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Abstract

By applying the inner product of vectors, two objective functions are found.
These vectors are taken from the structural equilibrium path. Via minimizing
these functions, with respect to the load incremental parameter and the angle
between particular vectors, two new constraint equalities are achieved. Since
the scheme of authors is general, three more constraints are also reached.
These formulations are similar to the previous presented nonlinear solvers,
which confirm the legitimacy of new procedure. Afterward, several numerical
tests are performed to prove the ability of the proposed techniques. Findings
show that the new algorithms are capable in passing the load and displace-
ment limit points of the various benchmark problems with severe nonlinear
behaviors. Based on the number of increments and iterations and also the
total analysis duration, the suggested methods have the maximum rapid
convergence rate, in comparison to the normal plane, the updated normal
plane and the cylindrical arc length strategies.
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1 Introduction

The most popular solution methods used in the nonlinear finite element
analysis are incremental-iterative techniques. In the linear incremental pro-
cess, the load-displacement path is approximated piecewise linear. Under this
assumption, the residual forces between external and internal nodal loads are
produced [1]. In this case, an iteration procedure is necessary to eliminate the
residual forces in each incremental step and to obtain more accurate results.
In each step of incremental-iterative analysis, the following equation should
be solved:

R(x, λ) = λP −Rint(x) (1)

Where the displacement vector and load incremental parameter are shown by
x and λ, respectively. Furthermore, the external load, internal load, and resid-
ual force vectors are denoted by P , Rint(x), and R(x, λ), correspondingly.
In the direct iteration method, entire loads are applied in a single step [2].
It should be noted that in the geometric nonlinear analysis, the internal loads
and stiffness matrix are nonlinear functions of the nodal displacements. To
perform analysis, the nodal displacement in each iteration is decomposed
into the displacements induced by the external load, δx̂, and the residual
force, δx̄, [3]:

δx = δx̄+ δλ δx̂, Sδx̄ = R, Sδx̂ = P (2)

In Equation (2), S indicates the tangential stiffness matrix. For a structure
with N degrees of freedom, there are N equations with N + 1 unknowns
which are the incremental displacement vector components and load incre-
mental parameter. So far, several different versions of incremental-iterative
solutions have been created based on how to control the load incremental
parameter, and the way iterations are carried out within an incremental step.
Riks and Ramm suggested the normal plane [4], and the updated normal
plane process [5], respectively. In order to find the load incremental parameter
in each iteration, Bergan minimized the residual force [6]. Furthermore,
Crisfield formulated the cylindrical arc length algorithm [7].

By considering other views, researchers suggested various approaches by
minimizing the residual displacement [8], and the unbalanced perimeter and
residual area [9, 10]. Additionally, Rezaiee-Pajand and Afsharimoghadam
obtained new constraints for geometric nonlinear analysis by optimization
techniques [11]. The generalized displacement control method (GDCM)
is an efficient technique for tracing the static equilibrium path [12]. This
technique can trace the load, and displacement limit points. Cardoso and
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Fonseca identified that GDCM can be expressed as an orthogonal arc length
approach [13]. Moreover, Leon et al. provided the modification of GDCM
[14]. It should be reminded; this technique is more robust than the stan-
dard GDCM for capturing equilibrium paths in the region with intensive
curvature. Note that the normal flow algorithm traces the lines perpendicu-
lar to Davidenko’s flow in each iteration [15]. Saffari et al. improved this
method [16].

The dynamic relaxation technique is another way of solving the structural
nonlinear equations [17–21]. In this procedure, the static equilibrium equa-
tions were solved in a fictitious dynamic space. In other words, the dynamic
relaxation method is an explicit approach for solving the simultaneous sys-
tems of equations. In this scheme, the fictitious mass and damping are added
to the static governing equations, and an artificial dynamic system is built
[22–24]. By this procedure, various nonlinear structural analyses have been
performed in recent years [25–29].

In addition, there are some other techniques accessible for the nonlin-
ear structural analysis. In 2011, Saffari and Mansouri employed two-point
approach with fourth order convergence for assessing the nonlinear behavior
of structures [30]. In another study, an accelerated incremental tactic with
the order convergence of eight was achieved by mixing several efficient
functions in the normal flow technique [31]. Three brief reviews of nonlinear
solution techniques were presented by researchers [32–34]. Furthermore,
Torkamani and Sheih, and Rezaiee-Pajand and Naserian analyzed the geo-
metric nonlinear behavior of truss and frame structures by using higher-order
stiffness matrices [35–37]. In these methods, all the linear and nonlinear
components of the strain vector were deployed in incremental static equa-
tions. Recently, a technique without incremental solution predictor step was
introduced [38], and also three constraint equalities based on the residual
factors were proposed [39].

In this paper, two new formulas are suggested for computing the load
incremental parameter in the iterative procedure. These relations are obtained
by optimizing the objective functions created from the inner product of the
residual vectors. At first, the cylindrical arc length scheme is introduced
briefly. Then, new formulations are presented. For this purpose, the inner
product of the residual vectors is written in terms of the load incremental
parameter and angle between two vectors. By minimizing the resulted func-
tions, two novel constraint equations are obtained. Afterward, the robustness
of the proposed methods is evaluated by performing several numerical tests.
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To confirm the solution validity process, the suggested procedures are com-
pared with the techniques of the other researches, such as the cylindrical
arc length (CAL), the normal plane (NP), the updated normal plane (UNP)
schemes, and also Abaqus software. To demonstrate the advantage of novel
formulations, the total number of increments and iterations required for the
analysis of each example are shown. It should be emphasized that three more
constraints are also found during the process of developing the required math-
ematical relations. These constraints belonged to the famous former nonlinear
solvers. As a result; this event can be called another way of confirming the
legitimacy of new procedure.

2 Cylindrical Arc Length Technique

In this algorithm, the distances of all iterative points of each increment
from the previous equilibrium status are kept constant [7]. This distance is
named length factor (Ln). Figure 1 shows this process in the analysis of a
single degree of freedom structure. Accordingly, the constraint equation of
the cylindrical arc length strategy can be expressed as the next line:

~tni+1 · ~tni+1 = (Ln)2 (3)

In this equality, ~tni+1 is the vector connecting the (n− 1)th point of the
equilibrium path to the (i + 1)th point of the iteration path. It should be added
that Crisfield ignored the load component against the displacement one, as
follows:

∆xn
T

i+1∆x
n
i+1 = (Ln)2 (4)

Based on Figure 1, the current relationship can be rewritten as the next form:

(∆xni + δxni )T (∆xni + δxni ) = (Ln)2 (5)

In iteration steps, inserting Equation (2) into Equation (5) and simplifying the
resulted equality, lead to the subsequent second-order relationship:

a(δλni )2 + b(δλni ) + c = 0 (6)

The constant coefficients used in the current equation are defined in the
following forms:

a = (δx̂ni )T (δx̂ni ) (7)

b = 2(∆xni + δx̄ni )T (δx̂ni ) (8)

c = 2(∆xni + δx̄ni )T (∆xni + δx̄ni )− L2
n (9)
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Figure 1 The general procedure of the cylindrical arc length technique.

After determining these coefficients and solving Equation (6), the next two
roots will be achieved for the load incremental parameter:{

δλni,1

δλni,2
= − b

2a
±

√(
b

2a

)2

− c

a
(10)

If the coming condition is satisfied, the obtained roots are real:

∆ = b2 − 4ac > 0 (11)
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The root which is closer to the last iteration point, should be selected.
The distance between the roots and the last iteration point can be obtained
via the following Equation (40):

∆xni+1∆x
n
i = (∆xni + δx̄ni + δλni δx̂

n
i )T∆xni (12)

This control formula prevents the load-displacement path returns to itself.
If ∆ in Equation (11) equals to zero, only one root exists. When ∆ becomes
negative, the obtained roots will be complex, and they are not acceptable.
To overcome this difficulty, the value of the length factor is reduced, and the
problem is solved again.

3 Optimized Normal Plane Strategy

In this technique, the vector of the iterative points location, ~nni , constructs var-
ious angles with the tangent vector to the previous equilibrium point, ~tn1 . The
process of the optimized normal plane (ONP) approach for a single degree of
freedom system is shown in Figure 2. Hence, the constraint equation can be
written as the subsequent equality:

~tn1 · ~nni = |tn1 ||nni |Cosθ (13)

~tn1 = (∆xn1 ,∆λ
n
1P ) (14)

~nni = (δxni , δλ
n
i P ) (15)

In these relations, the angle between ~nni and ~tn1 is shown by θ. According to
the equalities (14) and (15), the inner product of these vectors leads to the
succeeding result:

(∆xn1 ,∆λ
n
1P ) · (δxni , δλni P ) =

(√
∆xn

T

1 ∆xn1 + (∆λn1 )2P TP

)
(√

δxn
T

i δxni + (δλni )2P TP

)
Cosθ (16)

By inserting Equation (2) into the equality (16), the constraint equation can
be obtained as follows:

δλni (∆xn
T

1 δx̂ni + ∆λn1P
TP ) + ∆xn

T

1 δx̄ni

=

(√
[∆xn

T

1 ∆xn1 + (∆λn1 )2P TP ]
[(δx̄ni + δλni δx̂

n
i )T (δx̄ni + δλni δx̂

n
i ) + (δλni )2P TP ]

)
Cosθ

(17)



Two Ways of Solving System of Nonlinear Structural Equations 439

Figure 2 The general procedure of optimized normal plane strategy.

Squaring both sides of Equation (17), leads to the next relation:

(δλni )2[(∆xn
T

1 δx̂ni + ∆λn1P
TP )2 − Cos2θ(δx̂nT

i δx̂ni + P TP )

(∆xn
T

1 ∆xn1 + (∆λn1 )2P TP )]

+ 2(δλni )[(∆xn
T

1 δx̄ni )(∆xn
T

1 δx̂ni + ∆λn1P
TP )

− Cos2θ(δx̄nT

i δx̂ni )(∆xn
T

1 ∆xn1 + (∆λn1 )2P TP )]

+ [(∆xn
T

1 δx̄ni )2 − Cos2θ(δx̄nT

i δx̄ni )

(∆xn
T

1 ∆xn1 + (∆λn1 )2P TP )] = 0 (18)
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As a result, the inner product of the vector passing through the iterative
points and the tangent vector to the previous equilibrium point, leads to an
objective function with two variables. To achieve the constraint equation,
this function is optimized based on the angle variable between the aforesaid
vectors, and also the load incremental parameter. At the first stage, function
(18) is minimized with respect to δλni :

(δλni )[(∆xn
T

1 δx̂ni + ∆λn1P
TP )2 − Cos2θ(δx̂nT

i δx̂ni + P TP )

(∆xn
T

1 ∆xn1 + (∆λn1 )2P TP )]

+ [(∆xn
T

1 δx̄ni )(∆xn
T

1 δx̂ni + ∆λn1P
TP )− Cos2θ(δx̄nT

i δx̂ni )

(∆xn
T

1 ∆xn1 + (∆λn1 )2P TP )] = 0 (19)

On the other hand, by squaring both sides of Equation (17), the next value for
Cos2θ can be achieved:

Cos2θ =
[δλni (∆xn

T

1 δx̂ni + ∆λn1P
TP ) + ∆xn1δx̄

n
i ]2

[∆xn
T

1 ∆xn1 + (∆λn1 )2P TP ]

[(δx̄ni + δλni δx̂
n
i )T (δx̄ni + δλni δx̂

n
i ) + (δλni )2P TP ]

(20)

Substituting Cos2θ from Equation (20) into Equation (19), and performing
some algebraic simplifications lead to the subsequent quadratic constraint
relation:

a(δλni )2 + b(δλni ) + c = 0 (21)

The constant coefficients used in the current equation are given in the below
lines:

a = −(∆λn1 )2δx̂n
T

i δx̄ni P
TP −∆λn1δx̂

nT

i δx̂ni ∆xn
T

1 δx̄ni

+ ∆λn1∆xn
T

1 δx̄ni P
TP + δx̂n

T

i δx̄ni ∆xn
T

1 ∆xn1 (22)

b = −(∆λn1 )2δx̄n
T

i δx̄ni P
TP − 2∆λn1δx̂

nT

i δx̄ni ∆xn
T

1 δx̄ni

+ δx̄n
T

i δx̄ni ∆xn
T

1 ∆xn1 (23)

c = −∆λn1δx̄
nT

i δx̄ni ∆xn
T

1 δx̄ni (24)

After calculating the constant coefficients and solving Equation (21), the
roots are obtained from relation (10).
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At the second stage, for optimizing the function (18), it is minimized with
respect to the angle parameter. In this way, the next relation is obtained:

Sin2θ[∆xn
T

1 ∆xn1 + (∆λn1 )2P TP ]

[(δλni )2(δx̂n
T

i δx̂ni + P TP ) + δλni (2δx̂n
T

i δx̄ni ) + (δx̄n
T

i δx̄ni )] = 0
(25)

The second term of the current equation, the initial arc length, cannot be zero.
Thus, there are two other circumstances. In the former case, by setting Sin 2θ
to zero, minimum objective function is computed as follows:

Sin 2θ = 0⇒ θ = 90◦ ⇒ ~tn1 ⊥~nni (26)

In this case, similar to the normal plane method, the vector passing through
the iterative points is perpendicular to the tangent vector to the equilibrium
point of the previous increment [4]. The constraint relation of this technique
has the following appearance:

δλni = − ∆xn
T

1 δx̄ni
∆xn

T

1 δx̂ni + ∆λn1P
TP

(27)

In the latter case, the third term of Equation (25) can be zero. This leads to
the next quadratic equation for calculating the load incremental parameter:

α(δλni )2 + β(δλni ) + γ = 0 (28)

α = δx̂n
T

i δx̂ni + P TP (29)

β = 2δx̂n
T

i δx̄ni (30)

γ = δx̄n
T

i δx̄ni (31)

Usually a scale factor is employed in the constraint equation, which includes
force and displacement components. In the current formulation, the load
component is neglected without using the scale factor. As a consequence,
the coefficient α in Equation (28) is simplified as follows:

α = δx̂n
T

i δx̂ni (32)

By applying the recent constant coefficients, α, β and γ, ∆ in Equation (11)
equals to zero. In this case, Equation (28) has only the next root:

δλni = −δx̄
nT

i δx̂ni
δx̂n

T

i δx̂ni
(33)
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It is worth mentioning that Equation (33) is similar to the constraint relation
belongs to the minimum residual displacement technique [8]. This is an
important result since it shows the accuracy and generality of the formulations
of authors.

4 Optimized Updated Normal Plane Strategy

In this technique, the vector of the iterative points locus takes various angles
with the vector connecting the previous equilibrium point to the points placed
on the iteration path, ~tni . The optimized updated normal plane (OUNP)
method for a single degree of freedom structure is shown in Figure 3. The
related constraint equation has the following expression:

~tni · ~nni = |tni ||nni |Cosθni (34)

~tni = (∆xni ,∆λ
n
i P ) (35)

In relation (34), θni is the angle between ~nn
i and ~tni . Substituting vectors (15)

and (35) into Equation (34) leads to the following equality:

(∆xni ,∆λ
n
i P ) · (δxni , δλni P ) =

(√
∆xn

T

i ∆xni + (∆λni )2P TP

)
(√

δxn
T

i δxni + (δλni )2P TP

)
Cosθni

(36)

The next result can be found by inserting Equation (2) into (36):

δλni (∆xn
T

i δx̂ni + ∆λni P
TP ) + ∆xn

T

i δx̄ni

=

(√
[∆xn

T

i ∆xni + (∆λni )2P TP ]
[(δx̄ni + δλni δx̂

n
i )T (δx̄ni + δλni δx̂

n
i ) + (δλni )2P TP ]

)
Cosθni

(37)

By squaring both sides of the current equality, the subsequent relationship is
obtained:

(δλni )2[(∆xn
T

i δx̂ni + ∆λni P
TP )2 − Cos2θni (δx̂n

T

i δx̂ni + P TP )

(∆xn
T

i ∆xni + (∆λni )2P TP )]

+ 2(δλni )[(∆xn
T

i δx̄ni )(∆xn
T

i δx̂ni + ∆λni P
TP )

− Cos2θni (δx̄n
T

i δx̂ni )(∆xn
T

i ∆xni + (∆λni )2P TP )]
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Figure 3 The general procedure of optimized updated normal plane scheme.

+ [(∆xn
T

i δx̄ni )2 − Cos2θni (δx̄n
T

i δx̄ni )

(∆xn
T

i ∆xni + (∆λni )2P TP )] = 0 (38)

According to the recent equation, the inner product of the vectors ~tni and
~nn
i , constitutes an objective function which has two variables. To achieve the

constraint equation, this objective function is optimized based on θni and δλni .
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At first, function (38) is minimized with respect to the load incremental
parameter. Subsequently, the resulted equation has the coming form:

(δλni )[(∆xn
T

i δx̂ni + ∆λni P
TP )2 − Cos2θni (δx̂n

T

i δx̂ni + P TP )

(∆xn
T

i ∆xni + (∆λni )2P TP )]

+ [(∆xn
T

i δx̄ni )(∆xn
T

i δx̂ni + ∆λni P
TP )

− Cos2θni (δx̄n
T

i δx̂ni )(∆xn
T

i ∆xni + (∆λni )2P TP )] = 0 (39)

By squaring both sides of the relationship (37), the squared cosine of θni is
defined as follows:

Cos2θni =
[δλni (∆xn

T

i δx̂ni + ∆λni P
TP ) + ∆xni δx̄

n
i ]2

[∆xn
T

i ∆xni + (∆λni )2P TP ]
[(δx̄ni + δλni δx̂

n
i )T (δx̄ni + δλni δx̂

n
i ) + (δλni )2P TP ]

(40)

Substituting the current equality into Equation (39) and simplifying the result,
lead to the next constraint equation:

a(δλni )2 + b(δλni ) + c = 0 (41)

a = −(∆λni )2δx̂n
T

i δx̄ni P
TP −∆λni δx̂

nT

i δx̂ni ∆xn
T

i δx̄ni

+ ∆λni ∆xn
T

i δx̄ni P
TP + δx̂n

T

i δx̄ni ∆xn
T

i ∆xni (42)

b = −(∆λni )2δx̄n
T

i δx̄ni P
TP − 2∆λni δx̂

nT

i δx̄ni ∆xn
T

i δx̄ni

+ δx̄n
T

i δx̄ni ∆xn
T

i ∆xni (43)

c = −∆λni δx̄
nT

i δx̄ni ∆xn
T

i δx̄ni (44)

In a similar fashion to the previous formulation, after finding the con-
stant coefficients and solving Equation (41), two responses according to
Equation (10) are obtained for δλni .

In the following, the second minimization of the inner product of ~tni and
~nn
i with respect to angle θni , is formulated:

Sin2θni [∆xn
T

i ∆xni + (∆λni )2P TP ]

[(δλni )2(δx̂n
T

i δx̂ni + P TP ) + δλni (2δx̂n
T

i δx̄ni ) + (δx̄n
T

i δx̄ni )] = 0
(45)

By setting the first term of Equation (45) to zero, orthogonality of the
subsequent vectors is proved:

Sin 2θni = 0⇒ θni = 90◦ ⇒ ~tni ⊥~nn
i (46)
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This is an important outcome which is the same hypothesis used for the
updated normal plane method [5]. As a result, the next constraint equality
belonged to the mentioned scheme, UNP:

δλni = − ∆xn
T

i δx̄ni
∆xn

T

i δx̂ni + ∆λni P
TP

(47)

Evidently, the second term of Equation (45) is nonzero. Hence, by setting
the last term of this equation to zero, the load incremental parameter can be
obtained. This way leads to the same quadratic equation, which is Equation
(28) with coefficients (29) to (31).

5 Numerical Results

To evaluate the ability of the proposed approaches, a computer program based
on new Equations (21) and (41), and also Equation (6), CAL procedure, is
provided by authors. On the other hand, two of the obtained similar constraint
relations, the normal plane scheme and the updated normal plane technique,
are utilized in this program to compare their results with the outcomes of
the suggested schemes. The geometric nonlinear analyses of several frames,
trusses, and shell are performed via these strategies. For analyzing these
structures, the number of convergence points (Ncp), the number of iterations
(Ni), and the total analysis duration (Ta) of the schemes are recorded, which
are not usually similar to each other. To demonstrate the differences, the
number of iterations and increments of all strategies, and also the analysis
duration are presented.

It should be added, an assigned number of iterations is used for each step.
In each step, the iterative process continues until the number of iterations
exceeds the maximum allowable value or the convergence criterion is ful-
filled. Also, the amount of the acceptable residual error in the convergence
criterion is usually defined in the range of 10−5 to 10−2 [9]. In this paper,
the maximum number of iterations and the residual error are 10 and 10−4,
respectively. As a common practice, the length factor of the (n)th increment,
Ln, is given by [34]:

Ln = ±Ln−1

(
JD
Jn−1

)0.5

(48)

In this relation, the length factor in the (n-1)th step is shown by Ln−1.
Furthermore, the number of iterations assumed by the analyzer and the
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number of iterations in the (n-1)th step are denoted by JD and Jn−1,
correspondingly. It should be noted, the length factor has the following
sign [41]:

Sign (Ln) = Sign (∆xTn−1S
−1P ) (49)

In this equality, ∆xn−1 is the displacement vector of the previous step.

5.1 12-Member Space Truss

Figure 4 presents a space truss with 13 nodes and nine degrees of freedom.
Structural member sizes are shown on this figure. A unit downward vertical
load is applied at the center point. Nodes indicated with a circle, are fixed
supports at the height of zero, and the other nodes are at 150 mm height.

Figure 4 12-member space truss.
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The cross-section area of members, and Young’s modulus of elasticity are 10
mm2 and 103 N/mm2, respectively.

In this paper, the space truss was analyzed 45 times by using ONP, OUNP,
CAL, NP, and UNP methods. Note that different initial length factors were
utilized. For L1 = 1, the load-displacement curves of nodes 1 and 2 are
illustrated in Figure 5. Based on these diagrams, both novel techniques and
also CAL strategy were able to successfully trace the static equilibrium path
of the truss with four load and displacement limit points. It should be empha-
sized that tracing equilibrium path by NP method returned to itself after the
first snap-through branch. Furthermore, analyzing with UNP procedure was
stopped while reaching to the initial limit point.

By considering the length factor influence of the predictor step, the space
truss was analyzed with the different values for the initial length factor.
The total number of increments and iterations required for the analysis of this
structure are listed in Table 1. According to the results, the optimized normal
plane scheme and the optimized updated normal plane technique analyzed
successfully 12-member truss with the minimum number of increments and
iterations compared to the other methods. It should be noted that these
numbers are almost constant and have a slight dependency on the initial
length factor for the proposed tactics. Based on the obtained results, CAL
strategy needed more iterations and increments for a full assessment of the
structural behavior. By comparing the outcomes of the new methods with
the other three procedures, the mentioned differences increased for the lower
values of L1. For instance, the CPU time of CAL procedure is several hundred
times of ONP and OUNP algorithms if L1 = 0.01 is applied.

5.2 Seven-Member Truss

Figure 6 illustrates this structure, which has seven degrees of freedom. A con-
centrated load is applied to the middle of this truss. The cross-section areas
of the horizontal members are 54.85 cm2, and for the others are 51.65 cm2.
Moreover, the elasticity modulus of all members is 6889.4 kN/cm2. Previ-
ously, this truss was analyzed for investigating the elastic buckling of the
members [42]. Furthermore, it was employed to verify the ability of the
higher-order stiffness matrix in predicting the behavior of structures [35].

The purpose was to reach the static equilibrium paths for nodes 4 and 5 in
the horizontal and vertical direction, correspondingly. The geometric nonlin-
ear analysis of this truss was performed by employing the novel approaches,
NP, UNP, and CAL methods. It should be added that this structure was
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Figure 5 The static equilibrium paths of 12-member space truss.
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Table 1 Comparison of the methods utilized for analyzing 12-member space truss
L1 = 1 L1 = 0.1 L1 = 0.01

Method Ncp Ni Ncp Ni Ncp Ni Ta (s)
ONP 118 342 126 354 121 329 0.40

OUNP 122 354 129 364 138 386 0.55

CAL 723 2167 7222 21657 72217 216635 70.85

NP Returns to itself after
the first limit point

222 648 Returns to itself after the
second load limit point

UNP Up to the first
limit point

Returns to itself after
the first limit point

Up to the second
load limit point

Figure 6 Seven-member truss.

analyzed 30 times. The outputs for the initial length factor equal to 0.5,
are shown in Figure 7. Due to the complex structural behavior, the static
equilibrium paths of this truss include several snap-through and snap-back
regions. However, the techniques of authors, and also the cylindrical arc
length tactic could successfully pass all these limit points. Note that the other
two algorithms failed in passing the limit points. Besides, to evaluate the
accuracy of new methods, seven-member truss was analyzed via Abaqus
software by using wire element and static analysis. Figure 7 presents the
obtained results, which are consistent with Abaqus outputs.

In Table 2, all obtained results with three different values of L1 are
listed. Based on these outcomes, the first suggested technique could accom-
plish the load-displacement curve with the minimum number of increments
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Figure 7 The static equilibrium paths of seven-member truss.

and iterations. In other words, the optimized normal plane algorithm was the
fastest method to trace the static equilibrium path of this truss for each initial
length factor. The optimized updated normal plane scheme with the same
characteristics had the next rank. On the contrary, CAL tactic stayed in the
third place with the highest number of increments and iterations. Emphasize
that for CAL algorithm, these numbers increased greatly while the value of
L1 was reduced. In addition, it was found that the reduction of the initial
length factor was ineffective on the performance of the normal plane method
and its updated one. However, these two techniques were not able to pass the
limit branch of the equilibrium path of this 2D truss.
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Table 2 Comparison of the methods utilized for analyzing seven-member truss
Method

ONP OUNP CAL NP UNP
Tracing Tracing

L1 Ncp Ni Ncp Ni Ncp Ni Situation Situation
0.01 178 518 176 515 30560 30959 Up to the first

load limit point
Up to the first
load limit point

0.1 166 490 185 549 3055 5298 Jumps to the
third limit point
and returns to
itself

Up to the third
limit point

0.5 145 431 187 565 611 1222 Up to the third
limit point

Up to the last
limit point

5.3 Star-Shaped Dome Truss

In Figure 8, the plan and view of a 24-member truss are indicated. The elas-
ticity modulus of the members and cross-section area are 3000 N/mm2 and
317 mm2, respectively. A concentrated unit load is applied to the tip of the
truss. This three-dimensional structure has been frequently considered for
the nonlinear analysis by other researchers. For example, this benchmark
problem was utilized to assess the effect of buckling on the global instability
of the truss [43], verify several orthogonal approaches [44], investigate the
post buckling behavior of the truss under thermal load [45], and evaluate
the capability of the dynamic relaxation scheme [20, 46]. Herein, this space
structure was analyzed via the proposed techniques, NP, UNP, and CAL
methods.

Figure 9 shows the load-displacement path of nodes 1 and 2 with a unit
initial length factor. These curves illustrate the snap-through behavior at these
nodes. While the snap-back branch exists at the equilibrium path of node 2.
Evidently, the normal plane method could not pass the first load limit point
of both nodes and returned to itself. Whereas, the procedures of authors
and the cylindrical arc length technique traced the static equilibrium paths
completely. These strategies reached the responses compatible with those of
the other researches, which is the beginning of the inelastic post buckling of
this benchmark structure after accomplishment the load level of 300 N [43].
The updated normal plane scheme finished this analysis by jumping from the
second load limit point of the diagrams related to node 2.

The main solution parameters of the suggested algorithms, NP, UNP, and
CAL techniques are arranged in Table 3. To reach an actual conclusion, the
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Figure 8 Star-shaped dome truss.

star truss was analyzed 45 times by using these five methods and different
values for L1. Based on the presented results, the optimized normal plane
strategy analyzed star-shaped dome truss with the highest speed, 45–62
increments and 137–166 iterations for three amounts of L1. The ranges of
the increment and iteration numbers were much wider for the cylindrical
arc length algorithm, which indicates this strategy greatly depends on the
input values. With the numbers close to ONP method, OUNP scheme traced
successfully these complex load-displacement curves. The updated normal
plane procedure could not pass the load limit points by using decreased initial
length factors. On the other hand, the reduction of L1 had a negative effect on
the performance of UNP method. It should be added that this process did not
change the ability of NP technique.
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Figure 9 The static equilibrium paths of star-shaped dome truss.
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Table 3 Comparison of the methods utilized for analyzing star-shaped dome truss
Method

ONP OUNP CAL NP UNP
L1 Ncp Ni Ncp Ni Ncp Ni Tracing Situation Ncp Ni

0.01 62 166 64 174 4816 14437 Up to the first
load limit point

0.1 59 168 63 181 482 1442 Returns to itself
after the first
load limit point

Up to the second
load limit point

1 45 137 51 159 49 146 42 144

Figure 10 Arch shape truss.

5.4 Arch Shape Truss

In Figure 10, an 18-node two-dimensional truss is illustrated. It has 32
degrees of freedom. Due to the asymmetry of geometry and loading, the
behavior of this structure is extremely nonlinear. Previously, researchers
analyzed this 33-member truss by using Newton-Raphson [47], the updated
normal plane [48], and the zero residual area methods [9]. The cross-section
area of all members is 3 cm2, and their elasticity modulus is 3× 106 kN/cm2.
It should be added that three concentrated vertical loads with the value of
1 kN are applied to this truss.

This example aimed to trace the load-deflection curve of the highest
structural node. Figure 11 demonstrates the static equilibrium paths with
L1 = 1. It is obvious that the suggested approaches and CAL method traced
the equilibrium path including the snap-back and snap-through branches.
On the contrary, the normal plane scheme and the updated one were not able
to pass the load limit point.

According to Table 4, the total duration of analysis by CAL technique
was minimum for unit initial length factor. However, the CPU time increased



Two Ways of Solving System of Nonlinear Structural Equations 455

Figure 11 The static equilibrium path of arch shape truss.

Table 4 Comparison of the methods utilized for analyzing arch shape truss
Method L1 Ta (Second) L1 Ta (Second) L1 Ta (Second)
ONP 0.57 0.77 0.69

OUNP 0.58 0.78 0.82

CAL

1

0.55

0.1

2.36

0.01

13.45

NP

Up to the first load
limit point

Jumps from snap-back
point to end of the path

Returns to itself after
the first limit pointUNP Jumps from the first

snap-through point to end
of the path

extremely while the L1 value entered lesser. It should be mentioned, the
analysis duration related to CAL tactic was 13.45 second for L1 = 0.01.
The Ta parameter of the suggested algorithms was almost constant as the
initial length factor was changed. In other words, ONP and OUNP strategies
analyzed arch shape truss in the range of 0.5 to 0.8 second.

5.5 Semi-Cylindrical Shell

Figure 12 shows a semi-cylindrical shell with 3 mm thickness subjected to a
concentrated load in the middle of the free-hanging circumferential periph-
ery. The other curved edge and longitudinal boundaries are fully clamped.
Considering the symmetry, it is only needed to analyze half of the shell. Sze
and Zheng [49], and also Sze et al. [50] investigated the behavior of this 3D
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Figure 12 Semi-cylindrical shell.

Figure 13 The static equilibrium paths of semi-cylindrical shell.

structure with different numbers of meshes. In the following research, 480
triangular meshes used for the analyses. Furthermore, Young’s modulus is
taken as E = 2068.5 kN/cm2, and Poison’s ratio as ν = 0.3.

Figure 13 illustrates equilibrium paths of the loaded point in the horizon-
tal and vertical directions. It should be remembered that NP and UNP tech-
niques only traced the initial part and middle part of the load-displacement
curves, respectively. Whereas, the first proposed method analyzed perfectly
this benchmark structure with the least time. The number of increments and
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iterations of ONP approach was 177 and 1237, correspondingly. Furthermore,
the second novel scheme required 205 increments and 2872 iterations for
tracing the equilibrium paths of semi-cylindrical shell. It should be noted that
the analysis duration by CAL tactic was maximum.

5.6 Bridge Truss

As it is demonstrated in Figure 14, this plane truss has nine nodes. All the
structural properties of this benchmark problem are assumed to be dimension-
less [47, 51]. This truss is under a lateral force that equals to 100. Moreover,
the axial stiffness of members, EA, is 3×105.

To obtain the equilibrium paths of nodes 1 and 7, this plane truss was
examined via novel constraints, UNP, NP and CAL methods. Figure 15
reveals the results of these analyses. The equilibrium path of node 1 indicates
snap-back behavior [9]. However, the load-displacement curve of node 7
has snap-through branches. It is obvious that the analyses were completed
without any difficulty by using the presented optimized tactics, and also CAL
procedure for both nodes of bridge truss. While NP and UNP schemes failed
at crossing the second load limit point.

In addition, the total number of increments and iterations of analysis with
new methods and the cylindrical arc length technique are shown in Table 5.
The results of 40 times analyses with different L1 amounts indicate that ONP
tactic always traced the equilibrium paths of this structure with the least
numbers of increments and iterations. The other novel technique achieved
the numbers close to ONP method. As it is shown in Table 5, the cylindrical
arc length strategy analyzed this eight-bar truss by further increments and
iterations [9]. However, NP scheme was not able to pass the second load

Figure 14 Bridge truss.
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Figure 15 The static equilibrium paths of bridge truss.

limit point of the related static equilibrium curves, even by reducing initial
length factors. It should be added that decreasing the initial length factor
reduced the ability to trace equilibrium path for the updated normal plane
method. In other words, end point of the static equilibrium curves were
transmitted to the first load limit point by utilizing UNP scheme, while L1

decreased. According to these results, the procedures of authors worked more
quickly than CAL, NP, and UNP techniques. It should be emphasized that NP
and UNP schemes could not analyze this benchmark structure completely.
As a result, they do not have any value in Table 5.
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Table 5 Comparison of the methods utilized for analyzing bridge truss
Method

ONP OUNP CAL UNP
L1 Ncp Ni Ncp Ni Ncp Ni Tracing Situation
0.001 68 168 68 168 81977 81997

Up to the first limit point
0.01 60 151 60 153 8198 8407

0.1 56 148 59 158 820 1126 Up to the second load limit point

1 34 91 47 134 82 182 Returns to itself after the second
load limit point

6 Conclusion

In this paper, the static equilibrium paths of various structures were obtained
by the optimization schemes. By minimizing the objective functions, resulted
from the inner product of vectors, with respect to the load incremental
parameter and the angle between vectors, two new formulas were achieved
as the constraint equations. The suggested algorithms are able to trace the
static load-displacement curves of structures with severe nonlinear behavior,
having snap-back and snap-through regions. To prove the capability of these
procedures, geometric nonlinear analyses of the several structures were per-
formed. The most outstanding characteristic of the proposed approaches is
the rapid convergence rate with high accuracy. In other words, the innovative
optimized methods reach the true answers faster than the normal plane, the
updated normal plane, and the cylindrical arc length strategies. Furthermore,
the accuracy of the new approaches was compared with the results of previous
researches.

Note that the speed of these solution techniques is important in the
analysis of different structures, when low values for the length factor are uti-
lized. Applying the suggested formulations, the load incremental parameter
in each iteration was not influenced by the length factor, significantly. On the
contrary, the cylindrical arc length procedure was extremely dependent on
the analyzer choice. In other words, the number of increments and iterations,
and the analysis duration were related to the magnitude of the length factor
specified by the analyzer. In fact, the nonlinear analysis duration increased
while the length factor was reduced in the cylindrical arc length strategy.
As a result, all the equilibrium paths were traced entirely by the novel opti-
mized schemes. Furthermore, the total number of increments and iterations
of the proposed methods was less than those of CAL algorithm. It should be
reminded; the length factor did not affect on the analysis duration of ONP and
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OUNP schemes. It is found that the normal plane, and the updated normal
plane techniques could not pass some of the limit points, so these schemes
were not able to display the entire static equilibrium path of some structures.
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Notations

x displacement vector
λ load incremental parameter
P external load vector
Rint(x) internal load vector
R(x, λ) residual force vector
δx̂ displacement increment due to external load
δx̄ displacement increment due to residual load
S tangential stiffness matrix
Ln length factor
n increment number
i iteration number
~tni+1 vector connecting point (n− 1) to point (i + 1)
a, b, c, α, β, γ constant coefficients of quadratic equation
∆ discriminant of second-order equation
~nni vector of iterative points location
~tn1 tangent vector to previous equilibrium point
θ angle between ~n and ~t
Ncp number of convergence points
Ni number of iterations
Ta total analysis duration
JD number of iterations assumed by analyzer
Jn−1 number of iterations in (n− 1)th step
E Young’s modulus of elasticity
ν Poison’s ratio
A cross-section area
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