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Abstract

In this article, a singularly perturbed parabolic convection-diffusion equation
on a rectangular domain is considered. The solution of the problem possesses
regular boundary layer which appears in the spatial variable. To discretize the
time derivative, we use two type of schemes, first the implicit Euler scheme
and second the implicit trapezoidal scheme on a uniform mesh. For approx-
imating the spatial derivatives, we use the monotone hybrid scheme,
which is a combination of midpoint upwind scheme and central difference
scheme with variable weights on Shishkin-type meshes (standard Shishkin
mesh, Bakhvalov-Shishkin mesh and modified Bakhvalov-Shishkin mesh).
We prove that both numerical schemes converge uniformly with respect to the
perturbation parameter and are of second order accurate. Thomas algorithm
is used to solve the tri-diagonal system. Finally, to support the theoretical
results, we present a numerical experiment by using the proposed methods.
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1 Introduction

The theory of singular perturbation is a developing mathematical subject
with a long history and a strong promise for continued important applica-
tions throughout science and engineering. We can find singular perturbation
problems in a lot of areas of Engineering, Biological science and Applied
Mathematics, e.g., Fluid mechanics, Quantum mechanics, Elasticity, Chem-
ical reactor theory, Magneto hydrodynamics and Reaction diffusion process,
etc. With immense growth of science and technology day by day, many
practical problems in boundary layer theory or approximation of solution
of various problems can be described by ordinary or partial differential
equations. When very small parameters are involved, problems are typically
termed perturbed problems. These problems are become more and more
difficult to solve and we require the use of asymptotic approach. However,
the theory of asymptotic analysis for differential operators has mainly been
developed for regular perturbations where the perturbations are subordinate
to the unperturbed operator. In some problems, the perturbations are operative
over very narrow regions across which the dependent variable undergoes very
rapid changes. These narrow regions known as boundary layers, frequently
adjoin the boundaries of the domain of interest. Owing to the fact that the
small parameter multiplies the highest derivative making the problem singu-
larly perturbed problem (SPP). Consequently, these narrow regions referred
as boundary layers in fluid mechanics, edge layers in solid mechanics, skin
layers in electrical applications, transition points in quantum mechanics
and Stokes lines and surfaces in Mathematics (refer ‘(Bansal et al., 2017;
Shishkin & Shishkina, 2009)’ and references therein). It is known that SPPs
are difficult to solve by using the standard numerical methods on uniform
meshes. Due to the presence of the small parameter (ε) in these initial-
boundary-value problems, standard numerical methods on uniform mesh fail
to give accurate results and usually are unstable when ε tends to zero. Thus to
achieve accurate numerical solution, we need large number of mesh points
where the mesh size matches with the order of ε which is unacceptable
due to the massive computational cost. This drawback motivates to develop
ε-uniform numerical methods (refer Brandt & Yavneh (1991); Kellogg &
Tsan (1978)). At the same time, we have several results which deals with the
numerical solution of parabolic SPP. To cite a few on Shishkin-type meshes,
graded meshes and adaptive meshes, one can refer Clavero et al. (2005);
Linß et al. (2000) where the authors proposed ε-uniformly convergent finite
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difference schemes. Also for p-refinement, XFEM, one may refer Gartland
(1988a), O’Riordan & Stynes (1991) and Guo & Stynes (1993).

The robust approximation of boundary layers requires either the use of
the h version on non-uniform meshes, or the use of the high order p and hp
versions on specially designed meshes Schwab et al. (1996). In both cases,
the a-priori knowledge of the position of the layers is taken into account. One
dimensional SPP numerically solved in Schwab et al. (1996) by using h, p,
hp-refinement meshes and they have shown that solutions are more accurate
on hp-refinement mesh comparing with h and p-refinement. A coupled sys-
tem of singularly perturbed reaction-diffusion equations approximated by the
hp-FEM in Melenk et al. (2013). Singularly perturbed boundary value prob-
lems on smooth domains and non-smooth domains solved in Xenophontos
(1998a) by using h− p finite element method.

A typical transport mechanism involving time-dependent convection-
diffusion, with convection being the dominant process, can be expressed as
φ∂u∂t − ∇ · (D∇u) + v · ∇u = F. This equation is mostly used in soil
science, chemical, environmental, and petroleum reservoir engineering, and
water resources. Some of the known applications include the movement of
ammonium or nitrate in soils ‘(Misra & Mishra, 1977)’, pesticide move-
ment ‘(Kay & Elrick, 1967)’, the transport of radioactive waste materials.
To clearly understand the phenomena of moving sharp fronts of this equa-
tion and the techniques of singular perturbation, we consider the following
singularly perturbed parabolic convection-diffusion initial-boundary-value
problem (IBVP) with Dirichlet boundary conditions:

(
∂
∂t + Lε,x

)
u(x, t) = f(x, t), (x, t) ∈ D,

u(x, 0) = u0(x), u(0, t) = u(1, t) = 0, t ∈ (0, T ], x ∈ [0, 1],
(1)

where D = (0, 1) × (0, T ]. The operator Lε,x is defined as: Lε,xu(x, t) =
−εuxx(x, t) − a(x)ux(x, t) + b(x)u(x, t), 0 < ε � 1 and the coefficients
a(x), b(x) are sufficiently smooth functions such that a(x) ≥ α > 0, b(x) ≥
β ≥ 0 on D. Under sufficiently smoothness and compatibility conditions on
the functions u0 and f , the IBVP (1), in general admits a unique solution
u(x, t). The exact solution of (1) has a regular layer of order O(ε) located at
the boundary x = 0 of D.

There are research articles which deal with various numerical methods for
convection-diffusion problems. In last few decades, many researchers have
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developed ε-uniform numerical methods for stationary and non stationary
problems; for more information, one can refer to the recent books ‘(Miller
et al., 2012; Shishkin & Shishkina, 2009)’. To refer few articles; Clavero
et al. in ‘(Clavero et al., 2003)’ solved the parabolic convection-diffusion
equation by using the upwind scheme on a special nonuniform mesh for the
spatial discretization and they shown the order of convergence is almost one.
Stynes and O’Riordan in ‘(Ng-Stynes et al., 1988)’ solved the time dependent
convection-diffusion equations, Stynes and Roos in (Stynes & Roos, 1997)
used the midpoint upwind scheme to solve the time independent convection-
diffusion problem by using the hybrid method, Mukherjee and Natesan
in ‘(Mukherjee & Natesan, 2009)’ solved the time dependent convection-
diffusion problem. They shown the rate of convergence is almost first order
in time direction and almost second order up to a logarithm factor in spatial
direction. In order to show globally the second order rate of convergence
both with respect to time and space, they assumed square of number of
mesh points in spatial variable equal to number of mesh points in temporal
direction. Andreev and Kopteva solved the convection-diffusion problem in
‘(Andreev & Kopteva, 1998)’ using the monotone three-point finite difference
scheme and shown the second order rate of convergence on a Bakhvalov
mesh and the second order rate of convergence upto logarithm factor on a
Shishkin mesh. Linß ‘(Linß, 2001)’ provided the sufficient condition for uni-
form convergence on layer-adapted grids for quasilinear convection-diffusion
problems.

Here, in this work, we have solved the IBVP(1) by using the implicit
Euler for descretization in time and a monotone hybrid scheme to discretize
in space, which is a combination of the midpoint and the central difference
scheme with variable weights on the Shishkin-type-meshes to get the optimal
order of convergence. The hybrid scheme discussed in ‘(Stynes & Roos,
1997)’ is a combination of the the midpoint and the central difference scheme,
where a apriori information is needed to switch from the midpoint scheme to
the central difference scheme as the mesh goes from coarse to fine. But in the
weighted monotone hybrid scheme discussed here, the weights are so chosen
that the scheme is automatically switched from midpoint scheme to central
difference scheme as the mesh goes from coarse to fine and so, having the
advantage for over the hybrid scheme discussed in ‘(Stynes & Roos, 1997)’.
Again, to obtain the second order accuracy with respect to time, we use the
implicit trapezoidal for time discretization. The main aim in this work is to
obtain a second order accuracy both with respect to time and space without
the restriction mentioned earlier in ‘(Mukherjee & Natesan, 2009)’. Again for



A Second Order Weighted Numerical Scheme on Nonuniform Meshes 471

computational purpose, we use the Thomas algorithm which is more efficient
and reduce the time over the usual matrix inverse method used in the earlier
articles mentioned above.

This paper is organized as follows. In Section 2, we study the bounds of
the solution and its derivatives. In Section 3, we describe the Shishkin-type
meshes (Shishkin mesh (S-mesh), Bakhvalov-Shishkin mesh (B-S mesh) and
modified Bakhvalov-Shishkin mesh (M-B-S mesh)) and the construction of
the finite difference schemes. Section 4 is devoted to the study of the uniform
convergence of the finite difference schemes. Numerical results are discussed
in Section 5 in shapes of tables and figures.

Throughout this paper, ‘C’ denotes a generic positive constant indepen-
dent of ε, the mesh points and the mesh size. The subscripted C’s are fixed
constants. Here, ‖.‖ denotes the standard supremum norm, which is defined
as ||f ||∞ = sup(x,t)∈D |f(x, t)|, for a function f defined on some domain D.

2 Analytic Behavior of the Solution

The operator
(
∂
∂t + Lε,x

)
in (1) satisfies the following maximum principle:

Lemma 2.1. (Maximum principle) Suppose the function ψ(x, t) ∈ C0(D) ∩
C2(D), satisfies

(
∂
∂t + Lε,x

)
ψ(x, t) ≥ 0 in D, ψ(x, t) ≥ 0 on Γ. Then

ψ(x, t) ≥ 0 for all (x, t) ∈ D = [0, 1]× (0, T ].

Proof. Let (x∗, t∗) ∈ D such that ψ(x∗, t∗) = min(x,t)∈D ψ(x, t) and assume
that ψ(x∗, t∗) < 0. Clearly, (x∗, t∗) /∈ Γ for (x∗, t∗) ∈ D. As it attains
minimum at (x∗, t∗), we have ψx = 0, ψt = 0 and ψxx ≥ 0 at (x∗, t∗).

Therefore, from (1), we have
(
∂
∂t + Lε,x

)
ψ(x∗, t∗) < 0, which is a contra-

diction as
(
∂
∂t + Lε,x

)
ψ(x, t) ≥ 0. Hence, ψ(x, t) ≥ 0 ∀ (x, t) ∈ D. One

can refer the book for more details ‘(Farrell et al., 2000)’.

It is known that if u0 ∈ C0(Γ), f ∈ C0(D) and u0(0) = u0(1) = 0, then
u ∈ C0(D). The maximum principle together with ε−uniform bounds for f
and u0 give the uniform bound

∣∣u(x, t)
∣∣ ≤ C for all (x, t) ∈ D.

Lemma 2.2. The solution u(x, t) of (1) satisfies

∣∣∣∣∂iu(x,t)
∂ti

∣∣∣∣ ≤ C, (x, t) ∈ D,

i = 1, 2, 3.
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Proof. First we prove for i = 1. We have u ≡ 0 on the sides x = 0 and
x = 1 on D, and so ut ≡ 0. From (1), we have u(x, 0) = u0(x) and also
we know

∣∣u(x, t)
∣∣ ≤ C. So for the side t = 0, we can choose C1 sufficiently

large such that
∣∣∣ut∣∣∣ ≤ C1 on three sides of D. Consider the operator ‘L’

defined by Lu =
(
∂
∂t + Lε,x

)
u, then L satisfies the maximum principle

on D. Now L(ut)(x, t) = ft so
∣∣∣Lut(x, t)∣∣∣ ≤ C2. Following the idea of

the proof given in Lemma 4.4 of ‘(Ng-Stynes et al., 1988)’, one can get∣∣∣∣∂u(x,t)
∂t

∣∣∣∣ ≤ C, (x, t) ∈ D. Similarly differentiating further, we can also

prove for i = 2, 3. Hence,

∣∣∣∣∂iu(x,t)
∂ti

∣∣∣∣ ≤ C, (x, t) ∈ D.

2.1 Decomposition of the Solution

To obtain the ε uniform error estimate, we need more intrinsic bounds on the
derivatives of the solution u(x, t) of (1). We decompose u as u = v + w,
where v and w are the regular and the singular component respectively. We
express the regular component v as v(x, t) =

∑4
k=0 ε

kvk(x, t), (x, t) ∈ D,
where vk(x, t), for k = 0, 1, 2, 3, are the solutions of the following first order
PDEs (12)-(3){

(v0)t(x, t)− a(x)(v0)x(x, t) + b(x, t)(v0)(x, t) = f(x, t), (x, t) ∈ D
(v0)(x, t) = u(x, 0), x ∈ (0, 1), (v0)(0, t) = 0, t ∈ [0, T ],

(2)
and

(vk)t(x, t)− a(x)(vk)x(x, t) + b(x, t)(vk)(x, t) =
∂2vk−1

∂x2
, (x, t) ∈ D

(vk)(x, 0) = 0, x ∈ (0, 1), k = 1, 2, 3,

(vk)(0, t) = 0, t ∈ [0, T ],
(3)

the final component v4 satisfies
(
∂

∂t
+ Lε,x

)
v4(x, t) =

∂2v3

∂x2
, (x, t) ∈ D

(v4)(x, 0) = 0, x ∈ (0, 1), (v4)(0, t) = (v4)(1, t) = 0, t ∈ [0, T ].
(4)
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The regular component v(x, t) satisfies the following problem:

(
∂

∂t
+ Lε,x

)
v(x, t) = f(x, t), (x, t) ∈ D

v(x, 0) = u(x, 0), x ∈ (0, 1),

v(0, t) =
4∑

k=0

εkvk(0, t), v(1, t) = 0, t ∈ [0, T ],

(5)

and the singular component w(x, t) satisfies the PDE

(
∂

∂t
+ Lε,x

)
w(x, t) = 0, (x, t) ∈ D

w(x, 0) = 0, x ∈ (0, 1),

w(0, t) = u(0, t)− v(0, t), w(1, t) = 0, t ∈ [0, T ].

(6)

The following theorem provides the bounds for the derivatives of the
regular component and the singular component respectively.

Theorem 2.3. The solution u(x, t) of the problem (1) admits the decompo-
sition u(x, t) = v(x, t) + w(x, t), then for all non-negative integers l,m,
satisfying 0 ≤ l +m ≤ 5, the regular component v(x, t) satisfies∣∣∣∣∣ ∂l+mv∂xl∂tm

∣∣∣∣∣ ≤ C + (ε4−l),

and the singular component w(x, t) satisfies∣∣∣∣∣ ∂l+mw∂xl∂tm

∣∣∣∣∣ ≤ Cε−l(ε2 + exp(−αx/ε)), (x, t) ∈ D.

One may refer ‘(Farrell et al., 2000)’ for the proof.

3 Finite Difference Method

3.1 The Semidiscretization

For the time domain [0, T ], we use the uniform time step ∆t and the
discretization is

GMt = {tn = n∆t, n = 0 . . .M, tM = T, ∆t = T/M},
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where M is number of mesh subintervals for t-direction in [0, T ].
To discretize (1), first we use the implicit Euler method defined as:

u0,1 = u0(x),(
I + ∆tLε,x

)
un+1,1 = un,1 + ∆tfn+1,

un+1,1(0) = un+1,1(1) = 0,

(7)

and then we use the implicit trapezoidal method defined as:
u0,2 = u0(x),(
I +

∆t

2
Lε,x

)
un+1,2 =

∆t

2

(
fn+1 + fn

)
+

(
I − ∆t

2
Lε,x

)
un,2,

un+1,2(0) = un+1,2(1) = 0.
(8)

Here, I is the identity operator, fn = f(x, tn), un,j = u(x, tn) for j = 1, 2
is the semidiscrete approximation to the exact solution u(x, t) of (1) at the
time level tn = n∆t. We write (7) and (8) in the following form:

u0,j = u0(x),

Tun+1,j(x) = Fn(x),

un+1,j(0) = un+1,j(1) = 0, 0 ≤ x ≤ 1, for j = 1, 2,

where

Tun+1,j(x) = −εun+1,j
xx (x)−a(x)un+1,j

x (x)+d(x)un+1,j(x), for j = 1, 2.

Fn(x) =



un,1(x)

∆t
+ fn+1(x), for the implicit Euler method,

fn+1(x) + fn(x) +
2un,2(x)

∆t
− Lε,xun,2(x),

for the implicit trapizodal method.

Here,

d(x) =


b(x) +

1

∆t
, for the implicit Euler method,

b(x) +
2

∆t
, for the implicit trapizodal method.
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The local error is defined by ‖ej,n+1‖ = |u(x, tn+1) − ûn+1,j | for
j = 1, 2, where ûn+1,j is solution obtained after one step of the semidiscrete
scheme taking the exact value u(x, tn), instead of un,1 as the starting data.
Concretely, we have the implicit Euler method, given by

(
I + ∆tLε,x

)
ûn+1,1 = u(x, tn) + ∆tfn+1,

ûn+1,1(0) = ûn+1,1(1) = 0,

and then the implicit trapezoidal method as:
(
I +

∆t

2
Lε,x

)
ûn+1,2 =

∆t

2

(
fn+1 + fn

)
+

(
I − ∆t

2
Lε,x

)
u(x, tn),

ûn+1,2(0) = ûn+1,2(1) = 0.
(9)

To obtain the convergence of the solution un,1 of the implicit Euler
method (7), we study the consistency and the stability in the maximum norm.
The stability of (7) follows from the maximum principle for the operator
I+∆tLx,ε, as ‖(I+∆tLx,ε)

−1‖∞ ≤ 1
1+β∆t . The consistency of the solution

(7) follows from the following lemma.

Lemma 3.1. If
∣∣∣ ∂i∂tiu(x, t)

∣∣∣ ≤ C, for (x, t) ∈ D = [0, 1] ×
[0, T ], for 0 ≤ i ≤ 2, the local error associated with scheme (7) satisfies
‖e1,n+1‖ ≤ C(∆t)2.

The proof of this lemma can be found in ‘(Clavero et al., 2003)’.
Now in order to obtain the first order convergence of the scheme (7), we

need to combine the consistency and the stability results.

Theorem 3.2. Under the hypothesis of Lemma 3.1, the global error estimate
En in the time direction at nth level is bounded by ‖E1,n‖∞ ≤ C∆t,
∀n ≤ T/∆t.

Using the local error estimate up to nth time step given in Lemma 3.1, we
get the global error estimate at (n+ 1)th time step, One can find the detailed
proof this theorem in ‘(Clavero et al., 2003)’.

We follow the idea given in ‘(Clavero et al., 2005; Kumar & Sekhara
Rao, 2010)’, to obtain the convergence of the solution un,2 of the implicit
trapezoidal scheme (8).
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Lemma 3.3. If
∣∣∣ ∂i∂tiu(x, t)

∣∣∣ ≤ C, ∀(x, t) ∈ D, for 0 ≤ i ≤ 3, the local error

associated with the scheme (8) satisfies

‖e2,n+1‖ ≤ C(∆t)3. (10)

Proof. Using the central difference formula, we have

u(x, tn+1)− u(x, tn)

∆t
= ut

(
x, tn+∆t/2

)
+O(∆t2),

= −Lε,xu
(
x, tn+∆t/2

)
+ f(x, tn+∆t/2) +O(∆t2).

Again, we know that f(x, tn+∆t/2) = fn+1+fn

2 +O(∆t2), so we can write

Lε,xu(x, tn+∆t/2) = Lε,x
u(x, tn+1) + u(x, tn)

2
+O(∆t2).

It is straight forward to show that the local error ‖e2,n+1‖ is the solution
of the following BVP:

(
I +

∆t

2
Lε,x

)
e2,n+1 = O(∆t3),

e2,n+1(0) = 0, e2,n+1(1) = 0.

Then, using the maximum principle for the operator

(
I+ ∆t

2 Lε,x

)
proves

the desired result. One can refer ‘(Clavero et al., 2005)’ for the details of the
argument.

LetE2,n+1 = |u(x, tn+1)−un+1,2(x)| be the global error associated with
the scheme (8). Then it can be written as E2,n+1 = en+1 +RE2,n,
where

R =

(
I +

∆t

2
Lε,x

)−1(
I − ∆t

2
Lε,x

)
is the transition operator defined as follows:RE2,n is the result obtained after
one time step of (8) using un = E2,n as the starting data, null boundary
condition and zero source term f . Using this we get the recurrence relation
E2,n+1 =

∑n
k=0R

n−ke2,k+1 Thus, if the power of the transition operator
R preserves the uniform bounded ness behaviour, that is,

||Rj ||∞ ≤ C ∀ j = 0, 1, . . . , n, (11)

then it immediately follows that supn∆t≤T ||E2,n+1||∞ ≤ C(∆t)2, i.e, the
semidiscrete scheme (8) is parameter uniformly convergent and is second
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order accurate. Note that (11) is typically a stability condition. The stability
condition (11) has been proven in detail in the appendix at the end of this
paper.

Theorem 3.4. The solution u of (1) satisfies∣∣∣∣∣∂iu∂xi
∣∣∣∣∣ ≤ C(1 + ε−i exp(−α/ε)

)
, x ∈ D, i = 0, 1, 2, 3, 4. (12)

One can prove the above theorem by the idea of proof given in
‘(Vulanović, 1989)’.

3.2 The Space Discretization

Here, we discretize the IBVP (1) using the monotone hybrid method on the
Shishkin type meshes as discussed in (Linß, 2001). First, let us discuss briefly
about the Shishkin-type meshes.

3.2.1 Shishkin-type meshes
Let ‘σ’ denotes a mesh transition parameter defined by σ = 2ε

α ln(N).
We divide the domain [0, 1] into two sub-domains as [0, 1] = [0, σ] ∪ [σ, 1].
Denoting the spatial grid by

ΩN
x = {0 = x0, x1, . . . xN/2 = σ, . . . xN = 1},

which is equidistant in [xN/2, 1] but graded in [0, xN/2], N is an even positive
integer (N ≥ 4). The mesh on the domain [0, σ] is given by the generating
mesh function ξ with ξ(0) = 0 and ξ(1/2) = lnN , which is continuous,
monotonically increasing, and piecewise continuously differentiable. Then
our mesh is

xi =

{
2ε
α ln(N)ξ(zi), for zi = i/N i = 0, . . . N/2,

1− (1− σ)2(N−i)
N , i = N

2 + 1 . . . N,

We take a new function ϕ, which is monotonically decreasing with ϕ(0) = 0
and ϕ(1/2) = N−1, then we define ξ = − lnϕ. Now, through the mesh
characterizing function ϕ, the standard Shishkin mesh (S-mesh) is given by
ϕ(z) = exp(−2(lnN)z), (refer ‘(Linß et al., 2000)’), for the B-S-mesh is
given by ϕ(z) = 1 − 2(1 − N−1)z, (refer ‘(Linß, 2001)’), for the M-B-S-
mesh mesh (in the sense of Vulanović) is given by ϕ(z) = exp( −zq−z ) with,
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q = 1
2 + 1

2 lnN . Now, we have

max
∣∣∣ϕ′∣∣∣ ≤ {C lnN, on (S-mesh)

C, on (B-S-mesh and M-B-S mesh).

One can refer ‘(Vulanović, 2001)’ for more details of these type of
meshes.

3.2.2 Monotone Hybrid Scheme
Consider the finite difference approximation for (1) on the domain ΩN

x .
Denote hj = xj − xj−1. Given a mesh function φj , define the forward, the
backward and the central difference operators as

D+
x φ

n
j =

φnj+1 − φnj
hj+1

, D−x φ
n
j =

φnj − φnj−1

hj
, D0

xφ
n
j =

φnj+1 − φnj−1

hj+1 + hj
,

respectively, and the second order approximation for operator by

D+
xD
−
x φ

n
j =

2

hj + hj+1

(
φnj+1 − φnj
hj+1

−
φnj − φnj−1

hj

)
.

Also define the backward difference operator in time by D−t φ
n
j =

φnj −φ
n−1
j

∆t , where φnj = φ(xj , tn). The monotone hybrid scheme is combina-
tion of the central difference scheme and the midpoint upwind scheme with
variable weights on Shishkin-type meshes. We propose the following two
type of numerical schemes to solve IBVP (1):

(i) The implicit Euler method for the time derivative, and the monotone hybrid
scheme for the spatial derivatives, which is defined as:

D−t U
n+1,1
ρ,i−1/2 + LεU

n+1,1
i = fn+1

ρ,i−1/2, for i = 1, 2, . . . N − 1. (13)

(ii) The implicit trapezoidal method for the time derivative, and the monotone
hybrid scheme for the spatial derivatives, which is defined as:

2D−t U
n+1,2
ρ,i−1/2 + LεU

n+1,2
i = fnρ,i−1/2 + fn+1

ρ,i−1/2 − LεU
n,2
i , (14)

for i = 1, 2, . . . N − 1, (15)

where

LεU
n,j
i = − [AnUn,j ]i+1 − [AnUn,j ]i

hρ,i
+ bρ,i−1/2U

n,j
ρ,i−1/2, for j = 1, 2,

fnρ,i−1/2 = (fn(xi−1 + ρihi) + fn(xi + ρi+1hi+1))/2,

Un,jρ,i−1/2 = (Un,j(xi−1 + ρihi) + Un,j(xi + ρi+1hi+1))/2.
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Here, [Anφn]i = εD−x φ
n
i + ρiaiφ

n
i + (1 − ρi)ai−1φ

n
i−1 and hρ,i =

(1 − ρi)hi + ρi+1hi+1. One can choose ρ in many ways (refer ‘(Andreev
& Kopteva, 1998; Linß, 2001)’), but here we choose ρ such a way that

ρi =


1

2
, if

1

2
≥ 1− ε

hiai−1
,

1, if 1
2 < 1− ε

hiai−1
, for i = 1, 2, . . . N.

For ρi = 1
2 , we recover the central difference scheme, while for ρi = 1

the midpoint-upwind scheme is obtained for the Equations (13) and (14). For
both the cases, the resulting scheme satisfies the discrete maximum principle.

3.3 Fully Discrete Schemes

3.3.1 Implicit Euler scheme
Combining the time semidiscretization scheme (7) and after rearranging the
terms in the Equation (13), the following fully discrete scheme is deduced.

U0,1
i = U0(xi), for i = 0, 1, 2, . . . N,

r−i U
n+1,1
i−1 + roiU

n+1,1
i + r+

i U
n+1,1
i+1

= Un,1
ρ,i− 1

2

+ ∆tfn+1
ρ,i− 1

2

, i = 1, 2, . . . , N − 1,

Un+1,1
0 (0) = Un+1,1

N (1) = 0,

(16)

3.3.2 Implicit trapezoidal scheme
Secondly for the time semidiscretization, consider the scheme (8) and after
rearranging the terms in (14), the fully discrete scheme obtained is given by,



U0,2
i = U0(xi), for i = 0, 1, 2, . . . N,

1

2

(
r−i U

n+1,2
i−1 + roiU

n+1,2
i + r+

i U
n+1
i+1,1

)
= Un,2ρ,i−1/2 + ∆t

2 (fnρ,i−1/2 + fn+1
ρ,i−1/2)−

1

2

(
r−i U

n,2
i−1 + roiU

n,2
i + r+

i U
n,2
i+1

)
, for i = 1, 2, . . . N − 1,

Un+1,2
0 (0) = Un+1,2

N (1) = 0,

(17)
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where,

r−i = ∆t
(
− 1

hρ,i

( ε
hi
− (1− ρi)ai−1

)
+
bi−1

2
(1− ρi)

)
+

1

2
(1− ρi),

roi = ∆t
( 1

hρ,i

( ε
hi

+
ε

hi+1
+ ρiai − (1− ρi+1)ai

)
+
bi
2
ρi+1

)
+

1

2
ρi+1.

r+
i = ∆t

(
− 1

hρ,i

( ε

hi+1
+ ρi+1ai+1

)
+
bi+1

2
(ρi + 1− ρi+1)

)
+

1

2
(ρi + 1− ρi+1).

The tri-diagonal systems (16) and (17) have the following properties:

r−i < 0, roi > 0, r+
i < 0 for i = 1, . . . , N − 1.

These matrixes have the diagonal predominance with respect to columns.
Therefore, the tri-diagonal matrix of (16) and (17) are M-matrices.

4 Convergence Analysis

For our analysis, the schemes (13) and (14) can be write in the following form
for the central difference, for j = 1, 2

TceU
n+1,j
i =

−2ε

hi + hi+1

(
D+Un+1,j

i −D−Un+1,j
i

)
−
(
ai+1U

n+1,j
i+1 − ai−1U

n+1,j
i−1

)
hi + hi+1

+ diU
n+1,j
i .

For the upwind scheme, the Equations (13) and (14) are reduced to

TupU
n+1,j
i = − ε

hi+1

(
D+Un+1,j

i −D−Un+1,j
i

)
−
(
ai+1U

n+1,j
i+1 − aiUn+1,j

i

)
hi+1

+ diU
n+1,j
i−1/2 .

and at the transition point, we have

TtU
n+1,j
i = − ε

hi
2 + hi+1

(
D+Un+1,j

i −D−Un+1,j
i

)
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−
(
ai+1U

n+1,j
i+1 −

[
aiU

n+1,j
i + ai−1U

n+1,j
i−1

]
/2
)

hi
2 + hi+1

+ di
Un+1,j
i+1 + Un+1,j

i−1/2

2
.

Here, we assume that 2ε/β ≤ N−1, since in general ε � N−1 for
the discretizations of convection-dominated problems. There exists a unique
index µ = µ(N) ≤ N/2 such that

ThU
j
i =


TceU

n+1,j
i for i = 1, 2, . . . , µ(N − 1),

TtU
n+1,j
i for i = µ(N),

TupU
n+1,j
i for i = µ(N) + 1, . . . , N − 1.

Now, our proposed scheme is

ThU
j
i = Fi for i = 1, 2, . . . , N − 1, U0 = u0,

Un0 = Un1 = 0, for j = 1, 2,

where for the implicit Euler scheme, Fi and di are given by:

Fi =


fni +

Un,1i
∆t for i = 1, 2, . . . , µ(N − 1),

(fni+1 + fni−1/2)/2 +
Un,1i+1+Un,1

i−1/2

2∆t for i = µ(N),

fni−1/2 +
Un,1
i−1/2

∆t for i = µ(N) + 1, . . . , N − 1,

di =


bi + 1

∆t for i = 1, 2, . . . , µ(N − 1),
(bi+1 + bi−1/2)/2 + 1

2∆t for i = µ(N),

bi−1/2 + 1
∆t for i = µ(N) + 1, . . . , N − 1.

and for the implicit trapezoidal scheme, we have

Fi =



(fn + fn+1)i +
2Un,2i

∆t − Lce,εU
n,2
i for i = 1, 2, . . . , µ(N − 1),

((fn + fn+1)i+1 for i = µ(N),

+(fn + fn+1)i−1/2)/2

+
Un,2i+1+Un,2

i−1/2

∆t − Lt,εUn,2i

(fn + fn+1)i−1/2 +
2Un,2

i−1/2

∆t for i = µ(N) + 1, . . . , N − 1,

−Lup,εUn,2i
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and di is the same as for the implicit Euler scheme. We replace ∆t by ∆t/2
and here Lce,ε is the central difference, Lup,ε is the upwind difference, Lt,ε is
the scheme at the transition point. For any mesh function WN , we use ‖.‖inf

for standard maximum norm and we have the discrete L1 norm defined by
‖WN‖1 =

∑N−1
i=1 h∗iW

N
i , where

h∗i =


(hi+1 + hi)/2, for i = 1, 2, . . . , µ(N)− 1,
hi
2

+ hi+1, for i = µ(N),

hi+1 for i = µ(N) + 1, . . . , N − 1.

Let τi denotes the truncation error of our schemes, i.e., τi = Thu
j
i − Fi.

The following lemma gives the truncation error.

Lemma 4.1. Assuming the Theorem 3.4 holds, then we have the following
bounds:

h∗i
∣∣τi∣∣ ≤



C{(h2
i+1 − h2

i )(1 + ε−2e−βxi/ε)

+h3
i+1(1 + ε−3e−βxi−1/ε)}, for i = 1, 2, . . . , µ(N)− 1,

C{h2
i+1 + e−βxi−1/ε)}, for i = µ(N), . . . , N/2,

C{N−3 + (εN)−3e−βxi−1/ε)}, for i = N/2 + 1, . . . , N − 1.
(18)

Proof. For i = 1, 2 . . . , µ(N) − 1, using a Taylor’s expansion at x = xi, we
get

h∗iThu
j
i = −ε

[
h∗iu

′′
i +

h2
i+1 − h2

i

6
u′′′i +O((h3

i+1 +h3
i )

∥∥∥∥u(4)

∥∥∥∥b[xi, xi−1])

]
−

h∗i a(x)′iu
′
i +

h2
i+1 − h2

i

4
a(x)′′i u

′′
iO((h3

i+1 + h3
i )

∥∥∥∥u′′′i ∥∥∥∥b[xi, xi−1]) + h∗i diui.

Now combining (1) with Theorem 3.4, we get first inequality of (18).
Similarly for i = N/2 + 1, . . . , N − 1, we get the last inequality of (18) by
using Taylor’s expansion at x = xi+1/2 and Theorem 3.4, since i > N/2,
we have hi = hi+1 = O(N−1). For more details on this arguments, refer
‘(Linß, 2001)’.
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Lemma 4.2. Let the mesh characterizing function ξ satisfies ξ′(1/2) ≤ CN .
Then, the error in the solution U1, U2 of the finite difference schemes (16)
and (17) satisfies the following estimate:∥∥(u− U j)

∥∥
∞ ≤ C

(
N−1 maxϕ′

)2
, (19)

for j = 1, 2 respectively.

Proof. For our analysis we make assumption that ε ≤ CN−1. ξ′(1/2) ≤ CN
is implies that the maximum step size inside the layer is of order ε. We have

ξ′(1/2) ≤ CN ⇒ hi ≤ Cε⇒ eβhi/ε ≤ C, for i = 1, 2, . . . , N/2.
(20)

Using this, we have βhi
2ε =

∫ ti
ti−1

ξ′(ζ)dζ =
∫ ti
ti−1

ϕ′(ζ)
ϕ(ζ dζ, and min[ti−1,ti]

ϕ = ϕ(ti) = e−βxi/2ε. So, we get hi
2 e
−βxi/2ε ≤ N−1 max |ϕ′| for

i = 1, 2, . . . , N/2. It is enough to show that∥∥τ∥∥
1

=

N−1∑
i=1

h∗i
∣∣τi∣∣ ≤ C(N−1 maxϕ′

)2
. (21)

Now, we derive the bounds of
∑
h∗i
∣∣τi∣∣ on various subregions of ΩN

x .
Inside the layer region, for i = 1, 2, . . . , µ(N)− 1, we use first inequality of
(18) to bound the truncation error. So

µ(N)−1∑
i=1

(
h2
i+1 − h2

i + h3
i+1

)
≤ CN−2, (22)

and
µ(N)−1∑
i=1

(
h2
i+1 − h2

i

)
e−βxi/ε = −h1e

−βx1/ε

+

µ(N)−1∑
i=2

h2
i

(
e−βxi−1/ε − e−βxi/ε

)
+ hN/2e

−βxµ(N)−1/ε.

Applying the mean value theorem implies that
∣∣∣e−βxi−1/ε − e−βxi/ε

∣∣∣ ≤
hi
β
ε e
−βxi−1/ε, and using (19), we get

µ(N)−1∑
i=1

(
h2
i+1 − h2

i

)
e−βxi/ε ≤ Cε2

(
N−1 maxϕ′

)2
. (23)
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Again, using the above and from (19), we get the following bound:

µ(N)−1∑
i=1

(
h3
i+1 + h3

i

)
e−βxi/ε ≤ Cε3

(
N−1 maxϕ′

)2
. (24)

Combining (22), (23) and (24) with (18), we get

µ(N)−1∑
i=1

h∗i
∣∣τi∣∣ ≤ C(N−1 maxϕ′)2, (25)

and for i = µ(N), . . . , N/2 + 1, on (18), we have

N/2+1∑
i=µ(N)

h∗i
∣∣τi∣∣ ≤ CN−2. (26)

For i = N/2 + 1, . . . , N − 1, on (18), we get

N−1∑
i=µ(N/2+1)

h∗i
∣∣τi∣∣ ≤ CN−2. (27)

So combining (25), (26), and (27) we get (21). Therefore, the error of the
difference schemes satisfies, form ‘(Kopteva & Linß, 2001)’∥∥(u− U j)

∥∥
∞ ≤ C

(
N−1 maxϕ′

)2
, for j = 1, 2. (28)

Again, we know

max
∣∣∣ϕ′∣∣∣ ≤ {C lnN, (S-mesh)

C. (B-S-mesh and M-B-S mesh).

Combining with (28), finally we reach out
max
i,n

∣∣(u− U j)(xi, tn)
∣∣ ≤ C(N−1 lnN)2, for S-mesh,

max
i,n

∣∣(u− U j)(xi, tn)
∣∣ ≤ CN−2, for B-S-mesh and

M-B-S-mesh, with j=1, 2.

The following theorem gives the bound for the implicit Euler and the
monotone hybrid scheme on Shishkin-type meshes.
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Theorem 4.3. Let u and U1 be the solutions of (1) and (16) respectively,
satisfying the compatibility conditions. Then, the error of the finite difference
scheme (16) satisfies the following estimate

(i) max
i,n

∣∣(u− U1)(xi, tn)
∣∣ ≤ C(N−1 lnN)2 + C∆t, (S-mesh)

(ii) max
i,n

∣∣(u− U1)(xi, tn)
∣∣ ≤ CN−2 + C∆t,

(B-S-mesh and M-B-S mesh)

where
U1(xi, tn) = Un,1i for xi, tn) ∈ DN .

Proof. On S-mesh, we have the following bound:

‖u(xi, tn+1)− Un+1,1(xi)‖
= ‖u(xi, tn+1,1)− un+1,1(xi) + un+1,1(xi)− Un+1,1(xi)‖,
≤ ‖u(xi, tn+1)− un+1,1(xi)‖+ ‖un+1,1(xi)− Un+1,1(xi)‖,
≤ max

i,n

∣∣(u− U1)(xi, tn)
∣∣ ≤ C(N−1 lnN)2 + C∆t,

Similarly, on the B-S-mesh and on the M-B-S mesh, we get

‖u(xi, tn+1)− Un+1,1(xi)‖ ≤ max
i,n

∣∣(u− U1)(xi, tn)
∣∣ ≤ CN−2 + C∆t.

Combining Theorem 3.2, Lemma 4.1, the desired bound is obtained.

Theorem 4.4. Let u and U2 be respectively be the solution of (1) and (17),
satisfying the compatibility conditions at the corners. Then, the error in the
solutionU2 of the finite difference scheme (17) satisfies the following estimate
for (xi, tn) ∈ DN :

(i) max
i,n

∣∣(u− U2)(xi, tn)
∣∣ ≤ C(N−1 lnN)2 + C(∆t)2, (S-mesh)

(ii) max
i,n

∣∣(u− U2)(xi, tn)
∣∣ ≤ CN−2 + C(∆t)2,

(B-S-mesh and M-B-S mesh)

Proof. First, we prove the estimate on S-mesh. Let ‖en+1‖ = |u(x, tn+1)
− ûn+1,2| be the local error considered in time semidiscretization and let
‖dn+1‖ = |ûn+1,2(x) − Ûn+1,2| be the local error considered in spatial
semidiscretization, where Ûn,2 is the discrete solution of (9). We split the
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the global error |u(x, tn+1)− Un+1,2| at time tn+1 in the form

‖u(xi, tn+1)− Un+1,2
i ‖

= ‖u(xi, tn+1)− ûn+1,2(xi) + ûn+1,2(xi)− Ûn+1,2
i

+Ûn+1,2
i − Un+1,2(xi)‖

≤ ‖u(xi, tn+1)− ûn+1,2(xi)‖+ ‖ûn+1,2(xi)− Ûn+1,2
i ‖

+‖Ûn+1,2
i − Un+1,2

i ‖,

(29)

To bound the middle term, the following bound is required ‘(Salama & Al-
Amerya, 2017)’ if we take N−q ≤ C∆t for some constant 0 < q < 1, then
from estimate (19) we obtain

|ûn+1,2(xi)− Ûn+1,2
i | ≤ C∆t

(
N−2+q(maxϕ′)2

)
,

here the constant q is used only for a theoretical purpose to prove appropriate
bound for the global error of the fully discrete method. This is apparently a
theoretical reduction of order of convergence but in practice this reduction is
not observed, as shown in the numerical results.

Combining the results from Lemma 3.3 and Lemma 4.2 with (29), we get

‖u(xi, tn+1)− Un+1,2
i ‖ = C∆t lnN2N−2 + C(∆t)3

+‖Ûn+1,2
i − Un+1,2

i ‖.

To bound the term ‖Ûn+1,2
i − Un+1,2

i ‖, we consider that [Ûn+1,2
i −

Un+1,2
i ] as solution of (17) with starting value [u(xi, tn) − Un,2i ]. Taking

the source term f equal to zero together with zero boundary conditions, it
follows that

Ûn+1,2
i − Un+1,2

i = RN (u(xi, tn)− Un,2i ), (30)

where RN is a linear operator, called the transition operator associated with
the fully discrete scheme (16). From (30), we obtain a recursive argument as

‖u(xi, tn+1)− Un+1,2
i ‖ ≤

n∑
k=1

‖Rn−kN ‖(C∆t lnN2N−2 + C(∆t)3).

To get the required result for the uniform convergence of the fully discrete
scheme, a sufficient condition is that

‖RjN‖∞ ≤ C, ∀ j = 0, 1, . . . , n, (31)
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Now by considering that the powers of RN of the fully discrete scheme RjN
preserve the uniform boundedness behaviour observed for Rj in (11), the
required results immediately holds from (30) and (31).

Following the above idea, on B-S-mesh and M-B-S mesh, one can have

‖u(xi, tn+1)−Un+1,2(xi)‖ ≤ max
i,n

∣∣(u−U2)(xi, tn)
∣∣ ≤ CN−2 +C(∆t)2,

which is the desired estimate.

5 Numerical Results and Discussion

In this section, we present the numerical results obtained by the proposed
schemes, (16) and (17) for two test problems on the piecewise-uniform
rectangular mesh DN = ΩN

x ×ΩM
t .

Example 5.1. Consider the following singularly perturbed parabolic IBVP:{
ut − εuxx − ux = f(x, t), (x, t) ∈ (0, 1)× (0, 1),
u(x, 0) = 0, u(0, t) = sin(2t), u(1, t) = 0.

The source function is given by

f(x, t) = exp(−x/ε)−m1

m2
2 cos(2t) + 2x cos(πx2 ) cos(t)

+

[(
επ2

2 − 1

)
cos(πx2 ) + π(2ε+ x) sin(πx2 )

]
sin(t).

The exact solution of Example 5.1 is u(x, t) = exp(−x/ε)−m1

m2
sin(2t) +

2x cos(πx2 )sin(t), where m1 = exp(−1/ε) and m2 = 1−m1. We calculate
the maximum pointwise error by

ENε = max
(xi,tn)∈DN

|u(xi, tn)− UN,∆t(xi, tn)|,

where u(xi, tn) and UN,∆t(xi, tn) denote the exact and the numerical solu-
tion obtained on the mesh DN with N mesh intervals in the spatial direction
and M mesh intervals in the t-direction. Here ∆t = T/M is the uniform
time step. We determine the corresponding order of convergence by PNε =

log2( EN,∆tε

E
2N,∆t/2
ε

).

Example 5.2. Consider the following singularly perturbed parabolic IBVP:{
ut − εuxx − (1 + x)ux = 16x2(1− x)2, (x, t) ∈ (0, 1)× (0, 1),
u(x, 0) = 0, u(0, t) = 0, u(1, t) = 0, x ∈ [0, 1], t ∈ [0, 1].
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As the exact solution of Example 5.2 is unknown, to obtain the pointwise
errors and to verify the ε-uniform convergence of the proposed scheme, we
use the double mesh principle which is described as below: Let Ũ(xi, tn)

be the numerical solution obtained on the fine mesh D̃2N = Ω̃2N
x × Ω̃2M

t

with 2N mesh intervals in the spatial direction and 2M mesh intervals in the
t-direction, where Ω̃2N

x is piecewise-uniform Shishkin mesh as like ΩN
x with

the same transition parameter. Now for each ε, we calculate the maximum
point wise error by ẼN,∆tε = max

(xi,tn)∈DN
|U(xi, tn)− ŨN,∆t(xi, tn)|, and the

corresponding order of convergence by P̃N,∆tε = log2

(
ẼN,∆tε

Ẽ
2N,∆t/2
ε

)
.

Figures 1(a) and 1(b) represents the numerical solution of Example 5.1
using the scheme (16) for N = 64 on S-mesh and B-S-mesh respectively.
Similarly, using the scheme (17), the solution is plotted in Figure 3(c) for B-S-
mesh and in Figure 3(d) for M-B-S-mesh. These figures confirm the existence
of the regular layer near x = 0. In all the cases, we perform the numerical
experiments by taking σ0 = 2/α = 4.3 and the time step ∆t = 1/N . The
calculated maximum pointwise errorsENε and the rate of convergence PNε for
Example 5.1 by using the monotone hybrid scheme on space and the implicit
Euler method on time scale is presented in Table 1. Clearly, it shows the
dominance of the time derivative which results the first order convergence.
Here, we have not used the relation ∆t = ∆x2. Now using ∆t = ∆x2, the
corresponding results are presented in Table 2, where one can observe the
second order convergence. The error due to the monotone hybrid scheme on
space and the implicit trapezoidal method on time is presented in Table 3 on

Figure 1 Numerical solution using the implicit Euler scheme for Example 5.1.
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Table 1 EN
ε and PNε using the implicit Euler scheme for Example 5.1

Number of Intervals N (∆t)
ε 32 (1/32) 64 (1/64) 128 (1/128) 256 (1/256) 512 (1/512)

S-mesh 1e− 4 5.0600e-03 3.0677e-03 1.7169e-03 9.1234e-04 4.7047e-04
0.7219 0.8373 0.91216 0.95546

1e− 6 5.0776e-03 3.0782e-03 1.7227e-03 9.1537e-04 4.7201e-04
0.7220 0.8374 0.9122 0.9555

1e− 8 5.0778e-03 3.0783e-03 1.7228e-03 9.1540e-04 4.7203e-04
0.7220 0.8374 0.9122 0.9555

B-S-mesh 1e− 4 5.3394e-03 3.0681e-03 1.7171e-03 9.1238e-04 4.7049e-04
0.7993 0.8374 0.9122 0.9554

1e− 6 5.3448e-03 3.0782e-03 1.7227e-03 9.1537e-04 4.7201e-04
0.7960 0.8374 0.9122 0.9555

1e− 8 5.3449e-03 3.0783e-03 1.7228e-03 9.1540e-04 4.7203e-04
0.7960 0.837 0.9122 0.9555

M-B-S-mesh 1e− 4 5.4471e-03 3.0685e-03 1.7173e-03 9.1242e-04 4.7050e-04
0.8226 0.8374 0.9122 0.9554

1e− 6 5.4443e-03 3.0782e-03 1.7227e-03 9.1537e-04 4.7201e-04
0.8226 0.8374 0.9122 0.9555

1e− 8 5.4442e-03 3.0783e-03 1.7228e-03 9.1540e-04 4.7203e-04
0.8226 0.8374 0.9122 0.9555

Shishkin-type-meshes, for various values of ε andN . Here, we have obtained
the second order convergence without any restriction discussed above (refer
‘(Mukherjee & Natesan, 2009)’). We compare the computational cost in
seconds by using Thomas algorithm ‘(Raji Reddy & Mohapatra, 2015)’ with
the matrix inverse algorithm generated on Shishkin-type-meshes for both
the schemes (16) and (17) in Tables 4 and 5 respectively with ε = 10−4.
Clearly, these results indicate the advantage of using the Thomas algorithm
over the matrix inversion method. The calculated maximum pointwise errors
ẼNε and the rate of convergence P̃Nε for Example 5.2 by using the monotone
hybrid scheme on space and the implicit trapezoidal method on time scale is
presented in Table 6, which clearly shows that the second order convergence.

To visualize the numerical order of convergence, the maximum pointwise
errors is plotted in log-log scale in Figure 2 for Example 5.1 using the
implicit Euler scheme (16) on B-S-mesh. The maximum pointwise errors
are plotted in log-log scale in Figure 4(e) and Figure 4(f) for Example 5.1
using implicit trapezoidal scheme(17) on S-mesh and M-B-S-mesh respec-
tively. Figures 5(g) and 5(h) represent the numerical solution of Example 5.2
using the scheme (16) for N = 64 on S-mesh and B-S-mesh respectively.
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Table 2 EN
ε and PNε using the implicit Euler scheme for Example 5.1

Number of Intervals N (∆t)
ε 32 (1/322) 64 (1/642) 128 (1/1282) 256 (1/2562) 512 (1/5122)

S-mesh 1e− 4 1.8153e-2 6.3890e-3 2.1351e-3 7.0323e-4 2.3521e-4
1.5065 1.5813 1.6023 1.6578

1e− 6 1.8155e-2 6.3913e-3 2.1367e-3 7.0405e-4 2.3565e-4
1.5062 1.5807 1.6017 1.6567

1e− 8 1.8155e-2 6.3913e-3 2.1367e-3 7.0405e-4 2.3565e-4
1.5062 1.5807 1.6017 1.6567

B-S-mesh 1e− 4 1.6622e-3 4.3641e-4 1.1039e-4 2.7379e-5 6.6228e-6
1.9293 1.9831 2.0115 2.0475

1e− 6 1.6641e-3 4.3881e-4 1.1205e-4 2.8321e-5 7.1191e-6
1.9231 1.9694 1.9843 1.9921

1e− 8 1.6641e-3 4.3884e-4 1.1207e-4 2.8327e-05 7.1240e-6
1.9233 1.9693 1.9840 1.9965

M-B-S-mesh 1e− 4 1.4020e-3 3.5450e-4 9.3553e-5 2.4541e-5 6.2568e-6
1.9836 1.9219 1.9306 1.9717

1e− 6 1.3977e-3 3.5036e-4 9.5477e-5 2.5640e-5 6.7751e-6
1.9961 1.8756 1.8967 1.9201

1e− 8 1.3976e-3 3.5032e-4 9.5494e-5 2.5650e-5 6.7808e-6
1.9962 1.8752 1.8964 1.9195

Table 3 EN
ε and PNε using the implicit trapezoidal scheme for Example 5.1

Number of Intervals N (∆t)
ε 32 (1/32) 64 (1/64) 128 (1/128) 256 (1/256) 512 (1/512)

S-mesh 1e− 4 1.8111e-2 6.3779e-3 2.1322e-3 7.0256e-4 2.2270e-4
1.5057 1.5807 1.6017 1.6575 1.6944

1e− 6 1.8115e-2 6.3804e-3 2.1338e-3 7.0338e-4 2.2314e-4
1.5055 1.5802 1.6010 1.6564 1.6927

1e− 8 1.8115e-2 6.3804e-3 2.1338e-3 7.0338e-4 2.2314e-4
1.5055 1.5802 1.6010 1.6564 1.6927

B-S-mesh 1e− 4 1.6183e-3 4.2489e-4 1.0751e-4 2.6676e-5 6.5351e-6
1.9293 1.9826 2.0109 2.0293 1.8433

1e− 6 1.6203e-3 4.2736e-4 1.0919e-4 2.7618e-5 6.9422e-6
1.9228 1.9686 1.9832 1.9921 1.9969

1e− 8 1.6203e-3 4.2738e-4 1.0921e-4 2.7627e-5 6.9470e-6
1.9227 1.9685 1.9829 1.9916 1.9958

M-B-S-mesh 1e− 4 1.4724e-3 3.7195e-4 9.4693e-5 2.4506e-5 6.5321e-6
1.9850 1.9738 1.9501 1.9075 1.8435

1e− 6 1.4681e-3 3.6810e-4 9.2256e-5 2.4714e-5 6.5130e-6
1.9958 1.9964 1.9003 1.9239 1.9473

1e− 8 1.4677e-3 3.6770e-4 9.2169e-5 2.4817e-05 6.5690e-6
1.9969 1.9962 1.8929 1.9176 1.9351
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Table 4 Time comparison using the scheme (16) for Example 5.1
Meshes Thomas Algorithm Matrix Inverse Algorithm

128 256 512 128 256 512
S-mesh 116.677 106.083 801.951 1275.027 1268.127 65293.353
B-S-mesh 266.191 186.234 1503.081 1275.027 1268.127 69493.567
M-B-S-mesh 263.086 186.789 1503.781 1275.354 1267.982 69443.367

Table 5 Time comparison using the scheme (17) for Example 5.1
Meshes Thomas Algorithm Matrix Inverse Algorithm

128 256 512 128 256 512
S-mesh 0.997 4.495 22.032 5.463 169.871 3767.312

B-S-mesh 1.657 6.988 33.681 6.526 176.550 4012.327

M-B-S-mesh 1.673 7.022 33.796 6.734 176.745 4012.234

Table 6 ẼN
ε and P̃Nε using the implicit trapezoidal scheme for Example 5.2

Number of Intervals N (∆t)
ε 32 (1/32) 64 (1/64) 128 (1/128) 256 (1/256) 512 (1/512)

S-mesh 1e− 4 5.7945e-03 2.0009e-03 6.6093e-04 2.1523e-04 6.7917e-05
1.5341 1.5981 1.6186 1.6640

1e− 6 5.8005e-03 2.0026e-03 6.6144e-04 2.1534e-04 6.7941e-05
1.5343 1.5982 1.6190 1.6642

1e− 8 5.8006e-03 2.0026e-03 6.6144e-04 2.1534e-04 6.7942e-05
1.5343 1.5982 1.6190 1.6642

B-S-mesh 1e− 4 9.3641e-4 2.4501e-4 6.2279e-5 1.5728e-5 3.8228e-6
1.9343 1.9760 1.9854 2.0406

1e− 6 9.3636e-4 2.4521e-4 6.2262e-5 1.5730e-5 3.8242e-6
1.9330 1.9694 1.9848 2.0403

1e− 8 9.3636e-4 2.4521e-4 6.2262e-5 1.5730e-5 3.8242e-6
1.9330 1.9694 1.9848 2.0403

M-B-S-mesh 1e− 4 6.3641e-4 1.6301e-4 4.1279e-5 9.9928e-6 2.4228e-6
1.9650 1.9815 2.0464 2.0442

1e− 6 6.3661e-4 1.6331e-4 9.5487e-5 2.5660e-5 6.7791e-6
1.9628 1.9825 2.0465 2.0443

1e− 8 6.3661e-4 1.6331e-4 9.5487e-5 2.5660e-5 6.7791e-6
1.9628 1.9825 2.0465 2.0443

On B-S-mesh and M-B-S-mesh, the proposed numerical scheme (16) is of
first order in the temporal and second order in the spatial variable, i.e., of
order O(∆t+N−2) which is optimal for the scheme (16). While the second
scheme (17) is of second order both in temporal and spatial variable i.e., of
order O(∆t2 + N−2) which is also optimal for the scheme (17). Numerical
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Figure 2 Loglog plot on B-S-mesh by the implicit Euler scheme for Example 5.1.

Figure 3 Numerical solution by the implicit trapezoidal scheme for Example 5.1.

Figure 4 Loglog plot by the implicit trapezoidal scheme for Example 5.1.

results confirm the theoretical error estimate. Hence, we have shown that the
proposed scheme is a second order on both time and space without taking any
restriction discussed earlier.

In this article, we propose two numerical methods to solve one-
dimensional singularly perturbed parabolic convection-diffusion problem.
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Figure 5 Numerical solution by the implicit Euler scheme for Example 5.2.

First, we use implicit Euler method for the temporal and a monotone hybrid
scheme for the spatial variable. For the monotone hybrid scheme discussed
here, the weights are so chosen that the scheme automatically switched
from midpoint upwind scheme to central difference scheme as the mesh
goes from coarse to fine. We obtain parameter uniform convergent solution
and of order O(∆t + N−2). In order to increase the accuracy, we have
also used the implicit trapezoidal scheme for the temporal variable which
increases the order of accuracy from first order in time to second order in
time O(∆t2 + N−2). We derived ε-uniform error estimate for the proposed
schemes. Also, Thomas algorithm is used which takes less time than the
matrix inversion method. Numerical results are carried out to show the
efficiency and accuracy of the method.
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Appendix

A similar result is established in ‘(Palencia, 1993)’ for any operator R of
the form R(Lx), where R(z) is a rational A-acceptable function and Lx
is any operator that generates an analytic semigroup e−tLx . In ‘(Palencia,
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1993)’, R(z) is the amplification function of the Crank-Nicolson scheme and
Lx is the Laplacian operator. To prove (11), we need to show that Lx,ε is
ε-uniformly sectorial. Assume that

(
X, ‖.‖X

)
and

(
Y, ‖.‖Y

)
be two Banach

spaces and let L(X,Y ) be the space of bounded linear operators from X into
Y equipped with the natural norm ‖A‖L(X,Y ) = supx∈X,x6=0 ‖Ax‖Y /‖X‖X .
A linear operator A : D(A) ⊂ X → X is said to be sectorial operator in X
if there exits a constant w ∈ R, θ ∈ (π/2, π) and M > 0 such that the
following holds:

(1)
∑

θ,w :=
{
z ∈ C : z 6= w,

∣∣arg(z − w)
∣∣ < θ

}
⊂ ρ(A), the resolvent

set of A, and
(2) ‖(zI −A)−1‖X ≤ M

z−w for z ∈
∑

θ,w.

A details of this argument is given in ‘(Kumar & Sekhara Rao, 2010;
Lunardi, 1995)’. If ‘A’ is sectorial, then ‘A’ generates an analytic semigroup
S(t) = etA ∀t ≥ 0. The operator ‘A’ is said to be ε-uniformly sectorial
if we choose the Banach space X equipped with the sup norm ‖.‖∞ and the
constant M is independent of ε. LetX = C(Ω) where Ω ⊂ R and is equipped
with the sup norm. Now consider the linear operator Lx,ε : C2(Ω) ⊂
C(Ω) → C(Ω), defined by Lx,ε = −ε∂2u

∂x2 − a(x)∂u∂x + b(x)u, which we
decomposed as Lx,ε := S1+S2, The operator S1 : C2(Ω) ⊂ C(Ω)→ C(Ω),

is defined by S1u = −ε∂2u
∂x2 , and the operator S2 : C(Ω)→ C(Ω) is defined

by S2u = −a(x)∂u∂x + b(x)u. The corollary (3.1.9) in ‘(Lunardi, 1995)’ with
the property that sectors are invariant under the dilations gives that S1 is
ε-uniformly sectorial. Using this with S2,∈ L(X,X), the proposition (2.4.1)
of ‘(Lunardi, 1995)’ concludes that Lx,ε is ε-uniformly sectorial, which is our
desired result.
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