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This paper aims at studying the thermo-viscoelastic interaction in a functionally
graded, infinite, Kelvin–Voigt-type viscoelastic, thermally conducting medium due to
the presence of periodically varying heat sources. Three-phase-lag thermoelastic
model, Green–Naghdi model II (i.e. the model which predicts thermoelasticity
without energy dissipation) and Green–Naghdi model III (i.e. the model which
predicts thermoelasticity with energy dissipation) are employed to study thermome-
chanical coupling, thermal and mechanical relaxation effects. In the absence of
mechanical relaxations (viscous effect), the results for various generalised theories of
thermoelasticity may be obtained as particular cases. The governing equations are
expressed in Laplace–Fourier double transform domain and are solved in that domain.
The inversion of the Fourier transform is carried out using residual calculus, where
the poles of the integrand are obtained numerically in the complex domain by using
Laguerre’s method and the inversion of the Laplace transform is done numerically
using a method based on the Fourier series expansion technique. The numerical
estimates of the thermal displacement, temperature, stress and strain are obtained for a
hypothetical material. A comparison of the results for different theories is presented
and the effect of viscosity is also shown and the effect of non-homogeneity is also
seen for different values of the non-homogeneity parameter.

Keywords: generalised thermoelasticity; three-phase-lag thermoelastic model;
functionally graded materials; Kelvin–Voigt model; periodically varying heat sources

1. Introduction

Linear viscoelasticity has been an important area of research since the period of
Maxwell, Boltzman, Voigt and Kelvin. Valuable information regarding linear viscoelas-
ticity theory may be obtained in the books of Gross (1953), Staverman and Schwarzl
(1956), Alfery and Gurnee (1956), Ferry (1970), Bland (1960) and Lakes (1998). Many
researchers like Biot (1954, 1955), Gurtin and Sternberg (1962), Iiioushin and Pobedria
(1970), Tanner (1988) have contributed notably on thermoviscoelasticity. Freudenthal
(1954) has pointed out that most of the solids, when subjected to dynamic loading,
exhibit viscous effects.

The Kelvin–Voigt model is one of the macroscopic mechanical models often used
to describe the viscoelastic behaviour of a material. The model represents the delayed
elastic response subjected to stress when the deformation is time-dependent but recover-
able. The dynamic interaction of thermal and mechanical fields in solids has great
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practical applications in modern aeronautics, astronautics, nuclear reactors and
high-energy accelerators, for example.

Biot (1956) formulated the coupled thermoelasticity theory to eliminate the paradox
inherent in the classical uncoupled theory that elastic deformation has no effect on the
temperature. The field equations for both the theories are of a mixed parabolic-
hyperbolic type, which predict infinite speeds for thermoelastic signals, contrary to
physical observations. Hetnarski and Ignaczak (1999) examined five generalisations to
the coupled theory of thermoelasticity. The first generalisation is due to Lord and
Shulman (1967) who formulated the generalised thermoelasticity theory involving one
relaxation time. This theory is referred to as L–S theory or extended thermoelasticity
theory (ETE) in which the Maxwell–Cattaneo law replaces the Fourier law of heat con-
duction by introducing a single parameter that acts as the relaxation time. The second
generalisation to the coupled theory of thermoelasticity is due to Green and Lindsay
(1972), called G–L theory or the temperature-rate dependent theory (TRDTE), which
involves two relaxation times. Problems concerning these generalised theories such as
ETE and TRDTE have been studied by Chandrasekharaiah (1986), Ignaczak (1989).
Muller (1971) proposed an entropy production inequality that led to restrictions on a
class of constitutive equations. A generalisation of this inequality was developed by
Green and Laws (1972). Green and Lindsay obtained a modified version of the consti-
tutive equations. These equations were independently obtained by Suhubi (1975). For a
review, works of Ignaczak (1989) may be mentioned where presentation of the two the-
ories and some important results are achieved in this field.

The third generalisation to the coupled theory of thermoelasticity is known as
low-temperature thermoelasticity, introduced by Hetnarski and Ignaczak (1996), called
the H–I theory. This model is characterised by a system of nonlinear field equations.
Low-temperature nonlinear models of heat conduction that predict wave-like thermal
signals and which are supposed to hold at low temperatures have also been
proposed and studied in some works by Kosinski (1989) and Kosinski and Cimmelli
(1997).

The fourth generalisation to the coupled theory is concerned with the thermoelastic-
ity theory without energy dissipation (TEWOED) introduced by Green and Naghdi
(1991, 1993), referred to as G–N theory of type II in which the classical Fourier law is
replaced by a heat flux rate-temperature gradient relation. The heat transport equation
does not involve a temperature-rate term and as such this model admits undamped ther-
moelastic waves in thermoelastic material. In the context of linearised version of this
theory (1993), the theorem on uniqueness of solutions has been established by
Chandrasekharaiah (1996a, 1996b). The fourth generalisation of the thermoelasticity
theory developed by Green and Naghdi also involves a heat conduction law, which
includes the conventional law and one that involves the thermal displacement gradient
among the constitutive variables. This model is referred to as the GN model III which
involves dissipation of energy in general and admits damped thermoelastic waves.
Taheri et al. (2005) have employed Green–Naghdi theories of type II and type III to
study the thermal and mechanical waves in an annulus domain. Mallik and Kanoria
(2007) have studied one-dimensional thermoelastic disturbances in an isotropic func-
tionally graded medium in the context of generalised thermoelasticity without energy
dissipation (TEWOED). Problems concerning these theory have been studied by many
authors, such as Bandyopadhyay and Roychoudhuri (2005), Roychoudhuri and
Bandyopadhyay (2005), Kar and Kanoria (2009b), Banik, Mallik, and Kanoria (2007,
2009), Roychoudhuri and Dutta (2005) and Mallik and Kanoria (2008, 2009).
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The fifth generalisation to the thermoelasticity theory is known as the dual
phase-lag model developed by Tzou (1995) and Chandrasekharaiah (1998). Tzou
(1995) considered microstructural effects into the delayed response in time in the mac-
roscopic formulation by taking into account that the increase of the lattice temperature
is delayed due to phonon-electron interactions on the macroscopic level. A macroscopic
lagging (or delayed) response between the temperature gradient and the heat flux vector
seems to be a possible outcome due to such progressive interactions. Tzou (1995)
introduced two-phase lags to both the heat flux vector and the temperature gradient and
considered a constitutive equation to describe the lagging behaviour in the heat conduc-
tion in solids. Here, the classical Fourier law is replaced by an approximation to modi-
fication of the law with two different translations for the heat flux vector and the
temperature gradient.

Recently, Roychoudhuri (2007) had established a generalised mathematical model
of a coupled thermoelasticity theory that includes three-phase lags in the heat flux
vector, the temperature gradient and in the thermal displacement gradient. The more
general model established reduces to the previous models as special cases.
According to this model, the heat flux has been modified as q~ðP; t þ sqÞ
¼ �½Kr~hðP; t þ sT Þ þ K�r~mðP; t þ smÞ�, where r~m ð _m ¼ hÞ is the thermal displace-
ment gradient and K* is the additional material constant. To study some practical
relevant problems, particularly in heat transfer problems involving very short time
intervals and in the problems of very high heat fluxes, the hyperbolic equation gives
significantly different results than the parabolic equation. According to this phenome-
non, the lagging behaviour in the heat conduction in solids should not be ignored,
particularly when the elapsed times during a transient process are very small, say,
about 10−7 s or if the heat flux is very much high. The three-phase-lag model is
very useful in the problems of nuclear boiling, exothermic catalytic reactions,
phonon-electron interactions, phonon scattering etc., where the delay time τq captures
the thermal wave behaviour (a small-scale response in time), the phase-lag τT cap-
tures the effect of phonon-electron interactions (a microscopic response in space),
the other delay time τν is effective since, in the three-phase-lag model, the thermal
displacement gradient is considered as a constitutive variable, whereas in the con-
ventional thermoelasticity theory, temperature gradient is considered as a constitutive
variable.

However, over the last few decades various problems in solid mechanics are being
studied where the elastic coefficients are no longer constants but are a function of posi-
tion. The investigations result from the fact that the idea of nonhomogeneity in elastic
coefficients is not all hypothetical, but more realistic. Elastic properties in soil may vary
considerably with positions. The Earth’s crust itself is nonhomogeneous. Beside these,
some structural materials such as functionally graded materials (FGMs) have distinct
nonhomogeneous character. For example, in graded composite materials, graded regions
are treated as a series of perfectly bonded composite layers, each layer being assigned
slightly different properties. In FGMs, the material properties vary gradually with loca-
tion within the body. In many applications, FGMs are found to be better substitutes for
conventional homogeneous materials. Among several uses of FGMs, one such is the
use of FGMs in automotive brakes and clutches (Lee & Barber, 1993) where the effect
of frictional heat generation is the subject of concern to the scientists. When brakes are
applied to a moving system, the kinetic energy produced at the wheel is transformed
into heat energy, which does not dissipate fast enough into the air stream from the
brake surface into the brake disc and as a result, the high temperatures and thermal
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stresses that accompany them produce a number of disadvantageous effects, such as
surface cracks or permanent distortions. The thermal effect also affects the contact pres-
sure between the surfaces. In order to avoid such types of damage, FGMs have been
considered as protecting coatings between the contact surfaces.

The use of FGMs can eliminate or control thermal stresses in structural compo-
nents. Wang and Mai (2005) analysed the transient one-dimensional thermal stresses in
non-homogeneous materials such as plates, cylinders and spheres using a finite element
method. Ootao and Tanigawa (2006) studied a one-dimensional transient thermoelastic
problem of an FGM hollow cylinder whose thermal and thermoelastic constants were
assumed to vary with the power product form of a radial coordinate variable. Shao,
Wang, and Ang (2007) solved a thermomechanical problem of an FGM hollow circular
cylinder whose material properties were assumed to be temperature-independent and
vary continuously in the radial direction. Noda and Guo (2008) had solved a thermal
shock problem for an FGM plate with a surface crack where the thermomechanical
properties of the plate were assumed to vary along the thickness direction. Ghosh and
Kanoria studied the thermoelastic response in an FGM spherically isotropic infinite
elastic medium having a spherical cavity (2008) and in an FGM spherically isotropic
hollow sphere (2009) in the context of the linear theory of generalised thermoelasticity
with two relaxation time parameters (Green and Lindsay theory). Barik, Kanoria, and
Chaudhuri (2008) had studied a contact problem in FGM. The thermoelastic interac-
tions in a functionally graded isotropic unbounded medium varying heat source have
been studied by Banik and Kanoria (2011). In addition to these reports, thermoelastic
analysis in FGMs has been studied by a number of different researchers.

The objective of the present contribution is to consider one-dimensional thermoelastic
disturbances in an infinite, isotropic, functionally graded thermo-viscoelastic medium in
the context of three-phase-lag thermoelastic model, GN model II (TEWOED) and GN
model III (thermoelasticity with energy dissipation [TEWED]), in the presence of the dis-
tributed periodically varying heat sources. All the thermophysical properties of the FGM
under consideration are assumed to vary as an exponential power of the space coordinate.
The governing equations for this problem are taken into Laplace–Fourier transform
domain. The solutions for the displacement, temperature, thermal stress and strain in
Laplace transform domain are obtained by Fourier inversion, which is carried out by
using the residual calculus, where the poles of the integrand are obtained numerically in
the complex domain by using Laguerre’s method. The numerical inversion of the Laplace
transform are carried out by using a method based on Fourier series expansion technique
(Honig & Hirdes, 1984). Numerical results for the thermophysial quantities have been
obtained for a copper-like material and have been presented graphically to study the
effect of nonhomogeneity. The effect of viscosity is also shown.

2. Basic equations

The stress-strain-temperature relation is

sij ¼ 2l�eij þ k�D� c� h� h0ð Þ½ �dij; i; j ¼ 1; 2; 3 (2.1)

where the parameters k�, μ* and γ* are defined as

k� ¼ ke 1þ a0
@

@t

� �
; l� ¼ le 1þ a1

@

@t

� �
; c� ¼ ce 1þ c0

@

@t

� �
;

182 A. Sur and M. Kanoria



where ce ¼ ð3ke þ 2leÞat, c0 ¼ ð3kea0 þ 2lea1Þat=ce; ke and μe being Lamés
constants, α0, α1 the visco-thermoelastic relaxation times, αt the coefficient of linear
thermal expansion, τij the stress tensor, θ0 the reference temperature, θ the temperature
field, the cubical dilation Δ = eii and eij the strain tensor given by

eij ¼ 1

2
ui; j þ uj;i
� �

; (2.2)

where ui (i = 1, 2, 3) are the displacement components.
Stress equation of motion in the absence of body force is

sij; j ¼ q€ui; i; j ¼ 1; 2; 3 (2.3)

where ρ is the density of the medium.
The heat equation for the dynamic coupled generalised visco-thermoelasticity based on
the three-phase-lag thermoelasticity model is given by

1þ sq
@

@t
þ s2q

2

@2

@t2

 !
qcm€hþ c�h0div€u~� q _Q
� �

¼ K�h;i
� 	

;iþsT K€h;i
h i

;i
þ s�m _h;i
h i

;i
; (2.4)

where cν is the specific heat at constant strain, K* is an additional material constant, K
is the thermal conductivity, Q is the rate of internal heat generation per unit mass,
_m ¼ h; ν being the thermal displacement, s�m ¼ K þ K�sm; delay time τν is called the
phase-lag of the thermal displacement gradient and τq is called the phase-lag of the heat
flux. Here, the dot denotes derivative with respect to time.

GN theory type III and GN theory type II can be recovered from Equation (2.4) by
taking τq = τT = τν = 0 and τq = τT = τν = 0, K ≪ K*.

3. Formulation of the problem

We now consider a functionally graded infinite isotropic thermo-viscoelastic body at a
uniform reference temperature θ0 in the presence of periodically varying heat sources
distributed over a plane area. We shall consider one-dimensional disturbances of the
medium, so that the thermal displacement vector u~ and temperature field θ can be
expressed in the following form

u~¼ ðuðx; tÞ; 0; 0Þ;
h ¼ hðx; tÞ: (3.1)

For a functionally graded solid, the parameters ke, μe, K, K
*, γe and ρ are no longer

constant but become space-dependent. Thus, we replace ke, μe, K, K*, γe and ρ by
k0e f ðx~Þ, l0e f ðx~Þ, K0 f ðx~Þ, K�

0 f ðx~Þ, c0e f ðx~Þ and q0 f ðx~Þ, respectively, where k0e, l
0
e, K0,

K�
0 , c

0
e and ρ0 are assumed to be constants. f ðx~Þ is a given nondimensional function

of the space variable x~¼ ðx; y; zÞ. Further, it is assumed that material properties
depend only on the x coordinate. So, we can take f ðx~Þ as f (x). In the context of the
linear theory of generalised thermoelasticity in the absence of body forces based on
the three-phase-lag thermoelasticity model (Roychoudhuri, 2007) the constitutive
equation, strain component, the equation of motion and the heat equation can be
written as follows
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sxx ¼ f ðxÞ 2l0e 1þ a1
@

@t

� �
@u

@x
þ k0e 1þ a0

@

@t

� �
@u

@x
� c0e 1þ c0

@

@t

� �
ðh� h0Þ


 �� 
;

(3.2)

exx ¼ @u

@x
; (3.3)

q0f ðxÞ
@2u

@t2
¼f ðxÞ 2l0e 1þa1

@

@t

� �
@2u

@x2
þ k0e 1þa0

@

@t

� �
@2u

@x2
�c0e 1þc0

@

@t

� �
@h
@x


 �� 
þ 2l0e 1þa1

@

@t

� �
@u

@x
þ k0e 1þa0

@

@t

� �
@u

@x
�c0e 1þc0

@

@t

� �
ðh�h0Þ


 �� 
@f ðxÞ
@x

(3.4)

and

@

@x
K�
0 f ðxÞ

@h
@x

� 
þ @

@x
K0sT f ðxÞ @

€h
@x

" #
þ @

@x
K�
0 f ðxÞsm þ K0f ðxÞ

� � @ _h
@x

" #

¼ 1þ sq
@

@t
þ s2q

2

@2

@t2

 !
q0cmf ðxÞ þ c0e 1þ c0

@

@t

� �
h0

@3u

@t2@x
f ðxÞ � q0f ðxÞ _Q

� 
; (3.5)

Introducing the following nondimensional variables

x0 ¼ x

l
; t0 ¼ vt

l
; h0 ¼ h� h0

h0
; u0 ¼ k0e þ 2l0e

lc0eh0
u;

s0x0x0 ¼
sxx
c0eh0

; e0x0x0 ¼ exx; s0q ¼
sqv
l
;

s0T ¼ sTv
l

; s0m ¼
smv
l
; f 0ðx0Þ ¼ f ðxÞ; a00 ¼

a0v
l
; a01 ¼

a1v
l
; c00 ¼

c0v
l
; (3.6)

where l is a standard length and v is a standard speed. Then, after removing primes,
Equations (3.2)–(3.5) can be written in non-dimensional form as follows

sxx ¼ f ðxÞ 1þ a0 þ ða1 � a0Þ 2C
2
S

C2
P


 �
@

@t

� 
@u

@x
� f ðxÞ 1þ c0

@

@t

� �
h; (3.7)

exx ¼ c0eh0
k0e þ 2l0e

@u

@x
¼ b1

@u

@x
; (3.8)

f ðxÞ @
2u

@t2
¼ C2

P þ a0ðC2
P � 2C2

SÞ þ 2a1C
2
S

� � @

@t

� 
@2u

@x2
f ðxÞ � C2

Pf ðxÞ 1þ c0
@

@t

� �
@h
hx

þ C2
P þ a0ðC2

P � 2C2
SÞ þ 2a1C

2
S

� � @

@t

� 
@u

@x
� C2

P 1þ c0
@

@t

� �
h

� �
@f ðxÞ
@x

;

(3.9)
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1þ sq
@

@t
þ s2q

2

@2

@t2

 !
€hþ e 1þ c0

@

@t

� �
@€u

@x
� Q0

� 
f ðxÞ

¼ C2
T

@2h
@x2

þ sTC
2
K

@2€h
@x2

þ ðC2
K þ smC

2
T Þ

@2 _h
@x2

" #
f ðxÞ

þ C2
T

@h
@x

þ sTC
2
K

@€h
@x

þ ðC2
K þ smC

2
T Þ

@ _h
@x

" #
@f ðxÞ
@x

: (3.10)

where

C2
P ¼ k0e þ 2l0e

q0v2
; C2

S ¼ l0e
q0v2

; C2
T ¼ K�

0

q0cmv2
; C2

K ¼ K0

q0cmlv
; Q0 ¼

_Ql

cmh0v
;

e ¼ c02e h0
q0cmðk0e þ 2l0eÞ

;

and it is to be noted that GN model III and GN model II can be recovered from
Equation (3.10) by taking τT = τq = τν = 0 and τT = τq = τν = 0, K ≪ K*, respectively.

In the previous expressions, CP, CS and CT represent nondimensional dilatational,
shear and thermal wave velocities, respectively, CK is the damping coefficient and ɛ is
the thermoelastic coupling constant.

We assume that the medium is initially at rest. The undisturbed state is maintained
at reference temperature. Then we have

uðx; 0Þ ¼ _uðx; 0Þ ¼ hðx; 0Þ ¼ _hðx; 0Þ ¼ 0:

3.1 Periodically varying heat source

Now let us assume that heat sources are distributed over the plane x = 0 in the following
form

Q0 ¼ Q�
0dðxÞ sin

pt
s

� �
for 0� t� s;

¼ 0 for t[ s;

(3.11)

3.2 Exponential variation of nonhomogeneity

We take f(x) = e−kx, where k is a dimensionless constant. Then the corresponding equa-
tion reduce to

sxxðx; tÞ ¼ e�kx 1þ a0 þ ða1 � a0Þ 2C
2
S

C2
P


 �
@

@t

� 
@u

@x
� 1þ c0

@

@t

� �
h


 �
; (3.12)

exxðx; tÞ ¼ b1
@u

@x
; where b1 ¼

c0eh0
k0e þ 2l0e

: (3.13)
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@2u

@t2
¼ C2

P þ a0ðC2
P � 2C2

SÞ þ 2a1C
2
S

� � @

@t

� 
@2u

@x2
� C2

P 1þ c0
@

@t

� �
@h
@x

� k C2
P þ a0ðC2

P � 2C2
SÞ þ 2a1C

2
S

� � @

@t

� 
@u

@x
þ kC2

P 1þ c0
@

@t

� �
h; (3.14)

1þ sq
@

@t
þ s2q

2

@2

@t2

 !
@2h
@t2

þ e 1þ c0
@

@t

� �
@3u

@t2@x
� Q0

� 
¼ C2

T

@2h
@x2

� k
@h
@x

� �
þ sTC

2
K

@2€h
@x2

� k
@€h
@x

 !
þ ðC2

K þ smC
2
T Þ

@2 _h
@x2

� k
@ _h
@x

 !
: (3.15)

Let us define the Laplace–Fourier double transform of a function f (x, t) by

f ðx; pÞ ¼ R10 e�ptf ðx; tÞdt; ReðpÞ[ 0;bf ðn; pÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
einxf ðx; pÞdx: (3.16)

Applying the Laplace–Fourier double integral transform to Equations (3.12)–(3.15), we
get

bsxxðn;pÞ¼� iðnþ ikÞ 1þ a0þða1�a0Þ2C
2
S

C2
P


 �
p

� buðnþ ik;pÞ�ð1þc0pÞbhðnþ ik;pÞ

 �

;

(3.17)

bexxðn; pÞ ¼ �ib1nbuðn; pÞ; (3.18)

buðn; pÞ ¼ ðk þ inÞC2
Pð1þ c0pÞ

p2 þ C2
P þ a0ðC2

P � 2C2
SÞ þ 2a1C2

S

� �
p

� �ðn2 � inkÞ� 	 bhðn; pÞ; (3.19)

1þ psq þ
p2s2q
2

 !
p2 C2

T þ sTC
2
K þ p C2

K þ smC
2
T

� �� �
n2

"
� ikn C2

T þ p2sTC
2
K þ p C2

K þ smC
2
T

� �� ��bhðn; pÞ
� iep2n 1þ c0pð Þ 1þ psq þ

p2s2q
2

 !buðn; pÞ
¼ 1þ psq þ

p2s2q
2

 !bQ0; (3.20)

Solving Equations (3.19) and (3.20) for buðn; pÞ and bhðn; pÞ, we obtain

buðn; pÞ ¼ C2
Pðk þ inÞð1þ c0pÞ 1þ psq þ p2s2q

2

� �bQ0

M �ðnÞ ; (3.21)

bhðn; pÞ ¼ bQ0 p2 þ C2
P þ a0ðC2

P � 2C2
SÞ þ 2a1C2

S

� �
p

� �
n2 � ink
� �� 	

1þ psq þ p2s2q
2

� �
M �ðnÞ ;

(3.22)
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where

M �ðnÞ ¼ M1ðpÞn4 þM2ðpÞn2 þM3ðpÞ
¼ M1ðpÞ n� n1ð Þ n� n2ð Þ n� n3ð Þ n� n4ð Þ; (3.23)

and M1(p), M2(p) and M3(p) are given by

M1ðpÞ ¼ ðC2
K þ smC

2
T Þpþ ðC2

T þ sTC
2
KÞ

� �
C2
P þ a0ðC2

P � 2C2
SÞ þ 2a1C

2
S

� �
p

� �
; (3.24)

M2ðpÞ ¼ p2eð1þ c0pÞ2C2
P 1þ psq þ

p2s2q
2

 !
� k2 C2

T þ p2sTC
2
K þ pðC2

T þ sTC
2
KÞ

� �
� C2

P þ a0ðC2
P � 2C2

SÞ þ 2a1C
2
S

� �
p

� �þ p2 C2
T þ sTC

2
K þ pðC2

K þ smC
2
T Þ

� �
þ 1þ psq þ

p2s2q
2

 !
p2 C2

P þ a0ðC2
P � 2C2

SÞ þ 2a1C
2
S

� �
p

� �
;

(3.25)

M3ðpÞ ¼ p4 1þ psq þ
p2s2q
2

 !
: (3.26)

The expression for strain and stress in the Laplace–Fourier transform domain can be
obtained from Equations (3.17) and (3.18) using (3.21) and (3.22) as follows

bexxðn; pÞ ¼ n2 � ink
� �

b1C
2
P
bQ0ð1þ c0pÞ 1þ psq þ p2s2q

2

� �
M �ðnÞ ; (3.27)

bsxx ðn; pÞ ¼ ð1þ c0pÞ 1þ psq þ p2s2q
2

� �bQ0ðn2 þ inkÞ
M�ðnþ ikÞ a0C

2
Pða1 � a0Þ2C2

S

� �
pC2

P

�
� p2 þ a0ðC2

P � 2C2
SÞpþ 2a1C

2
Sp

� ��: (3.28)

Inverse Fourier transforms of Equations (3.21), (3.22), (3.27) and (3.28) give the fol-
lowing solutions for displacement, temperature, strain and stress in the Laplace trans-
form domain

uðx; pÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1

C2
Pðk þ inÞð1þ c0pÞ 1þ psq þ p2s2q

2

� �bQ0

M �ðnÞ e�inxdn; (3.29)

hðx;pÞ

¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1

bQ0 p2þ C2
Pþ a0ðC2

P�2C2
SÞþ2a1C2

S

� �
p

� �ðn2� inkÞ� 	
1þpsqþp2s2q

2

� �
M �ðnÞ e�inxdn;

(3.30)

exxðx; pÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1

n2 � ink
� �

b1C
2
P
bQ0ð1þ c0pÞ 1þ psq þ p2s2q

2

� �
M �ðnÞ e�inxdn; (3.31)
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sxxðx; pÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1

ð1þ c0pÞ 1þ psq þ p2s2q
2

� �bQ0 n2 þ ink
� �

M�ðnþ ikÞ
a0C

2
Pða1 � a0Þ2C2

S

� �
pC2

P � p2 þ a0ðC2
P � 2C2

SÞpþ 2a1C
2
Sp

� �� 	
e�inxdn;

(3.32)

where

Mðnþ ikÞ ¼ M1ðpÞn4 �M2ðpÞn3 þM3ðpÞn2 �M4ðpÞnþM5ðpÞ
¼ M1ðpÞðn� l1Þðn� l2Þðn� l3Þðn� l4Þ:

Since the heat sources are distributed over the plane x = 0 in the following form

Q0 ¼ Q�
0dðxÞ sin pt

s

� �
for 0� t� s;

¼ 0 for t[ s;
(3.33)

then

bQ0 ¼
Q�

0psð1þ e�psÞffiffiffiffiffiffi
2p

p ðp2 þ p2s2Þ : (3.34)

Thus, the expressions for thermal displacement, temperature, thermal stress and strain
in Laplace transform domain take the following form

�uðx; pÞ ¼
Z 1

�1

Q�
0s 1þ e�psð ÞC2

Pðk þ inÞ 1þ c0pð Þ 1þ psq þ p2s2q
2

� �
2 p2 þ p2s2ð ÞM �ðnÞ e�inxdn; (3.35)

hðx; pÞ ¼
Z 1

�1

Q�
0s 1þ e�psð Þ 1þ psq þ p2s2q

2

� �
2 p2 þ p2s2ð ÞM �ðnÞ

p2 þ fC2
P þ a0 C2

P � 2C2
S

� �þ 2a1C
2
S

� �
pg n2 � ink
� �� 	

e�inxdn;

(3.36)

sxxðx; pÞ ¼
Z 1

�1

Q�
0s 1þ e�psð Þ 1þ c0pð Þ n2 þ ink

� �
1þ psq þ p2s2q

2

� �
2 p2 þ p2s2ð ÞM �ðnþ ikÞ

fa0C2
P þ a1 � a0ð ÞC2

SgpC2
P � p2 þ a0 C2

P � 2C2
S

� �
pþ 2a1C

2
Sp

� �� 	
e�inxdn;

(3.37)

�exxðx; pÞ ¼
Z 1

�1

Q�
0b1C

2
Ps 1þ e�psð Þ 1þ c0pð Þ n2 � ink

� �
1þ psq þ p2s2q

2

� �
2 p2 þ p2s2ð ÞM �ðnÞ e�inxdn;

(3.38)

Applying contour integration to Equations (3.35)–(3.38) we obtain
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�uðx; pÞ ¼ �iQ�
0psNðpÞ

X4
j ¼ 1

ImðnjÞ\0

Ajðinj þ kÞe�injx for x [ 0

¼ iQ�
0psNðpÞ

X4
j ¼ 1

ImðnjÞ[ 0

Ajðinj þ kÞe�injx for x \ 0; ð3:39Þ

hðx; pÞ ¼ � iQ�
0psNðpÞ

ð1þ c0pÞC2
P

X4
j ¼ 1

ImðnjÞ\0

Aj=ðnjÞe�injx for x [ 0

¼ iQ�
0psNðpÞ

ð1þ c0pÞC2
P

X4
j ¼ 1

ImðnjÞ[ 0

Aj=ðnjÞe�injx for x \ 0; (3.40)

sxxðx; pÞ ¼ ib1Q
�
0psNðpÞ
C2
P

X4
j ¼ 1

ImðljÞ\0

Bjðl2j þ ikljÞ}ðljÞe�iljx for x[ 0

¼ � ib1Q
�
0psNðpÞ
C2
P

X4
j ¼ 1

ImðljÞ[ 0

Bjðl2j þ ikljÞ}ðljÞe�iljx for x \ 0; (3.41)

�exxðx; pÞ ¼ iQ�
0psNðpÞp2

X4
j ¼ 1

ImðnjÞ\0

Ajðn2j � injkÞe�injx for x[ 0

¼ �iQ�
0psNðpÞp2

X4
j ¼ 1

ImðnjÞ[ 0

Ajðn2j � injkÞe�injx for x \ 0; (3.42)

where Aj’s and Bj’s are given by

Aj ¼
Y4

n ¼ 1
n 6¼ j

1

ðnj � nnÞ
;

Bj ¼
Y4

n ¼ 1
n 6¼ j

1

ðlj � lnÞ ; j ¼ 1; 2; 3; 4; (3.43)
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NðpÞ ¼
C2
P 1þ e�psð Þ 1þ c0pð Þ 1þ psq þ p2s2q

2

� �
M1ðpÞ p2 þ p2s2ð Þ : (3.44)

= nj
� � ¼ p2 þ C2

P þ a0 C2
P � 2C2

S

� �þ 2a1C
2
S

� �
p

� �
n2j � injk
� �h i

; (3.45)

and

} lj
� � ¼ l2j þ iljk

� �
a0C

2
P þ a1 � a0ð ÞC2

S

� �
pC2

P � p2 þ a0 C2
P � 2C2

S

� �
pþ 2a1C

2
Sp

� �� 	
:

(3.46)

4 Numerical inversion of Laplace transform

Let �f ðx; pÞ be the Laplace transform of a function f(x, t). Then the inversion formula
for Laplace transform can be written as

f ðx; tÞ ¼ 1

2pi

Z dþi1

d�i1
ept�f ðx; pÞdp; (4.1)

where d is an arbitrary real number greater than the real part of all the singularities of
�f ðx; pÞ. Taking p = d + iw, the preceding integral takes the form

f ðx; tÞ ¼ edt

2p

Z 1

�1
eitw�f ðx; d þ iwÞdw: (4.2)

Expanding the function h(x, t) = e−dtf(x, t) in a Fourier series in the interval [0, 2T], we
obtain the approximate formula (Honig & Hirdes, 1984),

f ðx; tÞ ¼ f1ðx; tÞ þ ED; (4.3)

where

f1ðx; tÞ ¼ 1

2
c0 þ

X1
k¼1

ck for 0� t� 2T (4.4)

and

ck ¼ edt

T
e

ikpt
T �f x; d þ ikpt

T

� �24 35: (4.5)

The discretisation error ED can be made arbitrary small by choosing d large enough
(Honig & Hirdes, 1984). Since the infinite series in Equation (4.4) can be summed up
to a finite number N of terms, the approximate value of f (x, t) becomes

fN ðx; tÞ ¼ 1

2
c0 þ

XN
k¼1

ck for 0� t� 2T (4.6)

190 A. Sur and M. Kanoria



Using the preceding formula to evaluate f(x, t) we introduce a truncation error ET that
must be added to the discretisation error to produce the total approximation error. Two
methods are used to reduce the total error. First, the ‘Korrecktur’ method to reduce the
discretization error. Next, the ɛ-algorithm is used to accelerate convergence (Honig &
Hirdes, 1984). The Korrecktur method uses the following formula to evaluate the
function f (x, t)

f ðx; tÞ ¼ f1ðx; tÞ � e�2dT f1ðx; 2T þ tÞ þ E0
D; (4.7)

where the discretisation error jE0
Dj � jEDj. Thus, the approximate value of f (x, t)

becomes

fNKðx; tÞ ¼ fN ðx; tÞ � e�2dT fN 0 ðx; 2T þ tÞ; (4.8)

where N′ is an integer such that N′ < N. We shall now describe the ɛ-algorithm that is
used to accelerate the convergence of the series in Equation (4.6). Let N = 2q + 1,
where q is a natural number and let sm ¼Pm

k¼1 ck be the sequence of the partial sum
of series in (4.6). We define the ɛ-sequence by

e0;m ¼ 0; e1;m ¼ sm

and

erþ1;m ¼ er�1;mþ1 þ 1

er;mþ1 � er;m
; r ¼ 1; 2; 3; ::: :

It can be shown that the sequence ɛ1,1, ɛ3,1, ɛ5,1, …, ɛN,1 converges to f ðx; tÞ þ ED � c0
2

faster than the sequence of partial sums sm, m = 1, 2, 3, …. The actual procedure used
to invert the Laplace transform consists of using Equation (4.8) together with the
ɛ-algorithm. The values of d and T are chosen according to the criterion outlined in
(Honig & Hirdes, 1984).

5. Numerical results and discussions

To get the solution for thermal displacement, temperature and thermal stress in space-
time domain, we have to apply the Laplace inversion formula to Equations (3.39)–
(3.42), respectively. This has been done numerically using a method based on Fourier
series expansion technique. To get the roots of the polynomials M*(ξ) and M*(ξ + ik) in
the complex domain, we have used Laguerre’s method. For computational purposes, a
copper-like material has been taken into consideration. The values of the material con-
stants are taken as follows (Roychoudhuri & Dutta, 2005)

e ¼ 0:0168; ke ¼ 1:387� 1011 N=m2;

le ¼ 0:448� 1011N=m2; at ¼ 1:67� 10�8=K; h0 ¼ 1K

and the hypothetical values of phase-lag parameters are taken as

a0 ¼ 0:05s; a1 ¼ 0:1s; sq ¼ 0:001s; sT ¼ 0:05s; sm ¼ 0:05s;

which agrees with the stability condition of Quintanilla and Racke (2008) that under
three-phase-lag heat conduction, if K�sq\s�m\

2KsT
sq

, where τν = K + K*τν, the solutions
are always exponentially stable. Also, we have taken Q�

0 ¼ 1, τ = 1, Cp = 1, CT = 2 and
CK = 0.6, so the faster wave is the thermal wave.
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In order to study the effect of nonhomogeneity on thermal displacement, tempera-
ture and stress for a viscous material, we now present our results in their graphical
representations (Figures 1–3). Figures 1–3 show the variation of thermal displacement,
temperature and stress for three models (GN II, GN III and 3P lag model) for time
t = 0.6 and for nonhomogeneity parameter k = 0 and 1.

Figure 1 depicts the variation of thermal displacement u versus x for t = 0.6 when
the nonhomogeneity parameter is taken to be k = 0, 1 for the three different models to
study the effect of nonhomogeneity in the interval 0 < x < 1.6. From the figure, it is
seen that the displacement will increase to reach its maximum near x = 0.3 and then it
falls to zero for all models. It is also observed that in each of the models, as the nonho-
mogeneity parameter increases, the magnitude of the peak of the displacement compo-
nent will also increase. Also, it is seen that for different nonhomogeneity parameters,
the decay of the magnitude of the thermal displacement is faster for GN II model than
that of GN III model which is again faster than 3P lag model.

Figure 2 is plotted to study the effect of nonhomogeneity on the temperature θ with
the distance x. It is observed that as the nonhomogeneity parameter increases, the mag-
nitude of θ will also increase for a fixed x and beyond this, the magnitude of θ dimin-
ishes to zero. It can also be verified from the expression of h given in Equation (3.40)

Figure 1. Variation of u vs. x for t = 0.6 and k ¼ 0; 1 for viscous material.

Figure 2. Variation of θ vs. x for t = 0.6 and k ¼ 0; 1 for viscous material.
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involving e�injx ImðnjÞ\0 for x > 0. Also, it is observed that for different k, the decay
of θ for GN II model is faster than GN III model which is again faster than 3P lag
model.

Figure 3 shows the variation of the thermal stress τxx vs. distance x for t = 0.6. It is
seen than near the application of the heat source, the stress is compressive in nature,
which is physically plausible. The magnitude of the thermal stress is greater for GN II
model compared to that of GN III model which is again greater for 3P lag model. After
that the magnitude of τxx decays sharply for GN II model compared to GN III model,
which decays sharply than that for 3P lag model.

In order to study the effect of viscosity on the thermophysical quantities, Figures
4–6 are plotted for k = 1 and t = 0.6. Figure 4 depicts the variation of displacement u
versus x when t = 0.6 for both viscous and non-viscous materials for the different mod-
els (GN II, GN III, 3P). It is observed that due to the presence of the viscosity term,
the peak of the displacement is larger for non-viscous material than that of the viscous
material for all the models and the rate of decay becomes slower for the viscous mate-
rial also. Similar qualitative behaviour is seen for all the three models.

Figure 5 depicts the variation of temperature θ versus x for both viscous and non-
viscous materials. Here also, the presence of viscosity term, the rate of the decay

Figure 3. Variation of τxx vs. x for t = 0.6 and k ¼ 0; 1 for viscous material.

Figure 4. Variation of u vs. x for t = 0.6 and k = 1.
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becomes slower. A similar qualitative behaviour of the temperature is seen for different
models.

Figure 6 is plotted to study the effect of viscosity on the stress component τxx
for different models for nonhomogeneous material. Due to the presence of the

Figure 5. Variation of θ vs. x for t = 0.6 and k = 1.

Figure 6. Variation of τxx vs. x for t = 0.6 and k = 1.

Figure 7. Variation of u vs. x for t ¼ 0:6; 0:4 and k = 1 for viscous material.
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viscosity term, the rate of decay of τxx becomes slower. Also, it is observed that for
the GN II model, the stress component has a larger value than for the GN III model
and the 3P model, which is physically plausible since there is no dissipative term
present in GN II model.

Figure 8. Variation of θ vs. x for t ¼ 0:6; 0:4 and k = 1 for viscous material.

Figure 9. Variation of τxx vs. x for t ¼ 0:6; 0:4 and k = 1 for viscous material.

Figure 10. Variation of θ vs. t for x ¼ 0:3; 0:5, CT = 6 and k = 6.
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Figures 7–9 are plotted to study the variation of thermophysical quantities for
viscous material when t = 0.4, 0.6 for three models. From these figures, it is seen that
in earlier situations, the magnitude of the thermophysical quantities are lesser than the
magnitude of the same for later on.

Figure 10 depicts the variation temperature (θ) versus t for both viscous and non-
viscous materials for CT = 6 and nonhomogeneous material (k = 6) for x = 0.3, 0.5. It is
evident from the figure that the oscillatory behaviour of θ is seen for 0.6 < t < 1.8 and
after that, the temperature almost disappears inside the body i.e. the thermal wave is
propagating with time and with increase of time, it reaches to a steady state.

6. Conclusions

The present problem of investigating the thermophysical quantities in an isotropic func-
tionally graded Kelvin–Voigt viscoelastic material subjected to a periodically varying
heat source is studied in the light of generalised thermoelasticity theories with three dif-
ferent models (GN II, GN III and 3P lag model). The material properties are assumed
to vary as exponentially with distance. The analysis of the results permits some con-
cluding remarks:

(1) The effect of nonhomogeneity on all the thermophysical quantities is seen. It
is prominent that the increase of the nonhomogeneity parameter will increase
the magnitudes of the thermophysical quantities. So, while designing any
FGM, the effect of nonhomogeneity should be taken into consideration.

(2) The presence of the thermo-viscoelastic relaxation parameters will decrease the
magnitude of the thermophyscial quantities and the decay of the physical quan-
tities becomes slower due to the presence of the viscosity term.

(3) Here, all the results for nonhomogeneity parameter k = 0 and three-phase-lag
model, agree with the existing literature (Kanoria & Mallik, 2010).
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