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In this paper, two-dimensional fracture mechanics problem using the theory of
nonlocal elasticity is investigated. According to the Eringen’s model, the nonlocal
stresses at the crack tip are regular. Based on the nonlocal theory, the stresses at the
crack tip are approximated using the singular stress fields of the classical elasticity
theory. A closed form approximate estimation of stresses at the crack tip is proposed
using the stress intensity factors of the classical theory. The mesh reduction formula-
tion of Local Integral Equation Method (LIEM) is also developed for the nonlocal
theory to allow for numerical solution of 2D fracture problems. A central crack in a
rectangular plate subjected to tensile load is solved using the proposed approach.

Keywords: Nonlocal elasticity, fracture mechanics, Eringen’s model, meshless
method of weak form

1. Introduction

The fundamental postulate of linear elastic fracture mechanics is that the behaviour of
cracks is determined by the stress intensity factor. The stress intensity factor represents
the strength of the stress singularity at the tip of a crack (Irwin, 1957). This assumption
has followed the pioneering experimental observations of Griffith on the strength of dif-
ferent glass rods. Ever since, fracture mechanics problems and in particular crack-tip
problems have been the subject of numerous publications, and many different methods
have been developed for the evaluation of stress intensity factors for both static and
dynamics loadings (Aliabadi, Rooke, & Cartwright, 1987; Dirgantara & Aliabadi,
2000; Fedelinski, Aliabadi, & Rooke, 1996; Rooke, Rayaprolu, & Aliabad, 1992; Wen,
Aliabadi, & Rooke, 1998). It is well known that the classical continuum theories such
as the linear theory of elasticity are intrinsically size independent. According to the
classical theories, the elastic strains and stresses are singular at the crack tip. The con-
tinuum damage mechanics has been established to fill the gap between the classical
continuum mechanics and fracture mechanics (see for e.g. (Bazant, 1976; Sfantos &
Aliabadi, 2007)). A continuum model for microcracking in these materials leads inevi-
tably to strain softening. It causes a loss of positive definiteness of the elastic modulus
matrix and results as an ill-posed boundary value problem (Bazant & Lin, 1988;
Benedetti & Aliabadi, 2013). The finite elements calculations using elasto-plastic
models with yield limit degradation in the framework of the classical theory of plastic-
ity give very different results for different meshes (Bazant, Belytschko, & Chang,
1984). In other words, the finite elements results are not independent with respect to
the mesh refinements and converge at infinite mesh refinement to a solution with zero
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energy dissipation during failure. To prevent such physically unrealistic behaviour, the
mathematical models with localisation limits that force the strain-softening region to
have a certain minimum finite size have been proposed in Sladek, Sladek, and Bazant
(2003). A nonlocal elastic model proposed by Erigen (1983, 2002) and reviewed by
Altan (1989) is based on the key idea that the long-range forces are adequately
described by a constitutive relation. A theory of nonlocal elasticity of bi-Helmholtz
type is suited based on the Erigen’s model by Lazar, Maugin, and Aifantis (2006). The
nonlocal finite element method (NL-FEM) was developed by Pisano, Sofi, and Fuschi
(2009) based on the Eringen-type nonlocal elastic model with a constitutive stress–
strain law of convolutive type which governs the nonlocal material behaviour. Mallardo
(2009) presented the integral equation approach developed to describe elastic-damaging
materials with an isotropic damage model implemented to study nonlinear structural
problems involving localisation phenomena.

In recent years, the computational mechanics community has turned its attention to
the so-called mesh reduction methods. These mesh reduction methods (commonly
referred to as Meshless or Mesh free) have received much interest (Atluri, 2004; Li,
Wen, & Aliabadi, 2011; Sladek & Sladek, 2006; Sladek, Sladek, & Zhang, 2006;
Wen & Aliabadi, 2008; Wen, Aliabadi, & Liu, 2008). One key feature of these methods
is that meshless methods do not need any grid and are, hence, meshless. More recently,
a family of meshless methods based on the local weak Petrov-Galerkin formulation
(MLPGs) for arbitrary partial differential equations with moving least square (MLS)
approximation has been developed (Atluri, 2004). MLPG is reported to provide a
rational basis for constructing meshless methods with a greater degree of flexibility.
Local boundary integral equation method (LBIE) with moving least square and polyno-
mial radial basis function (RBF) has been developed by Sladek et al. (2006). Both
methods (MLPG and LBIE) are meshless, as no domain/boundary meshes are required
in these two approaches. However, Galerkin-base meshless methods, except MLGP pre-
sented by Atluri (Mallardo, 2009) still include several awkward implementation features
such as numerical integrations in the local domain. Other recent developments can be
found in Sladek and Sladek (2006).

In this paper, application of the nonlocal elasticity theory to fracture mechanics is
investigated. The stresses at the crack tip are shown to be regular and estimated using
the mixed-mode stress intensity factors of the classical theory. Two-dimensional local
boundary integral method (LIEM) is developed for the nonlocal elasticity theory with
2D Eringen’s model. The numerical procedure is demonstrated for a rectangular plate
with a central crack subjected to tensile load.

2. Analytical estimation of stress fields near crack tip

The nonlocal elastic model (Eringen, 1983, 2002) is based on the key idea that they
are adequately described by a constitutive relation of the form (for two-dimension
isotropic medium):

rij; jðxÞ þ fiðxÞ ¼ 0

rðxÞ ¼ n1�rðxÞ þ n2

Z
V
aðx; x0; lÞDeðx0ÞdV ðx0Þ (1)
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r ¼ fr11; r22; r12gT ; e ¼ fe11; e22; e12gT ; �r ¼ De; eij ¼ ðui; j þ uj;iÞ=2
where n1 and n2 are sub-sections and n1 þ n2 ¼ 1, V represents the volume of domain,
fi body forces, a a nonlocal kernel defined as the influence coefficient, l the characteris-
tic length or influence distance; xðx; yÞ; x0ðx0; y0Þ are collocation and domain integration
points and ui displacements; r, �r and e are vectors of nonlocal stress, local stress (clas-
sical stress) and strain; D denotes the elastic modulus matrix. The nonlocal kernel
aðx; x0; lÞ ¼ að x� x0j j=lÞ ¼ aðr=lÞ has to satisfy the normalisation condition as

Z
V1

a x� x0j j=lð ÞdV 0 ¼ 1 (2)

in which V1 indicates the infinite domain embedding V. For two-dimensional problem,
one option of nonlocal kernels (type A) is aAðx; x0; lÞ ¼ K0ð x� x0j j=lÞ=2pl2, where K0

is the modified Bessel function of the first kind. For analytical estimation, a particular
case of n1 ¼ 0 is considered. For an infinite plate with a straight line crack, the local
displacement and stress fields in the domain are proved to be the same as elasticity
(Eringen, 1983), that is,

rðxÞ ¼
Z
V
aAðx; x0; lÞ�rðx0ÞdV ðx0Þ (3)

where �rðxÞ is classical local stress solution under the same boundary condition.
Because of the displacement fields of the classical elastostatics are exactly the same as
the nonlocal elastostatics (Bazant et al., 1984), we can borrow the displacement field
from the well-known classical solution. It follows that the constitutive equations of the
nonlocal theory give the stress field, as

�rðxÞ ¼ rcðxÞ (4)

where rcðxÞ indicates the stress tensor of classical theory under the same boundary
condition. Firstly, we consider a uniform tensile load r0 at infinite and the elasticity
solution at point x0 ¼ ðx0; y0Þ is given, in complex variable as

�r22ðx0Þ þ �r11ðx0Þ ¼ r0Re 2z0ffiffiffiffiffiffiffiffiffiffi
z02�a2

p � 1
� �

�r22ðx0Þ � �r11ðx0Þ þ 2i�r12ðx0Þ ¼ r0
2ia2y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz02�a2Þ3

p þ 1

� � (5)

where a is half-length crack, complex variable z0 ¼ x0 þ iy0 and i ¼ ffiffiffiffiffiffiffi�1
p

. Therefore,
the solution of nonlocal elasticity becomes

r22ðxÞ ¼ r0
2pl2

R1
0

R 2p
0 Re z0ffiffiffiffiffiffiffiffiffiffi

z02�a2
p þ ia2y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz02�a2Þ3
p

� �
K0ð x� x0j j=lÞrdhdr

x0 ¼ ðaþ r cos h; r sin hÞ; z0 ¼ aþ reih:
(6)

Moreover, the nonlocal elasticity solution of stress r22 along axis x is obtained

r22ðx; 0Þ ¼ r0
2pl2

Z 1

0

Z 2p

0
Re

z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02 � a2

p þ ia2y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz02 � a2Þ3

q
0
B@

1
CAK0ðR=lÞrdhdr (7)
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where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ r cos h� xÞ2 þ r2sin2h

q
. Considering only the singular stress field, an

approximate solution can be obtained from the classical local elasticity (Irwin, 1957) in
the vicinity of the crack tip as

�r22ðr; hÞ ¼ KIffiffiffiffiffiffiffi
2pr

p cos
h
2

1þ sin
h
2
cos

3h
2

� �
(8)

Hence, estimation of nonlocal stress distribution is obtained as

r�22ðx; 0Þ ¼
r0

ffiffiffi
a

p

2pl2
ffiffiffi
2

p
Z 1

0

Z 2p

0
cos

h
2

1þ sin
h
2
cos

3h
2

� �
K0ðR=lÞ

ffiffi
r

p
dhdr (9)

The variation of normalised stresses r22ðx; 0Þ=r0 and r�22ðx; 0Þ=r0 along axis
xð¼aþ nÞ is shown in Figures 1(a), (b) and (c) for different ratios l=a. It is apparent
that the stress distribution for nonlocal theory is regular along axis x including the
crack tip. At the crack tip, from (7), we have the stress distribution exactly

r22ða; 0Þ ¼ r0
2pl2

Z 1

0

Z 2p

0
Re

aþ reihffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ reih

p e�ih=2 þ ia2 sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ reihð Þ3

q e�3ih=2

0
B@

1
CAK0ðr=lÞ

ffiffi
r

p
dhdr:

(10)

Consider the singular stress field of the classical theory, approximated stress at the
crack tip is obtained, from (9), as

r�22ða; 0Þ ¼
KI

2p
ffiffiffiffiffi
pl

p
Z 1

0
K0ðkÞ

ffiffiffi
k

p
dk ¼ 0:5736r0=

ffiffiffi
j

p
(11)

where KI ¼ r0
ffiffiffiffiffiffi
pa

p
denotes the stress intensity factor for a central crack under uniform

tensile at infinite and j ¼ l=a. In (Eringen, 1983), the factor is given as 0:5744r0=
ffiffiffi
j

p
by integral equation method, which is very close to the solution in (11). Figure 2 shows
the variation of the normalised stress r22ða; 0Þ=½r0=

ffiffiffi
j

p � at crack tip against the ratio
l=a. The exact results from (10) can be presented approximately as

r22ða; 0Þ ¼ 0:574r0ffiffiffi
j

p ð1þ 0:4315jÞ (12)

It is clear that the relative error of approximation solution in (11) is 0:4315j. For
example, when j ¼ l=a ¼ 0:05, the relative error of estimation is about 2%.

Secondly, consider a uniform shear stress s0 at infinite, the elasticity solution is
given in

�r22ðx0Þ þ �r11ðx0Þ ¼ �2s0Re iz0ffiffiffiffiffiffiffiffiffi
z2�a2

p
� �

�r22ðx0Þ � �r11ðx0Þ þ 2i�r12ðx0Þ ¼ is0
a2�z0þz0ð2z02�3a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz02�a2Þ3
p :

(13)

where �z0 ¼ x0 � iy0. Thus, the distribution of shear stress along x axis is obtained

220 P.H. Wen et al.



Figure 1. Normalised stress r22ðx; 0Þ=r0 verse x (=aþ n): (a) l=a ¼ 0:01; (b) l=a ¼ 0:05;
(c) l=a ¼ 0:1.
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r12ðx; 0Þ ¼ s0
4pl2

Z 1

0

Z 2p

0
Re

a2�z0 þ z0ð2z02 � 3a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz02 � a2Þ3

q
0
B@

1
CAK0ðR=lÞrdhdr

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ r cos h� xÞ2 þ r2sin2h

q (14)

For a small ratio of r=a, one has the classical elastic stress as (Irwin, 1957)

�r12ðr; hÞ ¼ KIIffiffiffiffiffiffiffi
2pr

p cos
h
2

1� sin
h
2
cos

3h
2

� �
(15)

and then the estimated nonlocal shear stress at the crack tip is

r�12ða; 0Þ ¼
KII

2p
ffiffiffiffiffi
pl

p
Z 1

0
K0ðkÞ

ffiffiffi
k

p
dk ¼ 0:3824s0=

ffiffiffi
j

p
(16)

where KII ¼ s0
ffiffiffiffiffiffi
pa

p
denotes the shear mode stress intensity factor. In addition, the

exact nonlocal shear stress at the crack tip from (14) is shown in Figure 2 and can be
written approximately as

r12ða; 0Þ ¼ 0:3812s0ffiffiffi
j

p ð1þ 1:4743jÞ (17)

Same as the tensile stress, the relative error of approximation solution for shear
loading in (16) is 1:4743j. To determine the stress at the crack tip, we can extend this
computation procedure for a finite cracked plate. For mixed-mode crack problems, in
general cases, if the stress intensity factors of the classical theory are denoted as KI

and KII , respectively, the nonlocal stresses at the crack tip are regular and can be esti-
mated from (11) and (16) for a small ratio of l=að\0:05Þ, as

r�22ða; 0Þ ¼ 0:5736KI=
ffiffiffiffiffi
pl

p
; r�12ða; 0Þ ¼ 0:3824KII=

ffiffiffiffiffi
pl

p
: (18)

Obviously, the degree of accuracy depends on the ratio j and the dimension of
geometry of cracked plate, which can be seen from Figure 2. In addition, maximum
normal and shear stresses exist at n=l ¼ 0:5 and they are given by Eringen (1983)
approximately, for a small ratio of j, as

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.00 0.04 0.08 0.12 0.16 0.20
l  a/

Approximate (11)

Approximate (16)

Tensile load

Shear stress

Exact (10)

Exact (14)

Figure 2. Comparison of normalised stresses
ffiffiffi
j

p
r22ða; 0Þ=r0 and

ffiffiffi
j

p
r12ða; 0Þ=s0 at the crack

tip with exact and approximate solutions.
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r22;maxðaþ n; 0Þ ¼ 1:12r22ða; 0Þ: (19)

Next, more nonlocal kernels (Type) are observed. Select the following coefficient
functions as

aBðr; lÞ ¼ 1

2pl2
e�r=l

aCðr; lÞ ¼ 1

pl2
e�r2=l2

aDðr; lÞ ¼
3
pl2 1� r

l

� �
r� l

0 r� l

	
(20)

aEðr; lÞ ¼
2
pl2 1� r2

l2

� �
r� l

0 r� l

(

where r ¼ x� x0j j. From (3), (8) and (15), for Type B, one has the estimation of stress
at the crack tip

r�22ða; 0Þ ¼ 6
ffiffi
2

p
KI

5p
ffiffiffi
pl

p
R1
0

ffiffi
t

p
e�tdt ¼ 0:4787 KIffiffiffi

pl
p

r�12ða; 0Þ ¼ 4
ffiffi
2

p
KII

5p
ffiffiffi
pl

p
R1
0

ffiffi
t

p
e�tdt ¼ 0:3192 KIIffiffiffi

pl
p

(21)

and for Type C,

r�22ða; 0Þ ¼
3

ffiffiffi
2

p
KI

5p
ffiffiffiffiffi
pl

p
Z 1

0

ffiffi
t

p
e�t2dt ¼ 0:6620

KIffiffiffiffiffi
pl

p

r�12ða; 0Þ ¼
2

ffiffiffi
2

p
KII

5p
ffiffiffiffiffi
pl

p
Z 1

0

ffiffi
t

p
e�t2dt ¼ 0:4413

KIIffiffiffiffiffi
pl

p :

(22)

It is not difficult to obtain the normal and shear stresses at the crack tip for the rest
of coefficient functions. Normalised stresses r�22

ffiffiffiffiffi
pl

p
=KI and r�12

ffiffiffiffiffi
pl

p
=KII are presented

in Table 1 for different types. Moreover, for Type C, the shear stress at the crack tip by
Erigen (1983) is derived to be 0:4243s0=

ffiffiffi
j

p
. Compared with these two solutions

(0.4243 and 0.4413), the relative error is less than 4%. However, the estimation in this
paper should be more accurate for a small ratio of l=a. Tables 2 and 3 show the exact
maximum nonlocal stresses and their locations when l=a ¼ 0:01 from (7) and (14) for
different nonlocal kernels (Type).

Table 1. Nonlocal stresses at crack tip for different Types.

Type A B C D E

r�22
ffiffiffiffiffi
pl

p
=KI 0.5736 0.4787 0.6620 0.8643 0.8231

r�12
ffiffiffiffiffi
pl

p
=KII 0.3824 0.3192 0.4413 0.5762 0.5488

Table 2. Maximum nonlocal normal stress r22;maxðaþ n; 0Þ=r22ða; 0Þ when l=a ¼ 0:01.

Type A B C D E

n=l 0.45 0.85 0.61 0.40 0.47
r22;max=r22ða; 0Þ 1.1029 1.1378 1.1830 1.1838 1.1947

European Journal of Computational Mechanics 223



3. Meshless method for nonlocal elasticity

It is too difficult to obtain analytical solution for the partial differential equation in (1)
even for one-dimensional problem (Li et al., 2013). Pisano et al. (2009) applied the
finite element analysis to nonlocal elasticity. In this section, one meshless method,
named the local integral equation method (Wen & Aliabadi, 2013) is applied to deal
with nonlocal elasticity. In this numerical analysis procedure, subscripts are used to
indicate the coordinate system. Two kinds of boundary conditions are considered for
nonlocal elasticity, namely, for nonlocal traction boundary

rijnj ¼ t0i (23)

and for displacement boundary

ui ¼ u0i (24)

in which u0i and t0i are the prescribed displacements and tractions, respectively, on the
displacement boundary CD and on the traction boundary CT, and ni is the unit normal
outward to the boundary C.

In the nonlocal integral equation approach, the weak form of differential equation
over a local integral domain Xs can be written, from (1), asZ

Xs

rij; jðxÞ þ f ðxÞ
 �
u�i ðxÞdXðxÞ ¼ 0 (25)

where u�i ðxÞ is the test function. By use of the divergence theorem, (25) above can be
rewritten in a symmetric weak form as

Z
Cs

rijnju
�
i dC�

Z
Xs

ðriju�i; j � fiu
�
i ÞdX ¼ 0: (26)

If there is an intersection between the local boundary and the global boundary, a
local symmetric weak form in linear elasticity may be written as

Z
Xs

riju
�
i; jdX�

Z
Ls

tiu
�
i dC�

Z
CD

tiu
�
i dC ¼

Z
CT

t0i u
�
i dCþ

Z
Xs

fiu
�
i dX (27)

in which Ls indicates the other part of the local boundary inside the local integral
domain Xs; CD is the intersection between the local boundary Cs and the global dis-
placement boundary; and CT is a part of the traction boundary as shown in Figure 3.

The weak forms in (26) and (27) are a starting point to derive local boundary inte-
gral equations if appropriate test functions are selected. Step functions can be used as
the test functions u�i in each integral domain

Table 3. Maximum nonlocal shear stress r12;maxðaþ n; 0Þ=r12ða; 0Þ when l=a ¼ 0:01.

Type A B C D E

n=l 0.55 1.30 0.88 0.54 0.65
r12;max=r12ða; 0Þ 1.0898 1.1203 1.1548 1.1553 1.1742
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u�i ðxÞ ¼
uiðxÞ at x 2 ðXs [ CsÞ
0 at x 62 Xs

	
(28)

where uiðxÞ is an arbitrary function. For uiðxÞ ¼ 1 and zero body force fi ¼ 0, the
weak forms (26) and (27) are transformed into simple local boundary integral equations
(equilibrium of local integral domain) asZ

Cs

tidC ¼ 0 (29)

and

Z
LsþCD

tidC ¼ �
Z
CT

t0i dC: (30)

Consider a local domain @Xs shown in Figure 3, which is the neighbourhood of a
point x½¼ðx1; x2Þ] and is considered as the domain of definition of the RBF approxima-
tion for the trail function at x and also called the support domain to an arbitrary point x.
Generally, the support domain is chosen as a circle R centred at x, as shown in Figure 3.
To interpolate the distribution of function u in the local domain @Xs over a number of
randomly distributed nodes, i.e. y1; y2; . . .; yKf g; yk ¼ yk1; y

k
2

� �
 �
; k ¼ 1; 2; . . .;K, the

approximation of function u at the point x can be expressed by

uiðxÞ ¼
XK
k¼1

Rkðx; ykÞak þ
XT
t¼1

PtðxÞbt ¼ RðxÞaþ PðxÞb (31)

where RðxÞ ¼ R1ðx; y1Þ;R2ðx; y2Þ; . . .;RKðx; yKÞf g is set of radial basis functions cen-
tred around the point x, akf gKk¼1 and btf gTt¼1 are unknowns to be determined and
Ptf gTt¼1 is a basis for PT�1, the set of d-variate polynomials of degree � T � 1. The

radial basis function selected multiquadrics as

Rkðx; ykÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ x1 � yk1


 �2 þ x2 � yk2

 �2q

(32)

where c is a free parameter and along with the constraints

Figure 3. Arbitrary distributed node, support domain of x, local integral domain for weak
formulation.
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XK
k¼1

PtðykÞak ¼ 0; 1� t� T (33)

In this paper, the following polynomials are considered if T ¼ 6

P ¼ 1; x1; x2; x
2
1; x1x2; x

2
2

� 

(34)

A set of linear equations can be written in the matrix form as

R0aþ Pb ¼ û; PTa ¼ 0 (35)

where û is the vector containing all the field nodal values at the L local nodes and the
coefficient matrices are defined as

R0 ¼

R1ðy1; y1Þ R2ðy1; y2Þ . . . RKðy1; yKÞ
R1ðy2; y1Þ R2ðy2; y2Þ ::: RKðy2; yKÞ

: : . . . :
: : . . . :
: : . . . :

R1ðyN ; y1Þ R2ðyN ; y2Þ . . . RKðyK ; yKÞ

2
6666664

3
7777775
;

P ¼

P1ðy1Þ P2ðy1Þ . . . PT ðy1Þ
P1ðy2Þ P2ðy2Þ . . . PT ðy2Þ

: : . . . :
: : . . . :
: : . . . :

P1ðyKÞ P2ðyKÞ . . . PT ðyKÞ

2
6666664

3
7777775

(36)

Solving equation (35) gives

b ¼ PTR�1
0 P

� ��1
PTR�1

0 û; a ¼ R�1
0 I� P PTR�1

0 P
� ��1

PTR�1
0

h i
û (37)

where I denotes the diagonal unit matrix. Substituting the coefficients a and b from
(37) into (31), we can obtain the approximation of the field function, in terms of the
nodal values

uðxÞ ¼ RðxÞR�1
0 I� P PTR�1

0 P
� ��1

PTR�1
0

h i
þ PðxÞ PTR�1

0 P
� ��1

PTR�1
0

D E
û

¼
XK
i¼1

/iðxÞûi ¼ U(x)û (38)

where UðxÞ ¼ f/1ðxÞ;/2ðxÞ; . . .;/KðxÞg is called as shape function. It is worth notic-
ing that the shape function depends uniquely on the distribution of scattered nodes
within the domain and has the Kronecker delta property.

Consider a unit test function, i.e. uiðxÞ ¼ 1, and the local domain is a circle shown
in Figure 3; therefore, the local integral equation (26) becomesZ

Cs

rijðxÞnjðxÞdCðxÞ ¼ n1
XL
l¼1

�rijðxlÞnljDl þ n2
XL
l¼1

nljDl

Z
V
aðxl; x0; lÞ�rijðx0ÞdV ðx0Þ (39)

where L is number of segment on the boundary of local integral domain, nlj and Dl are
components of normal and length of segment l. Suppose there are M nodes both in the
domain and on the boundary, M ¼ MX þMT þMD, where MX indicates the number of
nodes collocated in the domain and MT and MD are numbers of nodes on the traction/
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displacement boundaries and consider the relationship between stress and strain in (1),
for the plane stress, (39) becomes

n1
XK
k¼1

XL
l¼1

E/k;1ðxÞnl1=ð1� m2Þ þ l/k;2ðxÞnl2
� �

uðkÞ1

h
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uðkÞ2

i
Dl
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XK 0

k0¼1

uðk
0Þ

1

Z
V
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" #
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þ n2
XK 0

k0¼1

uðk
0Þ

2

Z
V

XL
l¼1
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" #
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(40a)
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(40b)

where k0 ¼ 1; 2; . . .K 0 are the numbers of node in the support domain centred ðx0Þ
at the local integral area dV ðx0Þ, E and l are the Young’s modulus and shear
modulus, m is the Poisson’s ratio. For all domain integrals, four-point standard
integral scheme is adopted in computation. Then, (40a) and (40b) above are
rewritten as

n1
XK
k¼1

XL
l¼1

E/k;1ðxÞnl1=ð1� m2Þ þ l/k;2ðxÞnl2
� �

uðkÞ1

h

þ mE/k;2ðxÞnl1=ð1� m2Þ þ l/k;1ðxÞnl2
� �

uðkÞ2

i
Dl

þ n2
XK 0

k0¼1

uðk
0Þ

1

XQ
q¼1

X4
p¼1

XL
l¼1

E/k0;1ðx0qpÞnl1=ð1� m2Þ þ l/k0;2ðx0qpÞnl2
� �

aðxl; x0qp; lÞDlwpDVq

þ n2
XK 0

k0¼1

uðk
0Þ

2

XQ
q¼1

X4
p¼1

XL
l¼1

mE/k0;2ðx0qpÞnl1=ð1� m2Þ þ l/k 0;1ðx0qpÞnl2
� �

aðxl; x0qp; lÞDlwpDVq

¼ 0

(41a)
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(41b)

where Q in the summation above represents the number of total rectangular segments
of whole integral domain using a background grid, x0qp ¼ x0q þ x0p. For the nodes on the
traction boundary, (29) should be introducedZ

C�CT

tidC ¼ �
Z
CT

t0i dC for xk k ¼ 1; 2; . . .;MT (42)

For the displacement boundary nodes, we can introduce the displacement equation
directly, i.e. uiðxkÞ ¼ u0i ; k ¼ 1; 2; . . .MD. Therefore, there are 2� ðMX þMT þMDÞ
linear algebraic equations in total to determine the same number unknowns of displace-
ments either in the domain or on the traction boundary.

4. Rectangular plate with central crack

A rectangular plate of width 2b and height 2 h containing a central crack of length 2a
subjected to tensile load on the top is shown in Figure 4(a). Investigation for the free
parameter selections has been done by many authors and therefore, it is not necessary
to discuss in this section. In the following analysis, to the authors experience, we

h

b

a crack tip

min

Figure 4. Rectangular plate with central crack: (a) quarter of plate and boundary conditions; (b)
collocation point for local integral equation method and grid for domain integrals.
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selected the free parameter in the radial bases function c ¼ Dmin in (32), radius of local
integral domain R ¼ Dmin=2 (Cs) and number of segment on local integral L ¼ 36,
Dmin indicates the minimum distance between the nodes in the local integral domain
shown in Figure 4(b). The support domain is selected as a circle of radius r0 centred at
field point x, which is determined such that the minimum number of nodes in the sup-
port domain K�N0, where the number N0 is selected between 12 and 20. In addition,
a grid of background for the domain integration as shown in Figure 4(b) is introduced
to carry out all domain integrals in (41a) and (41b). The Poisson’s ratio m ¼ 0:3, the
numbers of collocation points is Mð¼N1 � N2Þ and the number of integral sub-domain
Qð¼V1 � V2; Við¼2ðNi � 1Þ þ 1Þ). As symmetry of the plate and load condition,
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Figure 5. Distribution of normalised stress r22ðx; 0Þ=r0 for different densities of collocation
point while l=a ¼ 0:1 and h ¼ b ¼ 2a.
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Figure 6. Opening displacement u2ðx; 0ÞE=r0a for different portion of nonlocal elasticity while
l=a ¼ 0:05 and h ¼ b ¼ 2a.
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quarter of plate is analysed. However, the integrals of whole domain for nonlocal elas-
ticity must be taken into account.

First of all, the convergence of numerical method is observed. Figure 5 shows the
distribution of the normalised stress for different densities of collocation point for the
square plate ðb=a ¼ h=a ¼ 2Þ and ratio l=a ¼ 0:1. Obviously, the maximum stress is
located about n=l ¼ 0:5, which agrees with the conclusion of the analytical approach.

Next, the displacement on the crack surface and stress are observed when
l=a ¼ 0:05. The variations of crack opening displacement u2E=r0a and the normalised
stresses r22=r0 along x axis for different portion factor n1 with geometry of plate
h ¼ b ¼ 2a are shown in Figure 6 and Figure 7, respectively. It can be found that the
displacement is minimum for the case of classical elasticity n1 ¼ 1. However, the
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Figure 7. Normalised stress r22ðx; 0Þ=r0 for different portions of nonlocal elasticity while
l=a ¼ 0:05 and h ¼ b ¼ 2a.
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normal stress at the crack tip r22ða; 0Þ increases, while the portion factor n1 increases.
In addition, it is observed that for pure nonlocal elasticity (n1 ¼ 0), the crack opening
displacement is not smooth near the crack tip. Figure 8 and Figure 9 show the results
of the displacement on the crack surface and stress distribution in the case of
b ¼ h ¼ 3a.

Moreover, the effects of nonlocal kernel are considered. Normalised stress
r22ðx; 0Þ=r0 for different nonlocal kernels aðr; lÞ, while l=a ¼ 0:05, h ¼ b ¼ 2a and
h ¼ b ¼ 3a are presented in Figure 10 and Figure 11. In this case, we can estimate the
degree of accuracy for approximation of stress at the crack tip by (18) and (21). In this
case, the stress intensity factors are taken from the database of stress intensity factor
(Aliabadi, 1996). The estimation of stresses at crack tip for two types (A and B) and

Figure 9. Normalised stress r22ðx; 0Þ=r0 for different portions of nonlocal elasticity while
l=a ¼ 0:05 and h ¼ b ¼ 3a.

Figure 10. Normalised stress r22ðx; 0Þ=r0 for different nonlocal kernel aðr; lÞ while l=a ¼ 0:05
and h ¼ b ¼ 2a.
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comparisons with meshless results are shown in Table 4. The relative errors are shown
to be less than 5% for all cases.

Finally, the effects of the characteristic length l are observed with nonlocal kernel
aAðr; lÞ. Normalised stress r22ðx; 0Þ=r0 for different characteristic lengths l=a ¼ 0:05

Figure 11. Normalised stress r22ðx; 0Þ=r0 for different nonlocal kernels aðr; lÞ while l=a ¼ 0:05
and h ¼ b ¼ 3a.

Table 4. Estimations of stress at the crack tip and comparison with numerical solutions.

Type b/a KI (Aliabadi, 1996) r22=r0 by (18) or (21) r22=r0 meshless Error(%)

A 2.0 1.325 3.399 3.544 4.1
3.0 1.130 2.899 3.018 3.9

B 2.0 1.325 2.847 2.730 4.3
3.0 1.130 2.419 2.307 4.9

Figure 12. Normalised stress r22ðx; 0Þ=r0 for different portion l=a while h ¼ b ¼ 2a.
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and 0.1, while h ¼ b ¼ 2a and h ¼ b ¼ 3a are presented in Figure 12 and Figure 13,
respectively. It is clear that the maximum stress is located about n=l ¼ 0:5 for each
case, which agrees with the conclusion of the analytical solution.

5. Conclusions

Based on the Eringen’s model, the stresses at the crack tip under tensile load and shear
load at infinite of plate were approximated analytically using singular stresses of the
classical theory. A weak form for a set of governing equations with a unit test function
is transformed into local integral equations. Therefore, the estimation of nonlocal stres-
ses at the crack tip can be obtained using classical mixed mode stress intensity factors.
The meshless method is solved using the radial basis functions in the nonlocal elasticity
fracture mechanics. To demonstrate the proposed method, a rectangular sheet with a
central crack is investigated. The accuracy degree of the estimation of stresses at the
crack tip is validated by the meshless method.
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