω1

is the natural frequency of the tube including the fluid in the presence of the
foundation and centripetal acceleration.

ω1 =
√
ω2
n1

+ χ11V 2 + χ12k1 + χ13k2 + χ14∆T

ω2 =
√
ω2
n2

+ χ21V 2 + χ22k1 + χ23k2 + χ24∆T (31)

Equation (30) includes terms corresponding to the parametric excitation
of the piezoelectric and nonlinear third-order terms from the lateral dis-
placements related to the first and second modes. Neglecting the nonlinear
terms and substituting the solution {w1(t),w2(t)}T = {w1,w2}T e−iωt in
Equation (30), the matrix form of the linear flutter equation, including the
voltage of piezoelectric, flow velocity, fluid viscosity, and damping parameter
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Figure 3 Comparing the results of current research for the natural frequencies related to the
first mode vs. velocity with those of Ref. [24].

of the foundation, is derived as follows.[
ω2

1 + a3Vdc + a1µebiω − ω2 a2V iω + a4µebV

b2V ω2
2 + b3Vdc + b1µebiω − ω2

] [
w1

w2

]
=

[
0
0

]
(32)

4 Validation

To validate the developed method, the model is compared to the findings
of [37]. For this purpose, the effect of the second mode is neglected in
Equation (32) and the corresponding eigenvalue problem. Figure 3 compares
the dimensionless natural frequencies related to the first mode of vibration
against the flow velocity corresponding to Vdc = 0, where a very close
agreement is noticeable.

5 Numerical Analysis of Two Degree of Freedom Linear
Flutter

In this section, by solving the corresponding eigenvalue problem for Equa-
tion (32), the linear flutter of the microtube in different velocities is studied.
The following values are used in the equations. en = 0.005, η = 40, β = 0.1,
f = 1.67, h/hp = 5, V ∗

CNT = 0.12, η1 = 0.149, ρb = 0.43, η2 = 0.934,
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η3 = 0.934, Ecnt11 = 5.6466 TPa, Ecnt22 = 7.08 TPa, νcnt12 = 0.175,
ρcnt = 1400 Kg/m3, νm = 0.34, Em = 2.5 GPa, ρm = 1150 Kg/m3,
e32 = e31 = 17.6 Cm−2, e32 = e31 = 17.6 Cm−2, Ep11 = 63 GPa,
νp = 0.3 and νp = 0.3.

In Figures 4 and 5, imaginary (natural frequencies) and real components
(Ω1 and Ω2) of eigenvalues are plotted against the flow velocity at the
static dimensionless voltage of Vdc = 6. According to Figure 4, with an
increase in flow velocity, characteristic curve corresponding to the first mode
reaches zero at VA = 2.519 and as shown in Figure 5 at this point due
to the bifurcation of the real part of the characteristic curve and having a
positive value, a divergence instability happens. This bifurcation is one of the
characteristics of non-conservative systems. The real component of the curve
stays zero up to the velocity VB = 5.937 where the imaginary component
approaches zero. The second mode is stable at velocities lower than VB ,
where flutter divergence instability happens.

According to Figures 4 and 5, at velocities higher than VC the first and
second modes are coupled and form a flutter instability. The flow velocity at
which this coupling happens is called the flutter instability limit.

Figure 6 depicts the real part of the eigenvalues corresponding to the first
and second modes as a function of the flow velocity for four different static
excitation voltages. As noticeable, an increase in the static excitation voltage
causes the divergence and flutter instability to happen at lower velocities of
the fluid flow.

 
Figure 4 Imaginary components of the eigenvalues vs flow velocity.
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Figure 5 Real components of the eigenvalues vs. flow velocity.

Figure 6 Real components of the eigenvalues for the first and second modal vs. flow velocity
at four excitation voltages.
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Figure 7 Real components of the eigenvalue vs. flow velocity at four nonlocal characteristic
parameters (en).

Figure 7 shows the behavior of the real components of the eigenvalues
at four different values of the nonlocal characteristic parameters. It can be
observed that an increase in the en will shift the characteristic curves to the
left and result in an earlier occurrence of divergence and flutter instability for
the first and second modes.

6 Nonlinear Solution and Stability Analysis

6.1 Analysis of Nonlinear Behavior of Fluid Conveying
Microtube Under Parametric Resonance

In this section, to avoid the complexity of the analysis, using the first vibra-
tional mode, the qualitative study on the nonlinear behavior of the microtube
under magnetic excitation in parametric resonance conditions is investigated.
Since the solution of the nonlinear equations using the perturbation method
is more accurate compared to the other common methods [38], this method
was used. It is assumed that the amplitude of the excitation voltage, Vac(t),
damping term due to viscosity of the flow, and nonlinear terms to have smaller
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order of magnitude (to be weakly nonlinear) compared to the linear terms.
By introducing a small dimensionless parameter, the effect of nonlinear,
damping, and excitation terms are included in the first-order nonlinear per-
turbed solution. Using the first mode the governing perturbed Mathieu type
differential equation for the lateral motion of the microtube can be written as

ẅ1 + ω2
1w1 = −ελ1µebẇ1 − ελ2cvẇ1 − ελ3VaccosΩtw1

− ελ4w
3
1 − ελ5k3w

3
1 (33)

where the excitation frequency, Ω, is about two times larger compared to the
fundamental frequency of the system.

To study the nonlinear behavior of the system at the foundational
parametric resonance, a frequency detuning parameter, σ, is introduced to
demonstrate the frequency relation as follows:

Ω = 2ω1 + σε (34)

To apply the method of multiple scales, the first-order approximate
solution of Equation (32) is considered as:

w1(t, ε) = w10(T0, T1) + εw11(T0, T1), Tn = εnt, n = 0, 1 (35)

Employing the differential operators

d

dt
= D0 + εD1 + · · · , d

2

dt2
= D2

0 + 2εD0D1 + · · · , (36)

where Dj = ∂
∂Tj

and by substituting Equations (33) to (35) in Equation (32)
and comparing the powers of ε, it reads

D2
0w10 + ω2

1w10 = 0 (37)

D2
0w11 + ω2

1w11 = −λ3Vacw10cosΩT0 − 2D0D1w10 + σΩw10

− µebλ1D0w10 − cvλ2D0w10 − λ4w
3
10 − λ5k3w

3
10

(38)

The general homogenous solution of Equation (36) is

w10(T0, T1) = A1(T1) eiΩT0/2 + Â1(T1) e−iΩT0/2 (39)
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where A1(T1) is an unknown complex function and A1(T1) is its complex
conjugate. w11 is eliminated by introducing Equation (37) in Equation (38)
as follows.

2IΩD1A+ Iλ1µebΩA+ Iλ2cvΩA− 2σΩA

− 1

2
λ3VacÂ+ 6λ4A

2Â+ 6λ5k4A
2Â = 0 (40)

Assuming A1(T1) = x1(T1) + i x2(T1), where x1 and x2 are real
functions, Equation (39) can be transformed into the Cartesian coordi-
nate. In the steady-state condition, the amplitudes of the harmonic solution
tend to constant values for the scaled time T1. Therefore dx1

dT1
= 0 and

dx2
dT1

= 0, and the equations can be derived as a set of nonlinear algebraic
equations. The characteristic bifurcation curves for the frequency, velocity
and voltage-response can be obtained by solving these equations using the
Newton-Raphson method numerically.

6.2 Stability Analysis of Nonlinear Solutions in the Steady-State
Condition

To analyze the stability of the solutions, it is assumed that x1s and x2s to
be trivial and nontrivial steady-state solutions of the modulation equations.
x1(T1) = x1s + x1p(T1) and x2(T1) = x2s + x2p(T1) where x1p and x2p

represents the perturbed solution around the steady-state solutions. Substi-
tuting x1(T1) and x2(T1) into modulation equations and keeping the linear
components of the equations [38], it reads

ẋ1p = m11x1p +m12x2p

ẋ2p = m21x1p +m22x2p (41)

where mij coefficients are

m11 = −1

2
λ1µeb −

1

2
λ2cv −

6

Ω
λ4x1x2 −

6

Ω
k3λ5x1x2

m12 = σ − 1

2Ω
λ3Vac −

3

Ω
λ4x

2
1 −

9

Ω
λ4x

2
2 −

3

Ω
k3λ5x

2
1 −

9

Ω
k3λ5x

2
2

m21 = −σ +
3

2Ω
λ3Vac +

6

Ω
λ4x

2
1 +

3

Ω
λ4x

2
2 +

9

Ω
k3λ5x

2
1 +

3

Ω
k3λ5x

2
1

m22 = −1

2
λ1µeb −

1

2
λ2cv +

6

Ω
λ4x1x2 +

6

Ω
λ5k3x1x2 (42)
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According to the Routh-Hurwitz stability criterion, if the real compo-
nents of all the eigenvalues of the coefficient matrix [mij ] are negative, the
nontrivial solution of the system will be stable.

7 Numerical Analysis of Nonlinear Behavior and Stability
of Microtube

Fluid flow on the surface of panels and shells or through tubes results in a
non-steady and nonlinear force that reduces the damping coefficient of these
structures. This phenomenon results in instability and causes self-excited
oscillations, which leads to fluid-induced oscillations and are called Flutter
instability. In some applications, other than loads related to fluid pressure,
these structures may be under the action of magnetic, electric, and thermal
fields that can postpone the onset of flutter instability. Therefore, the study
and identification of critical velocity corresponding to the onset of flutter
instability have significant importance. On the other hand, the disturbance
from the vibration of the piezoelectric induces a parametric resonance that
results in lower critical velocities for the flutter instability.

7.1 Effects of System Parameters on the Amplitude of
Resonance

Figure 8 shows the resonance amplitude versus the frequency tuning parame-
ter, se, at V = 1.5 and µeb = 0.01 corresponding to four values of excitation
voltages. In this figure η = L

R = 100 and β = h
R = 0.1. It is observed

that increasing excitation voltage will shift the supercritical bifurcation point
of the characteristic curves to the left. In the other words, increasing the
amplitude of excitation voltage will make the instability occur at lower values
of the tuning parameter. On the other hand, by comparing conditions a to d, it
is found that increasing the amplitude of the excitation voltage will increase
the resonance amplitude and increase the width of the resonance region.

In Figure 9 characteristic bifurcation curves for four different flow veloc-
ities of V = 0, 2.15, 2.75, 3 are illustrated assuming Vac = 2 and
µeb = 0.01. According to the figure, increasing the flow velocity will shift
the bifurcation point to the left and widen the instability region. It is also
noticeable that increasing the flow velocity decrease the resonance amplitude.

The frequency responses in four conditions of a) without foundation,
k1 = 0, and with foundation corresponding to b) k1 = 30, c) k1 = 60
and d) k1 = 90 are shown in Figure 10. As can be seen in this figure,
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Figure 8 Resonance amplitude vs. frequency detuning parameter in the absence of the
foundation for four values of the excitation amplitude.

 
Figure 9 Resonance amplitude vs. frequency detuning parameter in the absence of the
foundation for three values of the fluid flow velocity.

the presence of the foundation increases the linear stiffness and raises the
curves relative to the condition without the foundation. It means that the
large values of the linear stiffness have a stabilizing effect and cause the
resonance amplitude to increase. Also, an increase in the linear stiffness will
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Figure 10 Comparing frequency response curves with and without the presence of the
foundation for different values of linear stiffness.

 
Figure 11 Comparing the frequency response for the condition with and without the shear
layer of the Hetenyi foundation.

bring supercritical/subcritical points closer to each other, which results in the
stability region being wider. Therefore, it can be concluded that the presence
of the foundation causes delays in the occurrence of the resonance.

Figure 11 illustrates the effect of the shear layer of the Hetenyi foundation
(k1 = k3 = 0) on the characteristic curves of resonance amplitude against
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Figure 12 Comparing the frequency response of the microtube with and without nonlinear
stiffness of the foundation.

detuning parameter for four different shear layer stiffness values. From
Figure 11, it can be observed that an increase in the shear layer stiffness,
k2, reduces the linear behavior of the system and consequently suppresses
the curves downward. On the other hand, the increase in the stiffness of the
shear layer results in a decrease in the resonance amplitude and expands the
resonance region. Therefore, increasing the shear layer stiffness parameter
has an un-stabilizing effect on the system.

In the absence of the shear layer, k2 = 0, and assuming k1 = 20,
Figure 12 demonstrates the effect of nonlinear foundation parameter on the
frequency response curves for V = 1.5, Vac = 2 and µeb = 0.01. According
to Figure 12, increasing the nonlinear stiffness parameter from a to d bends
the curve to the right and decreases the resonance amplitude, while not
affecting the width of the resonance region.

7.2 Effect of System Parameters on the Piezoelectric Resonance
Amplitude

Figure 13 shows the resonance curves for different values of flow velocity,
V = 0.1, 1.2, 1.7, 2.05, and positive value of detuning parameter, σε = 0.
According to this figure, increasing the flow velocity will shift the supercrit-
ical/subcritical bifurcation points to the left and widen the resonance region
while decreasing the resonance amplitude.

Figure 14 shows the characteristic curves of resonance amplitude against
the excitation voltage in the absence of the foundation. According to this
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Figure 13 Resonance amplitude vs. the excitation voltage in the absence of the foundation
for different velocities.

Figure 14 Characteristic curves of the resonance amplitude vs. amplitude of the excitation
voltage in the absence of foundation effects for different viscosity values.

figure, increasing the dimensionless viscosity parameter, µeb, will shift the
bifurcation point to the right and will reduce the amplitude and reduce the
width of the resonance region. As expected, for the case of no damping effect,
µeb = 0, resonance will always happen.
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Figure 15 The frequency response in the absence/ presence of linear foundation for different
stiffness values.

Figure 16 Piezoelectric response for four values of nonlinear stiffness parameter.

Figures 15 and 16 show the effect of linear and nonlinear stiffness param-
eters on the resonance curves versus the excitation voltage at four different
linear and nonlinear stiffness coefficients. According to Figure 15, increasing
the linear, k1, has a stabilizing effect and shifts the bifurcation curves to
the right, consequently reducing the widths of the resonance region. From
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Figure 17 Comparing frequency response of microtube for three different volume fraction
indexes.

Figure 16 it is noticeable that increasing the nonlinear stiffness does not affect
the width of the resonance region, but as expected it increases the nonlinear
softening behavior of the system and reduces the resonance amplitude.

7.3 Effect of Volume Fraction Index of Carbon nanotubes on the
Frequency Response of the Microtube

In this section, the nonlinear behavior of the single-walled microtubes rein-
forced with carbon nanotubes with FG-X pattern is analyzed. In the absence
of foundation and Considering µeb = 0.01, Vac = 2, and by fixing the dimen-
sionless flow velocity at V = 0.15, the resonance amplitude of the microtube
versus frequency detuning parameter, σε is investigated. Figure 17 shows
the resonance amplitude against frequency detuning parameter, σε, for three
different values of the volume fraction indexes, V ∗

CNT = 0.12, 0.17, 0.28.
As shown, an increase in the volume fraction index of nanotubes results in a
decrease in the resonance amplitude.

7.4 Effect of Temperature Loading on the Frequency and
Nonlinear Response of the Microtube

To study the effects of the thermal loading on the linear flutter instability
and nonlinear resonance behavior of the fluid conveying micro-tube, it is
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considered that the Young modulus and thermal expansion coefficient of
the matrix phase have a dependency on temperature as Em = (3.52 −
0.0034T ) GPa and αm = 45(1 + 0.0005T )× 10−6/◦K. Here T = ∆T+T0

and the reference temperature is T0 = 300◦ K [26]. Moreover, the micro-
tube is reinforced with single-walled CNT in which its thermo-mechanical
properties are considered as

ECNT
11 (T )[TPa] = 6.3998− 4.338417× 10−6T

+ 7.43× 10−6T2 − 4.458333× 10−6T3

αCNT
11 (T )[10−6/◦K] = −1.12515 + 0.02291688T

− 2.887× 10−5T2 + 1.13625× 10−8T3 (43)

Efficiency parameters reported by [39]: η1 = 0.137, η2 = 1.022, η3 =
0.715 for the case of V ∗

CNT = 0.12 were used in this study. Figure 18 shows
the variation of the real part of the eigenvalues for four different temperature
difference values. It can be observed that an increase in the ∆T has an un-
stabilizing effect and will shift the characteristic curves to the left and will
result in the earlier occurrence of divergence and flutter instability for the
first and second modes.

Figure 18 Variation of the real part of the eigenvalues vs. the flow velocity at four tempera-
ture differences.
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Figure 19 Comparing frequency response of the microtube at four temperature differences
(∆T).

Figure 19 illustrates the effect of the temperature difference ∆T on
the frequency response of the resonance amplitude. It is noticeable that
an increase in the ∆T has a softening nonlinear effect and reduces the
linear behavior of the resonance amplitude and consequently suppresses the
curves downward. Moreover, an increase in ∆T results in a decrease in the
resonance amplitude and expands the resonance region.

8 Conclusions

In this research, nonlinear nonlocal vibrations of fluid conveying piezoelectric
microtube reinforced with carbon nanotubes on a nonlinear viscoelastic foun-
dation with the Hetenyi shear layer were studied. After deriving governing
equations and using the perturbation method, modulation equations were
derived and the stability of trivial and nontrivial solutions under steady con-
ditions was studied and the effects of different parameters on the resonance
amplitude was investigated. The numerical results showed that:

a. An increase in the amplitude of the excitation voltage has an un-
stabilizing effect and widens the resonance region.
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b. Increasing the linear stiffness has a stabilizing effect and increases the
resonance amplitude and increases the linear behavior of the system and
consequently postpones the occurrence of the resonance.

c. Increasing the shear layer stiffness has an un-stabilizing effect and
results in a decrease in the resonance amplitude and expands the
resonance region.

d. Increasing the nonlinear stiffness results in an increase in the softening
nonlinear behavior of the system that decreases the resonance amplitude.

e. Increasing the fluid viscosity, decreases the width of the resonance
region, and increasing the fluid flow velocity widens the resonance
region.

f. Increasing the temperature difference has a softening nonlinear effect
and expands the width of the resonance region.
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