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Abstract

An unusual stability property is found for a structure-dependent integration
method since it exhibits a different nonlinearity interval of unconditional
stability for zero and nonzero damping. Although it is unconditionally stable
for the systems of stiffness softening and invariant as well as most systems
of stiffness hardening, an unstable solution that is unexpected is obtained
as it is applied to solve damped stiffness hardening systems. It is found
herein that a nonlinearity interval of unconditional stability for a structure-
dependent method may be drastically shrunk for nonzero damping when
compared to zero damping. In fact, it will become conditionally stable for
any damped stiffness hardening systems. This might significantly restrict
its applications. An effective scheme is proposed to surmount this difficulty
by introducing a stability factor into the structure-dependent coefficients of
the integration method. This factor can effectively amplify the nonlinearity
intervals of unconditional stability for structure-dependent methods. A large
stability factor will result in a large nonlinearity interval of unconditional
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stability. However, it also introduces more period distortion. Consequently,
a stability factor must be appropriately selected for accurate integration.
After choosing a proper stability factor, a structure-dependent method can
be widely and easily applied to solve general structural dynamic problems.

Keywords: Damping, stiffness hardening, stability, accuracy, structure-
dependent method.

1 Introduction

Structure-dependent methods are a different type of integration methods
when compared to conventional integration methods, whose coefficients are
scalar constants [1–9]. This type of integration methods is characterized by
structure dependency since its coefficients of the two difference equations can
be functions of the product of the step size and initial structural properties
for defining the problem under analysis [10–16]. It has been verified that
there exists no explicit method that can be unconditionally stable in the
linear multistep methods [17]. This Dahlquist barrier is deeply rooted in
people’s minds in the realm of computational methods. To resolve this barrier,
the fundamental basis of the structure-dependent methods was disclosed
recently [18], where an eigen-based theory or a concept of eigenmodes can
provide a solid foundation for the development and feasibility of this type
of integration methods. Matrix coefficients for structure-dependent methods
instead of scalar coefficients for conventional methods is the key issue to
combine unconditional stability and explicit formulation together. Hence, the
Dahlquist barrier can be surmounted.

Since an equation of motion is a second order differential equation and it
has a natural frequency that is always positive, its stability can be defined
based on the product of the step size ∆t and natural frequency ω, i.e.,
Ω = ω(∆t). As a consequence, an unconditional stability implies that there
is no limitation on any positive value of Ω, i.e., 0 < Ω ≤ ∞. Whereas, a
conditional stability implies that the positive value of Ω is constrained by
an inequality of 0 < Ω ≤ Ω(u), where Ω(u) is known as an upper stability
limit. Hence, a stable computation can be yielded only if 0 < Ω ≤ Ω(u) is
satisfied. This definition of stability is different from that for a general first
order differential equation, whose eigenvalue can be a complex number with
a negative real part and then A-stability is defined. The stability property
of structure-dependent methods is also affected by the change of natural
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frequency or stiffness for a constant mass. To monitor the stiffness change, an
instantaneous degree of nonlinearity δ is introduced [11]. In fact, it is defined
as the instantaneous stiffness k at a specific time over the initial stiffness k0.
As a result, δ = k/k0 is defined. Based on this definition, 0 < δ < 1, δ = 1
and 1 < δ < ∞ represent that a structure experiences the case of stiffness
softening, invariant and hardening at the specific time, respectively.

The first structure-dependent method was successfully developed for
pseudo-dynamic tests in 2002 [10], which will be referred as SD1, and it was
found that it can only have an unconditional stability for stiffness softening
and invariant systems, i.e., 0 < δ ≤ 1 while it will become conditionally
stable for the systems of stiffness hardening, i.e., 1 < δ < ∞ [11]. As a
consequence, its applications to solve structural dynamics or earthquake
engineering problems will be largely limited or inconvenient since the type
of nonlinear behaviors of the problems under analysis might not be known
in advance. To circumvent this difficulty, an improved structure-dependent
method has been proposed later [12, 13], which is referred as SD2. Although
it has an unconditional stability property for most stiffness hardening systems
in addition to stiffness softening and invariant systems for zero viscous
damping, i.e., 0 < δ ≤ 2, an unusual instability property was recently
experienced in the solution of a damped stiffness hardening system. However,
there exist no reports for this problem in the literature. Hence, it must be
further explored what causes this numerical instability.

It will be shown that SD2 can have an unconditional stability for the
systems of stiffness softening and invariant as well as most systems of
stiffness hardening for the case of zero viscous damping. Whereas, for
nonzero viscous damping, it can only have an unconditional stability for
stiffness softening and invariant systems and it becomes conditionally stable
for stiffness hardening systems. In addition to revealing a conditional stability
for damped stiffness hardening structures, it is also of interest to devise
a technique to surmount this adverse stability property. A stability factor
will be introduced into the initial stiffness of the denominator of structure-
dependent coefficients to enhance its stability property. This modification of
structure-dependent coefficients not only improves stability but affects accu-
racy. Hence, it is required to thoroughly investigate its stability and accuracy
property so that an appropriate stability factor can be chosen. Besides, some
numerical examples will be adopted to substantiate the feasibility of this
modified formulation of the structure-dependent coefficients for both SD1
and SD2.
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2 Formulation

Both SD1 and SD2 are classified as structure-dependent methods and their
formulation can be generally expressed as:

mai+1 + cvi+1 + kdi+1 = fi+1

di+1 = di + β1(∆t)vi + β2(∆t)2ai + pi+1 (1)

vi+1 = vi +
1

2
(∆t)(ai + ai+1).

where m, c, k and f are the mass, viscous damping coefficient, stiffness, and
external force, respectively; di, vi and ai are the nodal displacement, velocity,
and acceleration at the i-th step. The structure-dependent coefficients β1, β2

and pi+1 [19] for SD1 and SD2 are found to be:

β1 =
1

D1
(1 + ξΩ0) , β2 =

1

D1

1

2
,

pi+1 =
1

D1

1

4m
(∆t)2(fi+1 − fi) SD1

β1 =
1

D2
(1 + ξΩ0), β2 =

1

D2

1

2
(1 + ξΩ0),

pi+1 =
1

D2

1

2m
(∆t)2(fi+1 − fi) SD2. (2)

where D1 = 1 + ξΩ0 + 1
4Ω2

0; D2 = 1 + ξΩ0 + 1
2Ω2

0; ξ is often known
as a viscous damping ratio and Ω0 = ω0(∆t); ω0 =

√
k0/m is the initial

natural frequency and it is calculated from the initial stiffness of k0. Since β1,
β2 and pi+1 are functions of initial structural properties and step size, SD1
and SD2 are classified as structure-dependent methods and are different from
conventional methods.

In the subsequent study, the instantaneous degree of nonlinearity at the
end of the i-th step is δi = ki/k0, where ki is the stiffness at the end of
the i-th step. Although the definition of δi is defined for a single degree of
freedom system, it can be used to describe the corresponding modal stiffness
change of each mode for a multiple degree of freedom system. There is a
way to determine the instantaneous degree of nonlinearity for each mode at a
specified time step by calculating the natural frequencies in correspondence
to the updated structural properties. Consequently, after obtaining the natural
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frequency of the j-th mode at the i-th time step, the instantaneous degree of
nonlinearity at the i-th step for this mode can be computed by:

δ
(j)
i =

[
ω

(j)
i

ω
(j)
0

]2

. (3)

where ω
(j)
0 and ω

(j)
i are the natural frequencies of the j-th mode corre-

sponding to the initial stiffness and the stiffness at the end of the i-th
step.

It has been verified that SD1 and SD2 can have unconditional stability
in the interval of 0 < δi ≤ 1 and 0 < δi ≤ 2 for zero viscous damping,
respectively. In fact, the stability property of SD1 for zero viscous damping
has been derived in the reference [11] and is:

0 < Ω0 ≤ ∞ if δi ≤ 1

0 < Ω0 ≤ Ω
(u)
0 =

2√
δi − 1

if δi > 1
. (4)

while that for SD2 has been derived in the reference [12] and is found to be:

0 < Ω0 ≤ ∞ if δi ≤ 2

0 < Ω0 ≤ Ω
(u)
0 =

2√
δi − 2

if δi > 2
. (5)

For brevity, the interval of δi will be referred as a nonlinearity interval
since it can reveal an interval for the variation of the instantaneous degree
of nonlinearity. As a result, it is revealed by Equation (4) that SD1 will
become conditionally stable in the nonlinearity interval of δi > 1. Similarly,
Equation (5) reveals that SD2 has a conditional stability in the nonlinearity
interval of δi > 2. Since there is rare for a real structure that its stiffness
becomes twice of the initial stiffness (δi > 2), a nonlinearity interval of
unconditional stability of 0 < δi ≤ 2 seems large enough for practical
applications for a structure-dependent method.

One may take it for granted that both SD1 and SD2 can inherit the stability
property of zero viscous damping. In other words, it is anticipated that both
integration methods can have the same nonlinearity intervals of stability as
shown in Equations (4) and (5) for nonzero viscous damping. However, the
following example can be used to reveal that the prediction is incorrect. In
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fact, only SD1 can have the same nonlinearity intervals of stability for both
zero and nonzero damping cases; whereas different nonlinearity intervals of
stability are found for SD2. This phenomenon is first found in this work and
therefore its root cause is thoroughly explored next.

3 Illustrated Example

To demonstrate that the actual performance of SD1 and SD2 in the solution
of a damped and an undamped stiffness hardening system, a 11-story regular
building is considered and it can be mathematically modelled as a shear
building. In general, there is no rotation of a horizontal section at each floor
level for a shear building due to a very large rigidity of the beam and floor
systems. As a result, the second order differential equation of motion for the
shear building can be expressed as:

m1 0 0 0 0
0 m2 0 0 0
0 0 · · · 0 0
0 0 0 m10 0
0 0 0 0 m11




ü1

ü2
...
ü10

ü11


+ C



u̇1

u̇2
...
u̇10

u̇11



+


k1 + k2 −k2 0 0 0
−k2 k2 + k3 −k3 0 0

0 −k3 · · · −k10 0
0 0 −k10 k10 + k11 −k11

0 0 0 −k11 k11




u1

u2
...
u10

u11



= −



m1

m2
...

m10

m11


a. (6)

where u1 to u11 are the lateral displacement at each floor from the bottom to
top story. In addition, C is a damping coefficient matrix and it will be defined
later. The lumped mass concentrated at each floor is specified as the same
value of mi = 2× 104 kg for i = 1, 2, . . . , 11; the input ground acceleration
is assumed as a = 5×102 sin(πt)m/ sec2; and a total stiffness for each story
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is given as:

k1 = 108(1 + 1.2
√
|u1|)

ki = 108(1 + 1.2
√
|ui − ui−1|), for i = 2, 3, . . . , 11. (7)

It is evident that the story stiffness will become greater than the initial
stiffness after the building deforms. Hence, a stiffness hardening system can
be mimicked. In Equation (6), the damping coefficient matrix is assumed
to be a linear combination of the mass and stiffness matrices, i.e., C =
a0M + a1K, which is known as a Rayleigh damping. Besides, the same
viscous damping ratio of ξ is assumed for the first two modes. As a result, the
coefficients a0 and a1 can be determined from the following equation [20]:

a0 =
2ω

(1)
0 ω

(2)
0

ω
(1)
0 + ω

(2)
0

ξ, a1 =
2

ω
(1)
0 + ω

(2)
0

ξ. (8)

The initial natural frequencies of the 11-story building are found to be
ω

(1)
0 = 9.65 and ω(2)

0 = 28.77 rad/ sec in correspondence to the first and
second modes. In the subsequent calculations, ξ = 0.1 is taken and it will
lead to a0 = 1.45× 10−1 and a1 = 5.21× 10−3.

Equation (6) with zero and nonzero viscous damping is solved by
using SD1 and SD2. It is worth noting that structure-dependent integration
methods generally can have an explicit implementation and hence they are
non-iterative for each step in conducting step-by-step integration. The imple-
mentation details for a multiple degree of freedom system for SD1 were
presented in [11] while those for SD2 were shown in [12]. In addition, the
well-known constant Average Acceleration Method (AAM) is also used to
carry out computations for comparison. The result obtained from AAM with
∆t = 0.001 sec is treated as a reference solution for both the damped
and undamped cases. At first, AAM, SD1 and SD2 are applied to solve
Equation (6) with ∆t = 0.02 sec for zero viscous damping. The displace-
ment responses for the 1st, 6th and 11th stories and the corresponding time
histories of the instantaneous degree of nonlinearity are plotted in Figure 1.
It is manifested from Figures 1(b), 1(d) and 1(f) that the shear building
experiences stiffness hardening since 1 ≤ δ

(j)
i ≤ 2 is generally found for

each mode, i.e., for j = 1, 2, . . . , 11. This is consistent with the story stiffness
defined in Equation (7), where each story stiffness will increase after the
building deforms. Besides, very significant fluctuations of δ(j)

i are found in
Figures 1(b), 1(d) and 1(f). It is revealed by Figures 1(a), 1(c) and 1(e) that the
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Figure 1 Forced vibration responses to 3-story building with zero viscous damping.

result obtained from SD2 almost coincide together with that calculated from
AAM. Evidently, these results are reliable when compared to the reference
solution.

Unlike the solutions obtained from AAM and SD2, an unstable result is
obtained from SD1 and it becomes unstable very early. This is because SD1
can only have a conditional stability for the systems of stiffness hardening
and the violation of the upper stability limit might be responsible for the
instability. In fact, a maximum value of δ(11)

i = 1.85 is found in Figure 1(f)

for the 11th mode, whose initial natural frequency is found to be ω(11)
0 =

140.10 rad/sec. Hence, Ω
(11)
0 = ω

(11)
0 × ∆t = 2.80 is found and is greater

than the upper stability limit Ω
(u)
0 = 2.17, which can be calculated from

Equation (4) for the case of zero viscous damping. As a result, the violation
of the upper stability limit of Ω

(11)
0 = 2.80 > Ω

(u)
0 = 2.17 is the root cause

of numerical explosions in the results calculated from SD1.
Numerical results for the case of nonzero viscous damping are plotted

in Figure 2. In these calculations, it is found that an accurate solution can
be still achieved by using AAM with a step size of ∆t = 0.06 sec, which
is much larger than that for using AAM with ∆t = 0.02 sec to solve the
zero viscous damping system. This might be due to the fact that the high
frequency responses are suppressed or removed by the viscous damping.
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Figure 2 Forced vibration responses to 3-story building with nonzero viscous damping.

Thus, a large step size can be applied to yield an accurate solution. Again,
it is also found that the variation of the instantaneous degree of nonlinearity
for each mode and each step is in the nonlinearity interval of 1 ≤ δ

(j)
i ≤ 2

as shown in Figures 2(b), 2(d) and 2(f). Both SD1 and SD2 exhibit numerical
explosions as shown in Figures 2(a), 2(c) and 2(e). Apparently, the cause of
instability for SD1 is the same as the zero viscous damping case. However, an
unstable solution for SD2 seems to be totally inconsistent with the analytical
prediction that it has a nonlinearity interval of unconditional stability of
0 < δi ≤ 2 for zero viscous damping. This instability strongly indicates that
SD2 might have a different stability property for nonzero viscous damping in
contrast to zero viscous damping. Therefore, the root cause of this instability
is thoroughly investigated next.

4 Stability Property

The illustrated example reveals that SD1 and SD2 might have different
stability properties for damped and undamped stiffness hardening systems.
Hence, the cause of this difference in stability property is explored next.
At first, the variation of the upper stability limit with instantaneous degree
of nonlinearity for each step, which will be defined later, will be numerically
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calculated and plotted for different viscous damping ratios for both SD1
and SD2. Subsequently, a stability factor will be introduced to improve the
stability property of both methods [21]. Finally, the accuracy of SD1 and SD2
affected by this stability factor will be explored.

4.1 Damped Stability Property

Equation (2) can be used to solve a nonlinear system with nonzero damping
of ξ 6= 0 and zero external force of fi+1 = 0. The time integration of each
step can be alternatively expressed as a recursive matrix form [8–16] and thus
the solution procedure at the i-th step can be rewritten as:

xi = Aixi−1, xi = [di, (∆t)vi, (∆t)
2ai]

T. (9)

where Ai is an amplification matrix in correspondence to the i-th time step
and it might vary for each step for a nonlinear system. The characteristic
equation of this amplification matrix can be determined from solving an
eigenvalue problem of |Ai − λI| = 0 and it can be applied to determine
the numerical properties of the method at the i-th time step. As a result, it can
be written as:

λ(λ2 −A1λ+A2) = 0. (10)

where

A1 = 2− 1

G
2ξΩi −

1

G

(
1

2
β1 + β2

)
Ω2
i ,

A2 = 1− 1

G
2ξΩi +

1

G

(
1

2
β1 − β2

)
Ω2
i . (11)

where G = 1 + ξΩi is defined.
It is manifested from Equation (9) that the recursive matrix form is

generally different from that for a linear elastic system. The amplification
matrix is a constant matrix for a linear elastic system while for a nonlinear
system it may vary for each step. Hence, evaluations of an integration method
are conducted for a specific time step but not for a complete step-by-step
integration procedure. However, it is still indicative for a complete step-by-
step integration procedure since a complete integration procedure consists of
each step. Thus, the numerical properties for SD1 or SD2 at the i-th step can
be determined from Equation (10).

It is evident that there is a zero eigenvalue of λ3 = 0 in Equation (10).
In addition, if it also has two principal complex conjugate eigenvalues of
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λ1,2 in addition to |λ1,2| ≤ 1, a bounded oscillatory solution can be yielded.
Thus, the two principal roots of Equation (10) at the end of the i-th time step
can be expressed in an exponential form as:

λ1,2 =
1

2
A1 ± j

√
A2 −

1

4
A2

1 = e−ξ̄Ω̄i±jΩ̄D
i . (12)

where Ω̄i = ω̄i(∆t), Ω̄D
i = Ω̄i

√
1− ξ2 and j =

√
−1. Hence, a phase shift

of Ω̄D
i and a numerical damping ratio of ξ̄i can be determined by:

Ω̄D
i = tan−1

√
4A2

A2
1

− 1, ξ̄i = − ln(A2)

2Ω̄i
. (13)

This phase shift can be further applied to define a relative period error and
is a measure of period distortion. In general, it is defined as:

Ep =
T̄i − Ti
Ti

=
ωi
ω̄i
− 1, T̄i =

2π

ω̄i
, Ti =

2π

ωi
. (14)

where Ti and T̄i are used denote the true and calculated periods of the system,
respectively. It is evident that ξ̄i and ω̄i can be treated as the quantities
corresponding to ξi and ωi in a numerical procedure.

The stability property of SD1 and SD2 has been studied for nonlinear
systems [11–13]. However, only the case of zero viscous damping was
explored for simplicity as shown in Equations (4) and (5). This is because that
it is very complicated to analytically conduct a stability analysis for nonzero
viscous damping. Hence, a numerical method is adopted as an alternative for
conducting a stability analysis. For given ξ and δi, the three eigenvalues λi
of the characteristic equation as shown in Equation (10) can be calculated for
a given Ω0. Notice that Ω0 varies from a small value, i.e., close to zero, to
a large value for determining the upper stability limit Ω

(u)
0 in the subsequent

calculations. The upper stability limit is the maximum value of Ω0, where
|λi| for i = 1, 2, 3 must be always less than or equal to 1.

Figure 3 shows the variation of upper stability limit of Ω
(u)
0 with δi

for SD1 and SD2 for different values of ξ = 0, 0.1 and 0.3. It is seen
in Figure 3 that SD1 can have almost the same nonlinearity interval of
unconditional stability for zero and nonzero viscous damping cases and the
upper stability limit in the nonlinearity interval of conditional stability is only
slightly affected by viscous damping. However, drastic differences are found
for SD2. In fact, it has a nonlinearity interval of unconditional stability of
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Figure 3 Variation of upper stability limit with δi for SD1 and SD2.

0 < δi ≤ 2 for zero viscous damping whereas this interval will be shrunk
to be 0 < δi ≤ 1 for nonzero viscous damping. These calculated results
of Figure 3 can be applied to thoroughly explain why the unstable solutions
were found in Figure 2 for SD1 and SD2.

The maximum value of δ(11)
i = 1.83 can be found from Figure 2(f).

On the other hand, Ω
(11)
0 = 4.20 is found due to ω(11)

0 = 140.10 rad/sec
as well as ∆t = 0.03 sec. Hence, one can find an upper stability limit of
Ω

(u)
0 = 2.44 from Figure 3 for the case of δ(11)

i = 1.83 and ξ = 0.1 for SD1.

Similarly, it is found to be Ω
(u)
0 = 1.67 for SD2. Clearly, Ω

(11)
0 = 4.20 >

Ω
(u)
0 = 2.44 is found for SD1 and Ω

(11)
0 = 4.20 > Ω

(u)
0 = 1.67 for SD2,

the upper stability limit is violated for both SD1 and SD2. Thus, instability
occurs.

4.2 Resolving Instability

It is beneficial for structure-dependent methods to resolve this difficulty since
a conditional stability for any damped stiffness hardening systems will largely
limit their applications or lead to a great inconvenience. A scheme can be
used to magnify the nonlinearity interval of unconditional stability for both
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SD1 and SD2. Since the structure-dependent coefficients are functions of
the initial stiffness k0 and their stability properties are closely related to
δi (or k0), there is a great motive to enlarge the nonlinearity interval of
unconditional stability for these integration methods. Based on the definition
of δi, a nonlinearity interval of 0 < δi ≤ 1 implies k ≤ k0, which means
that an unconditional stability can be yielded if the instantaneous stiffness
of k is no more than the initial stiffness of k0. Hence, there exists a great
idea to virtually amplify the initial stiffness k0 by a stability factor of σ. As
a result, one can have k ≤ σk0, which implies a nonlinearity of 0 < δi ≤ σ.
This implies that a nonlinearity interval of unconditional stability will be
effectively amplified from 0 < δi ≤ 1 to 0 < δi ≤ σ if σ is chosen to
be greater than 1.

It is apparent that the slight modification from k0 to σk0 will also alter the
formulation of the structure-dependent methods. Thus, the denominator and
loading-correction terms must be modified to be:

D1 = 1 + ξΩ0 +
1

4
σΩ2

0, pi+1 =
1

D1

1

4
σ(∆t)2(fi+1 − fi) SD1

D2 = 1 + ξΩ0 +
1

2
σΩ2

0, pi+1 =
1

D2

1

2
σ(∆t)2(fi+1 − fi) SD2. (15)

The only difference between SD1 and SD2 is the coefficient between 1
4σ

and 1
2σ, which is consistent with the coefficients as shown in Equation (2).

This modification is to modify the initial stiffness k0, which is adopted
to determine the structure-dependent coefficients of β1, β2 and pi+1, to
σk0. Consequently, all the terms related to the initial stiffness of k0 or its
equivalent form of Ω2

0 = ω2
0(∆t)2 = (k0/m)(∆t)2 must be replaced by σk0.

Consequently, Equation (16) can be obtained. On the other hand, it can be also
derived from the procedure for developing a structure-dependent integration
method that is constructed in the reference [18].

To affirm the effectiveness of the stability factor for improving the sta-
bility property of SD1 and SD2, the variations of Ω

(u)
0 with δi for different

values of σ = 1, 2 and 3 as well as different values of ξ = 0, 0.1 and 0.3
are plotted in Figure 4. The procedure to calculate the results for Figure 3 is
also applied to obtain the calculated results for Figure 4. Figure 4(a) reveals
that a nonlinearity interval of unconditional stability can be amplified from
0 < δi ≤ 1 to 0 < δi ≤ σ for SD1 after introducing a stability factor
σ into the structure-dependent coefficients for both zero and nonzero viscous
damping. On the other hand, for SD2, a nonlinearity interval of unconditional
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Figure 4 Variation of upper stability limit with δi for SD1 and SD2 with different σ.

stability changes from 0 < δi ≤ 2 to 0 < δi ≤ 2σ for zero viscous damping
while for the case of nonzero viscous damping it changes from 0 < δi ≤ 1 to
0 < δi ≤ σ. Consequently, it can be concluded that the choice of the stability
factor σ > 1 can effectively magnify a nonlinearity interval of unconditional
stability for both SD1 and SD2.

4.3 Accuracy Affected by Stability Factor

Stability and accuracy are the most important properties of numerical meth-
ods [11–13]. In addition to the investigation of stability property, it is also
of interest to explore whether period distortion is significantly affected by
stability factor. The relative period error for a specified value of ∆t/T0,
where T0 = 2π/ω0, for SD1 and SD2 can be calculated from Equation (14).
As a consequence, the variation of relative period error with ∆t/T0 for both
SD1 and SD2 for different values of σ = 1, 2 and 3 is shown in Figure 5.
In general, SD2 will have larger period distortion than for SD1 for a given
value of σ = 1. In fact, the relative period error is found to be as large as
2.01%, 4.37% and 6.67% for SD2 in correspondence to σ = 1, 2 and 3 as
∆t/T0 = 0.05. Similarly, it is found to be 0.81%, 2.01% and 3.19% for SD1
correspondingly. It is evident that a large stability factor will result in a large
period distortion.
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Figure 5 Variation of relative period error with ∆t/T0 for SD1 and SD2 with different σ.

To choose an appropriate stability factor for SD1 or SD2 for practical
applications, some influencing factors must be considered. It is generally
required to estimate the possible variation of the nonlinearity interval of δi. In
general, for a realistic structure, its stiffness is very rare to become twice of
the initial stiffness and then the nonlinearity interval of unconditional stability
0 < δi ≤ 2 is of general interest. This implies that a nonlinearity interval of
unconditional stability of 0 < δi ≤ 2 is required for an integration method so
that there will be no constraint on step size. It is evident that both SD1 and
SD2 with σ = 2 and 3 can automatically satisfy this requirement. However, it
is seen in Figure 5 that SD1 with σ = 3 and SD2 with σ = 2 and 3 will cause
too much period distortion. As a consequence, it seems that the SD1 with
σ = 2 is the best one among these methods for practical applications. This
integration method will be referred as MSD1 for brevity in the subsequent
study.

5 Numerical Confirmation

After the analytical studies of stability and accuracy properties of SD1 and
SD2 as well as their modified formulations, it is discovered that MSD1 can
possess a nonlinearity interval of unconditional stability of 0 < δi ≤ 2 for
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both zero and nonzero viscous damping as well as an acceptable period
distortion. Therefore, it is of importance to further substantiate that MSD1
can be applied to solve a damped stiffness hardening system without expe-
riencing any stability problem. For this purpose, two examples will be
examined next.

5.1 A Mechanical System

To simulate mechanical systems that move along a straight line, the three
basic elements of mass, spring and dashpot or damper are often adopted.
A mechanical system, which is simulated by 3 lumped masses connected by
3 springs and the connection details can be found in Figure 6. The dynamic
behaviors of the mechanical system are governed by a set of equations of
motion as: m1 0 0

0 m2 0
0 0 m3

ü1

ü2

ü3

+ C

u̇1

u̇2

u̇3


+

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

u1

u2

u3


= −

m1

m2

m3

 a. (16)

where

k1 = 107(1 +
√
|u1|), k2 = 107(1 +

√
|u2 − u1|),

k3 = 107(1 +
√
|u3 − u2|). (17)

The lumped mass as shown in Figure 6 is specified as m1 = m3

= 102 kg and m2 = 104 kg. In addition, the input ground acceleration of
a = 102 sin(πt)m/ sec2 is adopted for the analysis. In Equation (16), u1 to
u3 are introduced to represent the lateral displacement of each lumped mass
as shown in Figure 6. The damping matrix of C is also assumed to be a
Rayleigh damping of C = a0M + a1K, where the scalar constants of a0 and
a1 can be also calculated from Equation (8). The initial natural frequencies
of this mechanical system are found to be ω(1)

0 = 7.03, ω(2)
0 = 100.50 and
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Figure 6 A mechanical system simulated by 3 masses and 3 springs.

ω
(3)
0 = 141.60 rad/ sec. In the subsequent calculations, the damping ratio of
ξ = 0.1 is taken and it leads to a0 = 1.31 as well as a1 = 1.86× 10−3.

Equation (7.1) is solved by MSD1 with σ = 2 and ∆t = 0.02 sec for
zero viscous damping. In addition, the case of nonzero viscous damping is
also solved except that a step size of ∆t = 0.05 sec is taken. Numerical
results of u3 as well as the time histories of δ(j)

i for each mode are shown
in Figure 7. It is revealed by Figures 7(a) and 7(c) that MSD1 can have
stable solutions for both zero and nonzero viscous damping. It seems that the
results calculated from MSD1 almost coincide together with those calculated
from AAM. Consequently, it is affirmed that MSD1 can have the same
performance as that of AAM in the solution of both damped and undamped
stiffness hardening systems. On the other hand, it is seen in Figures 7(b) and
7(d) that 1 ≤ δ

(j)
i ≤ 2, for j = 1, 2, 3, is found for both zero and nonzero

viscous damping cases. The curve for δ(1)
i is almost overlapped together with

that of δ(3)
i for both zero and nonzero viscous damping. On the other hand,

1 ≤ δ
(2)
i ≤ 1.15 is generally found in Figures 7(b) and 7(d). Consequently,

it is affirmed by this example that MSD1 can generally have a nonlinearity
interval of unconditional stability of 0 < δi ≤ 2 for zero and nonzero viscous
damping in the solution of stiffness hardening systems.

5.2 A 11-Story Shear Building

In the illustrated example, it is shown that SD1 and SD2 result in numerical
instability in the solution of the damped stiffness hardening system. To affirm
the improved stability for MSD1, it is required to examine whether MSD1
can give an accurate solution for solving this damped stiffness hardening
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Figure 7 Forced vibration response of the mechanical system.

problem. In addition, this example is also solved by MSD1 for nonzero
viscous damping.

The displacement responses of the 1st, 6th and 11th stories are presented
in Figure 8. It is evident from Figures 8(b), 8(d) and 8(f) that MSD1 can
provide very accurate solutions for the damped stiffness hardening system.
In fact, the calculated results almost coincide together with those calculated
from AAM with same step size and are very close to the reference solutions.
Hence, the performance of MSD1 is drastically different from that of SD1
and SD2 in the solution of damped stiffness hardening system as shown
in Figure 2. On the other hand, Figures 8(a), 8(c) and 8(e) also reveal that
MSD1 can still give accurate solutions for the undamped stiffness hardening
systems. This can be applied to corroborate that the slight modification of the
formulation of SD1 to yield the new formulation of MSD1 does not affect its
performance in the solution of undamped stiffness hardening systems.

5.3 Summary

Notice that SD1 results in an instability in the solution of an undamped
stiffness hardening system as shown in Figures 1(a), 1(c) and 1(e). Besides,
both SD1 and SD2 lead to unstable solutions in the solution of a damped stiff-
ness hardening system as shown in Figures 2(a), 2(c) and 2(e). Hence, their
applications to solve general structural dynamic problems will be severely
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Figure 8 Forced vibration responses of 11-story building calculated from MSD1.

limited or inconvenient since the nonlinear type of the structural problems
may not be known in prior. It seems that the modified algorithm of MSD1
can have an improved stability property and then difficulty experienced by
SD1 and SD2 can be surmounted.

Evidently, the improved stability of MSD1 allows it easily achieve an
accurate solution in the solution of damped and undamped stiffness hardening
systems. This is thoroughly validated by the examples as shown in 7.1 and
7.2. An iteration procedure is required for AAM for each step in the solution
of nonlinear systems while MSD1 is non-iterative due to a simultaneous
combination of a nonlinearity interval of unconditional stability of 0 < δi ≤
2, explicit implementation and second order accuracy. Clearly, MSD1 can
have a high computational efficiency for solving general structural dynamic
problems when compared to conventional implicit methods. In the solution
of the mechanical system as presented in 7.1, an average iteration number
is about 3.10 for each step if using AAM is adopted to solve the undamped
stiffness hardening system while for the damped stiffness hardening system
it consumes about 3.47. A stop criterion of 10−6 is adopted for nonlinear
iterations. On the other hand, for solving the responses of 11-story building,
an average iteration number is about 7.24 and 8.71 for using AAM to solve the
undamped and damped stiffness hardening systems. A stringent stop criterion
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of 10−10 is taken for this example during nonlinear iterations. Consequently,
much more CPU demand is consumed for AAM in contrast to MSD1.

6 Conclusions

An unusual stability property is discovered for a structure-dependent method.
In fact, it has different stability property for zero and nonzero damping. In
general, SD2 can have a nonlinearity interval of unconditional stability of
0 < δi ≤ 2 for zero damping while it will be shrunk to 0 < δi ≤ 1 for
nonzero damping. This implies that it can only have conditional stability
for any damped stiffness hardening systems. Therefore, its applications are
strictly constrained or inconvenient due to conditional stability. A scheme of
using a stability factor to surmount this difficulty is proposed. This scheme
is simple and effective to magnify a nonlinearity interval of unconditional
stability. In fact, this factor σ is applied to virtually enlarge the initial stiffness
from k0 to σk0 and consequently a nonlinearity interval of unconditional
stability for SD2 can be amplified from 0 < δi ≤ 2 to 0 < δi ≤ 2σ for
zero damping and from 0 < δi ≤ 1 to 0 < δi ≤ σ for nonzero damping.
Similarly, it is shown that a nonlinearity interval of unconditional stability
for SD1 can be enlarged from 0 < δi ≤ 1 to 0 < δi ≤ σ for zero and nonzero
damping. Although a large stability factor can result in a large nonlinearity
interval of unconditional stability, it also leads to a large period distortion.
Therefore, a stability factor must be appropriately selected for a structure-
dependent method. In summary, MSD1, i.e., SD1 with σ = 2 is strongly
recommended for practical applications since it has a nonlinearity interval of
unconditional stability of 0 < δi ≤ 2 in addition to a slight period distortion.
This is because that there is almost no actual structures, whose instantaneous
degree of nonlinearity is greater than 2, i.e., δi > 2. It is important to improve
the stability property for the structure-dependent method since it can combine
the nonlinearity interval of unconditional stability of 0 < δi ≤ 2, explicit
formulation and second order accuracy. Therefore, it is very computationally
efficient for solving general structural dynamic problems.
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