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The article exposes robust finite element solutions for coupling flows in both purely
fluid region, ruled by Stokes equations, and a porous region of low permeability
(down to 10−15 m2) governed by Darcy’s equations. Relying on stabilised FE
formulations, two different numerical strategies are investigated for coupling
Stokes–Darcy flows: a decoupled strategy, based on the use of two matching meshes
and two finite element spaces for discretising the Stokes–Darcy coupled system; a
unified or monolithic strategy, consisting in defining one single mesh for discretising
the computational domain, associated with one single finite element space. In the
first case, P1+/P1 mixed finite element is used for both Stokes and Darcy (primal
form), while P1/P1 approximation is used in the second case with the dual form of
the Stokes–Darcy coupled problem stabilised by a variational multi-scale method.
The method of manufactured solution is used to evaluate the convergence rates of
the solutions and the code robustness. Then, cases of flows normal and tangential to
the Stokes–Darcy interface are investigated, and a comparison with available
analytical solutions is carried out. Capabilities of both approaches are then
demonstrated in solving problems with complex geometry and 3D cases.
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1. Introduction

This paper proposes a comparison of two methods capable of dealing with the
Stokes–Darcy coupled problem. The Stokes–Darcy coupled problem has been studied
by many researchers in many field of engineering. The numerical applications proposed
in this paper are in the field of resin infusion processes. The specificity of such applica-
tions is the low permeability of the Darcy zone and the thin thickness of the Stokes
layer. The strategies studied in this contribution for solving the coupled Stokes–Darcy
problem are the decoupled (Celle, Drapier, & Bergheau, 2008a, 2008b) and monolithic
(Pacquaut, Bruchon, Moulin, & Drapier, 2012) approaches. The decoupled strategy
consists in using two different meshes matching at the interface to solve the Stokes and
the Darcy equations and to equilibrate velocity and pressure iteratively (Discacciati &
Quarteroni, 2009). For this, special methods for prescribing interface conditions
between the two media have to be introduced. Conversely, the originality of the
monolithic approach consists in using a single non-necessarily structured mesh and the
same finite element spaces in Stokes and Darcy domains. A level-set function is used
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to represent the interface between Stokes and Darcy and, interface conditions are
included into the weak formulation, and naturally satisfied. For both methods, mixed
finite elements in velocity and pressure are used in the whole domain. A P1/P1
(piecewise linear in both velocity and pressure for a simplicial mesh) continuous
approximation is employed throughout the entire domain. To ensure the unicity of the
solution, the finite element pairs for pressure and velocity should verify
Brezzi–Babuska conditions or some additional terms (depending on the size of mesh
and finite element residual) should be added to the discrete variational formulation of
the problem to satisfy Babuska theorem. In literature, different pairs of elements are
used to couple Stokes–Darcy problem for decoupled and monolithic approaches. The
difficulty of the choice of stable elements for Stokes–Darcy coupled problem is that
the stable elements for Stokes are not stable for Darcy and vice versa. Because of the
condition on the finite element spaces, coupling of different finite elements can be
compatible for the decoupled strategy and uncompatible for unified strategies.Briefly, it
does not exist a standard stable finite element pair for both Stokes and Darcy. The
choice of different stable pairs (defined in two different discretised spaces) succeeds in
decoupled approach where every domain is represented by a mesh independently from
the other domain. For the decoupled approach, Discacciati and Quarteroni (2009)
couples Taylor-Hood elements for Stokes with C0 Lagrangian for Darcy, and Layton,
schieweck, and Yotov (2003) couples Taylor-Hood elements for Stokes with
Raviart–Thomas (RT) elements for Darcy. In this paper, the decoupled approach uses a
P1/P1 formulation stabilised with hierarchical bubble functions, i.e. P1+/P1 finite
element for both equations of Stokes and primal Darcys formulation.

For the monolithic approach, Burman and Hansbo (2007) couples P1/P0 elements
with pressure stabilisation in Stokes and Darcy domains, Layton et al. (2003) couples
Taylor-Hood elements or MINI-elements for Stokes with Brezzi–Douglas–Marini or RT
elements in Darcy and Pacquaut et al. (2012) couples MINI-elements for Stokes with
Hughes variational multiscale stabilised elements for Darcy. The last method proposed
in Pacquaut et al.’s (2012) works in standard cases (flow parallel to the interface, high
permeabilities K[ 10�8 m2) but shows oscillations, accuracy problems and bad behav-
iour in severe cases (complex geometries with curved interfaces in two-dimensional
(2D) and three-dimensional (3D) cases, low permeabilities 10�8m2�K� 10�15 m2).
The aim of this paper is to present a monolithic approach based on P1/P1 formulation
for Stokes and the dual formulation of Darcy stabilised with algebraic subgrid scale
(ASGS) method (Badia & Codina, 2008, 2010) which remains effective in severe cases,
and assess along with a decoupled approach that has been proved to be robust in
standard cases (Celle et al., 2008b).

This paper is organised as follows. Section 2 presents the mathematical modelling
for the Stokes–Darcy coupled problem, the physical assumptions and the coupling
physical conditions between the Stokes and Darcy equations. Sections 3 and 4 intro-
duce, respectively, the monolithic approach stabilised with a variational multiscale
(VMS) method and the decoupled approach based on P1+/P1 formulation in Stokes
and Darcy. In Section 5, we study the rate of convergence of monolithic and decoupled
approaches by using manufactured solutions and we compare the orders of convergence
obtained with each method. Section 6 presents a comparison between monolithic and
decoupled approaches for a flow perpendicular to the interface, a flow parallel to the
interface and a flow with inclined interface. Finally, Section 7 presents numerical simu-
lations in 2D and 3D for complex geometries such as those met in liquid moulding in
manufacturing processes of composite materials.
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2. Mathematical model

2.1. Mathematical formulation of the physical problem

Let Ω be a bounded domain of Rm, divided into two non-overlapping subdomains, Ωs

and Ωd, separated by a surface C ¼ �Xs \ �Xd (see Figure 1). The problem is to describe
the flow of an incompressible Newtonian fluid ruled by the Stokes equations in Ωs and
by the Darcy equations in Ωd which is assumed to be a porous medium. In the
following, index s is used to denote everything that concerns the Stokes domain and
index d for the Darcy domain.

In Ωs, Stokes equations (momentum and mass conservation), completed with
Dirichlet and Neumann boundary conditions are

�$ � ð2g_eðvsÞÞ þ $ps ¼ f s in Xs

�$ � vs ¼ hs in Xs

vs ¼ v1 on Cs;D

r � ns ¼ t on Cs;N

(1)

where vs is the velocity field, _eðvsÞ is the strain rate tensor defined by
_eðvsÞ ¼ 1

2 ð$vs þ $TvsÞ; f s denotes the volume forces, ns is the unit vector normal to
the boundary of Ωs, t is the stress vector to be prescribed on Γs,N and η is the fluid
viscosity, assumed to be constant (Newtonian fluid assumption). If the fluid is
incompressible then hs = 0.

The Darcy equations in Ωd are given in a mixed form by

g
K vd þ $pd ¼ fd in Xd

�$ � vd ¼ hd in Xd

vd � nd ¼ v2 on Cd;D

pd ¼ pext on Cd;N

(2)

In this paper, the medium is assumed to be isotropic, consequently the permeability K
is a scalar. pext is a pressure to be prescribed on Γd,N, nd is the outward unit vector
normal to the boundary of Ωd and fd is the volume force vector.

Figure 1. Computational domain for Stokes–Darcy coupling, 2D representation.
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2.2. Coupling conditions

Moreover, coupling conditions must be considered on the interface Γ of normal n ¼ ns.
Continuity of normal velocity
The mass conservation across interface Γ is expressed by the continuity of the normal
velocity field v:

vs � ns þ vd � nd ¼ 0 on C (3)

Continuity of the fluid normal stress

n � rs � n ¼ n � rd � n on C (4)

Beaver–Joseph–Saffman condition (Beavers & Joseph, 1967)
The Beaver–Joseph–Saffman condition allows the tangential velocity to be specified on
the interface Γ, it writes

2n � _eðvsÞ � sj ¼ � affiffiffiffi
K
p ðvs � sjÞ; j ¼ 1; 2 (5)

where α is a dimensionless parameter, so-called slip coefficient and sj are the vectors
tangent to the interface.

3. Monolithic approach

This section focuses on coupling Stokes–Darcy by using one single mesh for both fluid
and porous domains. The discretisation is ensured by using a mixed velocity–pressure
finite element formulation. Velocity and pressure are approximated by piecewise linear
and continuous functions and the formulation is stabilised with the ASGS method
developed in Badia and Codina (2008, 2010).

In the Eulerian monolithic framework considered here, the interface Γ separating
the purely fluid domain and the porous domain is not described by a set of element
boundaries. Conversely, using a level set function (Bruchon, Digonnet, & Coupez,
2009; Osher, 1988; Sussman, Smereka, & Osher, 1994), this interface passes through-
out the mesh elements. The location of each physical domain as well as the location of
their interfaceis known through an additional function, /, defined as a signed distance
function to the interface:

/ðxÞ ¼
min
x12C

kx� x1k if x 2 Xs

�min
x12C
kx� x1k if x 62 Xs

8<
: (6)

This definition corresponds to a level-set setting, and the Stokes–Darcy interface is
consequently described as the zero-level isosurface of / : C ¼ f/ ¼ 0g. In this paper,
only steady states are considered; however, this definition allows for an ‘easy’ numeri-
cal treatment of the interface motion when considering the deformation of the porous
medium. When considering the discrete problem, / is approximated by /h which is
continuous and piecewise linear on Ωh. As established in papers dedicated to this
method (Bruchon et al., 2009; Osher, 1988; Sussman et al., 1994), Equation (6) allows
us to compute some important geometrical properties on the interface Γ, such as the
normal n which is calculated as: n ¼ $/

k$/k :
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3.1. Weak formulation

In order to solve the Stokes–Darcy coupled problem by a finite element method, the
weak formulation has to be established. We present the weak formulation of Stokes
and Darcy separately. The weak formulation of the coupled problem is then obtained
by summing up the weak formulation of Stokes and Darcy taking into consideration
interface conditions described in Section 2.2. For the sake of simplicity, we choose to
write the L2 inner product in Ωs,d as h�; �i.

The spaces of velocity, pressure and test functions defined here correspond to the
functional setting of Stokes–Darcy coupled problem, with the dual formulation of
Darcy’s problem. These spaces are taken as

Qi ¼ L2ðXiÞ ¼ p;

Z
Xi

p2dX\1
� �

Vs ¼ fv 2 H1ðXsÞm j v ¼ v1 on Cs;Dg
V0;s ¼ fv 2 H1ðXsÞm j v ¼ 0 on Cs;Dg

H1ðXsÞm ¼ fv 2 L2ðXsÞm;rv 2 L2ðXsÞm�mg;
Vd ¼ fv 2 Hðdiv;XdÞj v � n ¼ v2 on Cd;Dg

V0;d ¼ fv 2 Hðdiv;XdÞj v � n ¼ 0 on Cd;Dg
Hðdiv;XdÞ ¼ fv 2 L2ðXdÞm j $ � v 2 L2ðXdÞg

(7)

with i = s or i = d and m is the dimension equal to 2 or 3.
The variational formulation of the Stokes problem consists in finding a

velocity–pressure pair ½vs; ps� 2 Vs � Qs such that:

Bsð½vs; ps�; ½ws; qs�Þ ¼ Lsð½ws; qs�Þ (8)

for any ws and qs weighting functions defined in V0,s and Qs respectively. The bilinear
form Bs and the linear form Ls are defined in Stokes by:

Bsð½vs; ps�; ½ws; qs�Þ ¼ 2gh_eðvsÞ; _eðwsÞi�hps;$ � wsi þ h$ � vs; qsi
þhpd;ws � nsiC þ h

agffiffiffiffi
K
p ðvs � sÞ; ðws � sÞiC ð9Þ

Lsð½ws; qs�Þ ¼ hf s;wsiþhhs; qsi þ hpext;sns;wsiCs;N
(10)

The variational formulation of the Darcy problem consists in finding a velocity–
pressure pair Vd ×Qd such that:

Bdð½vd; pd�; ½wd; qd�Þ ¼ Ldð½wd; qd�Þ (11)

for any wd and qd weighting functions defined in V0,d and Qd. The bilinear form Bd

and the linear form Ld are defined in Darcy by:

Bdð½vd; pd�; ½wd; qd�Þ ¼ g
K
hvd;wdi � hpd ;$wdiþhqd;$vdi þ hpd ;wd � ndiCd;N

(12)

Ldð½wd; qd�Þ ¼ hfd;wdi þ hhd; qdi þ hpext;dn;wdiCd;N
(13)

The mixed formulation of the Stokes–Darcy problem is established by considering a
velocity v on Ω and a pressure field p on Ω such as vjXi

¼ vi and pjXi
¼ pi with i = s

or i = d. The mixed weak formulation of Stokes–Darcy is obtained by summing up
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Equations (9) and (12) and taking into consideration the conditions enforced on the
Stokes–Darcy interface described in Section 2.2. Hence, the variational formulation of
the Stokes–Darcy coupled problem consists in finding ½v; p� 2 Vc � Qc such that

Bcð½v; p�; ½w; q�Þ ¼ Lcð½w; q�Þ
where ½w; q� are weighting functions defined in V0,c × Qc.

Vc ¼ Vs � Vd

V0;c ¼ V0;s � V0;d

Qc ¼ Qs � Qd

The bilinear form Bc and the linear form Lc are defined by

Bcð½v; q�; ½w; q�Þ ¼ h2g_eðvÞ : _eðwÞHsiX þ h
g
K

v;w HdiX � hp;$ � wiX
þ hq; $ � viX þ h

agffiffiffiffi
K
p v;wiC ð14Þ

Lcð½v; p�; ½w; q�Þ ¼ hf c;wiX þ hhc; qiX þ hts;wiCs;N
þ hpext;wiCd;N

(15)

(fc; hc) are defined by (fd; hd) in Darcy and (f s; hs) in Stokes and hc = (hs, hd). Hi is a
Heaviside function equal to 1 in domain i and vanishing elsewhere.

3.2. Finite element approximation with ASGS stabilisation

The whole computational domain X � Rm is discretised with one single unstructured
mesh. This mesh is made up of ne triangles if m = 2 and of ne tetrahedrons if m = 3. Let
Vh and Qh be the finite element spaces of the piecewise linear and continuous
functions, which contain the solutions vh;i and ph,i. The Galerkin approximation of both
Stokes and Darcy problems requires the use of velocity–pressure interpolation that
satisfy the adequate inf-sup condition. Different interpolation pairs are known to satisfy
this condition for each problem independently, but the key issue is to find interpolations
that satisfy both at the same time. In the case of the Stokes–Darcy problem, the issue
is impossible to address with standard finite elements within the framework of
Brezzi–Babuska theory. That is why, in this paper, stabilised finite element methods are
used. The philosophy of the stabilised methods is to strengthen classical variational
formulations so that discrete approximations which would otherwise be unstable
become stable and convergent. Over the last decades, a formal framework has been
developed for stabilising finite element formulations, based on VMS techniques. This
framework is introduced by Hughes (1995) or Hughes, Feijóo, Mazzei, and Quincy
(1998). On this basis, a VMS method has been developed by Badia and Codina to
stabilise the Stokes–Darcy coupled problem (Badia & Codina, 2008, 2010). The
monolithic approach presented in this paper is based on this VMS technique. The basic
idea of this method is to approximate the local effects of the component of the continu-
ous solution which cannot be captured by the finite element solution. It consists in
splitting the continuous solution for velocity and pressure into two components, one
coarse corresponding to the finite element scale ½vh; ph�, and a finer component
corresponding to lower scale fields ½v0; p0�. The velocity is decomposed as v ¼ vh þ v0

and the pressure field is decomposed as p = ph + p′. We consider therefore a subgrid
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space V′ ×Q′ such that V ×Q = (Vh ×Qh)⊕ (V′ ×Q′). Invoking this decomposition in
the continuous problem (Equation (14)) for both solution and test functions, one gets
the two-scales systems

Bcð½vh; ph�Þ; ½wh; qh�Þ þ Bcð½w0; p0�; ½wh; qh�Þ ¼ Lcð½wh; qh�Þ (16)

Bcð½vh; ph�; ½w0; p0�Þ þ Bcð½v0; p0�; ½w0; q0�Þ ¼ Lcð½w0; q0�Þ (17)

for all ½wh; qh� 2 Vh � Qh and ½w0; q0� 2 V 0 � Q0. After approximating Equation (17)
with an algebraic formulation, by introducing the operator of projection P′ onto V′ ×Q′,
the approximated fields ½v0; p0� are taken into account in the finite element problem
(Equation (16)). We get the stabilised forms of the bilinear and linear forms in Stokes,
Darcy and Stokes–Darcy coupled problem.

The stabilised problem in Stokes can be written as follows.
Find ½vs;h; ps;h� 2 Vh � Qh such as

Bs;stableð½vs;h; ps;h�; ½ws;h; qs;h�Þ ¼ Ls;stableð½ws;h; qs;h�Þ (18)

where the bilinear stabilised form Bs,stable and the linear stabilised form Ls,stable are
defined by

Bs;stableð½vs;h; ps;h�; ½ws;h; qs;h�Þ

¼ Bsð½vs;h; ps;h�; ½ws;h; qs;h�Þþ
Xne
e¼1

sqhP0h;pðr � vs;hÞ;r � ws;hiXe
h

þ
Xne
e¼1

svhP0h;uð�gDvs;h þrðdivvh;sÞÞ þ rps;hÞ; gDws;hiXe
h

þ
Xne
e¼1

svhP0h;uð�gDvs;h þrðdivðvh;sÞÞ þ rps;hÞ;þrqs;hiXe
h

ð19Þ

Ls;stableð½ws;h; qs;h�Þ ¼ Lsð½ws;h; qs;h�Þþ
Xne
e¼1

sqhP0h;pðhsÞ;r � ws;hiXe
h

þ
Xne
e¼1

svhP0h;pðf sÞ;�rðdivðvh;sÞÞ þ gDws;h �rqs;hiXe
h
ð20Þ

with
P

ne
which denotes the sum over the ne mesh elements and h�; �iXe

h
is the L2ðXe

hÞ
inner product on every element Xe

h. Bsð½vs;h; ps;h�; ½ws;h; qs;h�Þ and Lsð½ws;h; qs;h�Þ are
defined in Equation (9). τq, τv are the stabilisation parameters (obtained by Fourier
transform) that we compute at the element scale as (Equation (21)) (Badia & Codina,
2008):

sq ¼ c1 g
sv ¼ 1

c1g
h2k

(21)

where c1 is an algorithmic constant and hk is the characteristic size of the element. P0h;u
is the broken L2 projection onto V′ and P0h;p is the broken L2 projection onto Q′.
The simplest approach is to take P0h as the identity operator when acting on the FE
residual. Assuming this, one obtains the stabilised method referred to as ASGS
method. In addition, the velocity is linear and continuous (P1 element), then
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Dðwh;sÞ � rðdivðwh;sÞÞ ¼ 0. Invoking this, one gets the following stabilised forms Bs

and Ls in Stokes:

Bs;stableð½vs;h; ps;h�; ½ws;h; qs;h�Þ ¼ Bsð½vs;h; ps;h�; ½ws;h; qs;h�Þþ
Xne
e¼1

sqhr � vs;h;r � ws;hiXe
h

þ
Xne
e¼1

svhrps;h;þrqs;hiXe
h

(22)

Ls;stableð½ws;h; qs;h�Þ ¼ Lsð½ws;h; qs;h�Þþ
Xne
e¼1

sqhh;r � ws;hiXe
h
þ
Xne
e¼1

svhf s;þrqs;hiXe
h

(23)

Similary by using the ASGS method, the stabilised problem in Darcy can be
written as follows: Find ½vd;h; pd;h� 2 Vh � Qh such as

Bd;stableð½vd;h; pd;h�½wd;h; qd;h�Þ ¼ Ld;stableð½wd;h; qd;h�Þ (24)

Bd;stableð½vd;h; pd;h�; ½wd;h; qd;h�Þ ¼ Bdð½vd;h; pd;h�; ½wd;h; qd;h�þ
Xne
e¼1

sphr � vd;h;r � wd;hiXe
h

þ
Xne
e¼1

suhgK vd;h þrpd;h;� g
K
wd;h þrqd;hiXe

h
ð25Þ

Ld;stableð½wd;h; qd;h�Þ ¼ Ldð½wd;h; qd;h�Þþ
Xne
e¼1

sphhd;r � wd;hiXe
h

þ
Xne
e¼1

suhfd;� g
K
wh;d þrqd;hiXe

h
ð26Þ

where Bdð½vd;h; pd;h�; ½wd;h; qd;h�Þ and Ldð½wd;h; qd;h�Þ are defined in (12). τp, τu are the
stabilisation parameters that we compute at the element level as (Equation (27)) (Badia
& Codina, 2008)

sp ¼ cp
g
k
l2p

su ¼ cu
g
K
l2u

� ��1
h2k (27)

with cp and cu as some algorithmic constants. lu and lp are length scales which we
choose to take ðL0hkÞ1=2, L0 is the characteristic length of the domain and hk is the
element size.

For Stokes and Darcy flows coupled through their interfaces, the stabilised problem
with ASGS can be written as follows.

Find ½vh; ph� 2 Vh � Qh such that:
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Bc;stableð½vh; ph�½wh; qh�Þ ¼ Lc;stableð½wh; qh�Þ 8½wh; qh� 2 Vh � Qh (28)

Bc;stableð½vh; ph�; ½wh; qh�Þ ¼ Bcð½vh; ph�; ½wh; qh�Þþ
Xne
e¼1

sp;chr � vh;r � whiXe
h

þ
Xne
e¼1

su;chHd
g
K
vh þrph;�Hd

g
K
wh þrqhiXe

h
ð29Þ

Lc;stableð½wh; qh�Þ ¼ Lcð½wh; qh�Þþ
Xne
e¼1

sp;chhc;r � whiXe
h

þ
Xne
e¼1

su;c\f c;�Hd
g
K
wh þrqh [ Xe

h
(30)

τp,c, τu,c are the stabilisation parameters that we compute as (Equation (31)) (Badia &
Codina, 2008)

sp;c ¼ cp
g
K
l2pHd þ c1gHs

su;c ¼ ðc1gHs þ cu
g
K
l2uHdÞ�1h2k (31)

We have two ways for computing the surface integral
R
C a

gffiffiffi
K
p ðvh � sÞðwh � sÞ: the

transformation of this integral into volume integral by using a delta Dirac function or
the direct computation of this integral on the interface Γ obtained by a linear approxi-
mation using the values of the level-set function /. The exact computation of the
surface integral shows more accurate results than Dirac approximation (Figure 7).
Moreover, the Stokes and Darcy contributions are averaged over the elements cut by
the interface Γ thanks to Hs and Hd. This approach could be improved by splitting
these interface elements into Stokes and Darcy sub-elements (Pino Muñoz et al., 2013).

4. Decoupled approach

4.1. Weak formulation

The mixed weak formulation of the equations of Stokes and Darcy can take two differ-
ent forms in which the boundary conditions on the pressure are prescribed as Dirichlet
conditions or weakly, but more importantly can be stable or not with the chosen finite
element discretisation (MINI-element, introduced in Arnold, Brezzi, and Fortin (1984)).
Consequently, following the results from Celle et al. (2008a, 2008b), the dual mixed
formulation is chosen for Stokes and the primal-mixed formulation is chosen for Darcy
as proposed in Celle et al. (2008b) and (2008a). This choice ensures the stability of the
systems discretised by using the MINI-element. The variational formulation of the
Stokes problem consists in finding a velocity–pressure pair ½vs; ps� 2 Vs � Qs such that:

B1
s ð½vs; ps�; ½ws; qs�Þ ¼ L1s ð½ws; qs�Þ (32)

where ws and qs are the weighting functions defined in V0,s and Qs, respectively. The
bilinear form B1

s and the linear form L1s are defined in Stokes by:
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B1
s ð½vs; ps�½ws; qs�Þ ¼ 2g h_eðvsÞ : _eðwsÞiXs

� hr � ws; psiXs
� hr � vs; qsiXs

L1s ð½ws; qs�Þ ¼ hf s;wsiXs
þ hhs; qsiXs

þ hts;wsiCs;N

(33)

The variational formulation of the Darcy’s problem consists in finding a
velocity–pressure pair ½vd; pd � 2 L2ðXdÞm � H1ðXdÞ such that:

B1
dð½vd; pd�; ½wd; qd�Þ ¼ L1dð½wd; qd�Þ (34)

where wd and qd are the weighting functions defined in L2(Ωd)
m and H1;t

C ðXdÞ. The
bilinear form Bd and the linear form Ld are defined in Darcy by:

B1
dð½vd; pd �½wd; qd�Þ ¼ g

K hvd;wdiXd
þ hrpd;wdiXd

� hrqd; vdiXd

L1dð½wd; qd�Þ ¼ hfd;wdiXd
þ hhd; qdiXd

þ hvd � nd; qdiCd;N

(35)

4.2. Finite element approximation. Velocity and pressure discretisation

For solving the flow problems, the computational domains Ωs ⊂ Rm and Ωd ⊂ Rm are
discretised with meshes matching at the interface. These meshes are made up of trian-
gles if m = 2 and of tetrahedra if m = 3. Let Vh and Qh be the finite element spaces of
the continuous piecewise linear functions, which contain the solutions vh;i and ph,i.

Like for the monolithic formulation, flows have to be stabilised, and here another
type of sub-grid scale stabilisation is employed (Arnold et al., 1984; Fortin & Brezzi,
1986). Both dual formulation of Stokes equations and primal formulation of Darcy
equations are discretised by using the MINI-element or P1+/P1-element which has
demonstrated its stability (Celle et al., 2008b). This mixed element consists in a linear
approximation of both velocity and pressure with a bubble enrichment of the velocity
field on each element. The bubble function vanishes on the element edges, and its
associated degree of freedom is removed by static condensation. Thus, the
MINI-element results finally in a linear approximation of both velocity and pressure
(P1/P1 approximation) with a stabilisation term induced by the bubble condensation.
Unlike penalisation methodology, the stabilisation term depends here on both physics
and discretisation of the problem to be solved.

4.3 Coupling conditions

For the Stokes–Darcy coupling, the regions where Stokes and Darcy flows prevail are
considered independent and an iterative process ensures the equilibrium between these
two regions where the flows have been solved (Discacciati & Quarteroni, 2009). In the
iterative process, a special attention has to be paid regarding the Stokes–Darcy velocity
jump across the interface, of several decades in severe regimes, which can lead to
solving of the ill-conditioned systems. Let us have a look to the coupling conditions by
themselves.

4.3.1. Continuity of normal velocity for low permeability media

When normal or tangential conditions are prescribed for pressure or velocity (Figure 2),
the penalty method is classically used to enforce the corresponding relationships
between the dofs involved, with the help of a penalty factor. Specifically, the
relationship is added to the degree of freedom associated with the largest normal vector
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coordinates (nx or ny or nz) in order to keep dominant diagonal system. But in general
cases, where normals are not different enough, i.e. for local normals not aligned at all
on global coordinate axes, extra diagonal terms can appear after the system condition-
ing. However, this can be easily avoided if this condition is written in a local system
of coordinates different from the global frame, requiring some light local rotations for
the dofs concerned, pre-processing from global to local frame and post-processing from
local to global frames. Then, a linear constraint over the degrees of freedom associated
with this condition will appear in the system diagonal only, preserving the diagonal
dominant nature.

Consider an interface with a local normal y. Prescribing the normal velocity continuity
will lead to a condition to be enforced, when solving AX = B, which will look like:

� � � þ ðal;k þ knyÞvy;s þ � � � ¼ bl þ vy;d ny k (36)

where k is the coefficient of penalisation, and al,k, bl are the coefficients of the global
matrices. However, when using this formulation (36), the continuity of the normal
velocity is lost for small values of permeability.

This comes from the fact that in this relationship the penalty coefficient, classically
taken as 108–12 max (al,k), is multiplied by the permeability, which is in the range
½10�8; 10�14�m2 in the applications concerned with this paper. The constraint is then too
weak to ensure velocity continuity, and consequently mass conservation. To overcome
this difficulty, the penalty coefficient can be solely chosen with respect to the permeabil-
ity as k ¼ 105

K . Various tests for different values of permeability, viscosity and thickness
of fluid layer were conducted and results are shown in subsection 6.1 for instance.

4.3.2. Condition on tangential velocity

Beavers and Joseph (1967) proposed a condition postulating that the difference between
the slip velocity of the free fluid and the tangential component of the seepage velocity
is proportional to the shear rate of the free fluid, as stated in Equation (5). For prag-
matic reasons, in the presented form, the Beavers joseph Saffman condition disregards
the Darcy’s velocity contribution. Consequently, for the decoupled approach that is
under consideration, no corresponding external constraint will appear in the Stokes
weak formulation and hence the effect of the Darcy regime onto the Stokes flow cannot
be accounted for.

Then, a BJS-like condition is introduced. In our iterative scheme, the Darcy contri-
bution can be easily introduced, by considering the Darcy’s velocity computed at the
previous iteration i − 1:

2n � _eðvsÞi � sj ¼ affiffiffiffi
K
p ðvis � vi�1d Þ � sj (37)

with sj vectors tangent to the interface. Let us notice that for normal flow-dominated
problems, this velocity will naturally vanish.

4.4. Iterative coupling

As stated previously, an iterative scheme is used to equilibrate both flows in Stokes
and Darcy regions through interface conditions. The dual Stokes and primal Darcy for-
mulations have been selected for their stability property but also for accessing properly
the Dirichlet boundary conditions in order to fulfil these interface conditions.
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The iterative process can be described such as in Algorithm 1. First, the Stokes
problem is solved for vis under the condition of normal velocity continuity and BJS-like
tangential velocity (Equation (37)) on interface Γs, knowing the Darcy velocity at the
previous iteration vi�1d on Γd. Second, the Darcy problem is solved for vid under the
condition of pressure continuity on interface Γd, knowing on Γs the Stokes pressure pis
previously determined. The iterative process terminates when both velocity and
pressure corrections get smaller than a given residual �

1

Ni

XNi

j¼1

viþ1j � vij
viþ1j

�����
�����þ piþ1j � pij

piþ1j

�����
�����

 !
\� (38)

where Ni is the total number of nodes at the interface, i is the iteration index, vij and pij
are, respectively, the normal velocity and pressure at node j of the interface.

Algorithm 1 Iterative scheme for the decoupled approach

i 0
Enforce an initial condition vid ¼ 0 on interface Γd.
i 1
While not convergence do
Find ðvis; pisÞ solutions of Stokes dual formulation with Dirichlet boundary conditions
imposed by permeability-controlled penalty:

� vis � n ¼ vi�1d � n on Cs

� ð2n � _eðvisÞ � affiffiffi
K
p visÞ � sj ¼ � affiffiffi

K
p vi�1d � sj; j ¼ 1; 2 on interface Γs.

Find ðvid; pidÞ solutions of Darcy equation with Dirichlet boundary condition:
pid ¼ pis on Γd
if convergence (Equation (38)) then
Exit

else
i iþ 1

end if
end while

5. Method of manufactured solutions

To verify implementation and convergence of both approaches, the method of
manufactured solution (Salari & Knupp, 2002) was used. It consists in building an
analytical solution that is fed into the system of equations under consideration and
permits to calculate the corresponding right-hand-side term. This term is subsequently
implemented into the numerical code to obtain the numerical solution of the discrete
problem. Finally the difference between the general analytical solution and the
numerical one is calculated and permits to assess the capability of the method to solve
the PDE set of equations. To verify Stokes–Darcy coupling, a Stokes–Darcy coupled
problem is studied. Regular meshes are used to obtain the numerical solution. The
studied area is divided into 1/h squares, where h is the mesh size. Each square is
itself divided into two triangles. Several meshes are used: 10 × 10, 20 × 20, 40 × 40 and
80 × 80. Each grid corresponds to a more refined version of the previous one.
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Remark: In all the numerical tests, the numerical constants considered for the
monolithic approach are taken as: c1 = 1, cu = cp = 2 and L0 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
measðXdÞ

p
:

5.1. Stokes–Darcy coupled problem

Stokes–Darcy coupled problem is conducted in the domain Ω = [0, 1] × [0, 1] with
Ωs = [0, 0.5] × [0, 1] and Ωd= [0.5, 1] × [0, 1]; let’s consider the following velocity
and pressure fields

vx;s ¼ y4ex

vy;s ¼ �1=5y5ex
ps ¼ �y4ex

vx;d ¼ y4ex

vy;d ¼ �1=5y3ex
pd ¼ �y4ex

(39)

Zero-velocity Dirichlet conditions are prescribed on the overall boundary of the domain
Ω. For each mesh, and each numerical solution vh and ph, the errors are calculated
using the following norms.

� Norm L2:
kuk0;X ¼

Z
X
u2dX

� 	1=2

(40)

� Norm H1:

kuk1;X ¼ kuk20;X þ
Xm
j¼1

@u

@xj











2

0;X

 !1=2

(41)

The errors allow calculating the rate of the convergence. For Stokes equations,
using linear approximation for elements, the rate of the convergence satisfies (Girault
& Raviart, 1979).

Figure 2. Normal velocities in Stokes and Darcy media.
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kv� vhk1;Xs
þ kp� phk0;Xs

�C hðkvk2;Xs
þ kpk1;Xs

Þ (42)

where C is the constant and ‖⋅‖2,Ω is the H2 norm defined as:

kuk2;X ¼ kuk20;X þ
Xm
j¼1

@u

@xj











2

0;X

þ
Xm
i;j¼1

@2u

@xixj











2

0;X

 !1=2

(43)

Figure 3. (a) Convergence of the error for the pressure (theoretical order of convergence = 1
(Girault & Raviart, 1979)) and (b) velocity in Stokes domain for coupled problem (theoretical
order of convergence = 2 (Girault & Raviart, 1979)) with h the size of mesh g ¼ 1 Pa s,
K ¼ 1 m2, α = 1.
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For the dual formulation of Darcy problem, using linear approximations for both
velocity and pressure, the rate of the convergence has to satisfy (Karper, Mardal, &
Winter, 1991)

kv� vhkHðdiv;XdÞ þ kp� phk0;Xd
�C hðkvk2;Xd

þ kpk1;Xd
Þ (44)

Figure 4. Convergence of the error for the pressure (a) (theoretical order of convergence = 2
(Girault & Raviart, 1979)) and velocity (b) (theoretical order of convergence = 2 (Girault &
Raviart, 1979)) in Darcy domain for coupled problem with h the size of mesh g ¼ 1 Pa s,
K ¼ 1 m2, α = 1.
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And for the primal formulation of Darcy problem, using linear approximations, the rate
of the convergence has to satisfy

kv� vhk0;Xd
þ kp� phkH1;Xd

�C hðkvk1;Xd
þ kpk2;Xd

Þ (45)

where C is a constant.
An analysis of the convergence is carried out for both pressure and velocity in the

subdomains Ωs and Ωd. The convergence of the error for both pressure and velocity in
Stokes domain is represented in log scale in Figure 3. For pressure in Stokes region
(Figure 3(a)), the rate of convergence in norm L2 for monolithic approach is

Figure 6. Normalised normal velocity vy for viscosity g ¼ 1 Pa s with a permeability of
K ¼ 10�14m2 and α = 1.

Figure 5. Boundary conditions for a flow perpendicular to the interface, α = 1, g ¼ 1 Pa s.
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[1.13:2.45] (theoretical order is 1) while the rate of convergence for decoupled
approach is [1.2:2.5].

For Stokes velocity (Figure 3(b)), the rate of convergence is [1.14:3.2] in norm L2

for monolithic approach. A superconvergence is noticed when mesh size goes from
h = 0.05 to h = 0.025 due again to the optimal choice of the constant c1. The rate of
convergence decreases when mesh size h = 0.025 becomes h = 0.0125, while for the
decoupled approach the rate of convergence for velocity is [2:2.5]. Also, an analysis of
the convergence is carried out for both pressure and velocity in the Darcy subdomain
Ωd Figure 4. The convergence rates for pressure are [1.14:3.3], for the monolithic
approach and [1.4:2.4] for the decoupled approach (theoretical rate is of order 2), and
for the velocity it is [1.1:2.98] for the monolithic approach and [1.6:2.4] for the decou-
pled approach (theoretically it is of order 2). For the monolithic approach, the rate of
convergence is relatively high due to the ‘optimal’ choice of constants cp, cu and c1 in
the stabilisation terms τu,c and τp,c (Badia & Codina, 2008). The superconvergence of
both methods is noticed when we pass from h = 0.05 drops to h = 0.025, but it is more
important in the monolithic approach due to the optimal choice of the constants cu, cp

Table 1. Relative errors for normal velocities in Stokes region for monolithic and decoupled
approaches, K = 10−14 m2, perpendicular flow corresponding to Figure 5.

h (m) ‖vy,error‖monolithic (%) ‖vy,error‖decoupled (%)

100 × 25 0.468 0.401
100 × 50 0.231 0.211
100 × 100 0.141 0.109
100 × 200 0.111 0.099

Figure 7. Comparison of numerical solutions for both monolithic and decoupled approaches for
a parallel flow, with analytical solution. Velocity is normalised by the maximum analytical
velocity (vx;max;analytic). For the monolithic approach, interface reconstruction and Dirac
approximation for the surface integral are presented. For the decoupled approach, the interface is
explicitly known through the interface mesh (K ¼ 10�14m2; pext ¼ 1bar; g ¼ 1 Pa s; a ¼ 1).
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and L0 in the stabilisation terms τu,c and τp,c. These results correspond to the theoretical
and numerical convergence rates determined in Karper et al. (1991).

6. Numerical tests and comparisons

These simulations have been carried out by using the finite element software Z-set1

(Besson & Foerch, 1997) for the monolithic approach and the industrial code
PAM-RTM from ESI Group for the decoupled approach. Different tests are conducted
here to highlight the characteristics and advantages of each method.

6.1. Perpendicular flow

A series of studies was conducted for the case of the fluid flow perpendicular to the
interface corresponding to Figure 5 with known analytical solution, where

vx;s ¼ vx;d ¼ 0;
vy;s ¼ vy;d ¼ � K

grpd ;
ps ¼ 105 Pa
pd ¼ 105 y Pa

(46)

Let us consider a domain X ¼ ½0; 5� � ½0; 2� m2 made up of two sub-domains: a pure
fluid domain Xs ¼ ½0; 5� � ½1; 2� m2 and porous medium Xd ¼ ½0; 5� � ½0; 1� m2.
Boundary conditions are presented in Figure 5. For comparison purpose, Δ is defined
as the largest difference between velocities computed with decoupled and monolithic
approaches.

Figure 8. Geometry and boundary conditions for the case with inclined interface, g ¼ 1 Pa s,
K ¼ 10�15m2 and α = 1.
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Figure 6 presents the normal velocities obtained with both monolithic and
decoupled approaches in the domain Ω, normalised by normal velocity in the Darcy
medium, g ¼ 1 Pa s, α = 1. As it can be seen, in both approaches the continuity of the
normal velocity is verified. The slight difference Δ between values of normal velocity
computed with both decoupled and monolithic approaches is in the range
½4 10�12; 1:3 10�12�ms�1 for a permeability K ¼ 10�14 m2.

Convergence of the solution, as well as relative errors, have been considered for the
test case of the perpendicular flow. The obtained numerical results were compared with
analytical ones. The errors were computed: kuerrork ¼ kua�uhk0kuak0 , where ua is the
analytical solution and uh is the obtained numerical solution. Results in terms of Stokes
velocity for different sizes of mesh were obtained, when g ¼ 1 Pa s, K ¼ 10�14 m2 and
are presented in Table 1. It can be verified that both methods are robust and lead to
very similar relative error which becomes smaller when the mesh becomes finer.

Figure 9. (a) Pressure p and (b) normalised normal velocity vy for g ¼ 1 Pa:s, K = 10−15 m2 and
α = 1. Results corresponding to the inclined interface case (Figure 8).
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6.2. Parallel flow

The case of parallel flow is used to validate the capability of both approaches to satisfy
the interface condition on tangential velocity (BJS). To deal with a flow parallel to the
interface, let us consider the same geometry as in Figure 5 with different boundary
conditions: a domain Ω made up of two sub-domains, a purely fluid domain
Xs ¼ ½0; 5� � ½1; 2� m and porous medium Xd ¼ ½0; 5� � ½0; 1� m2. A pressure gradient p
of 105 Pa is applied along the x-axis. Other boundary conditions are zero velocity on
top and bottom sides of the geometry.

Results for the permeability of the porous medium K ¼ 10�14 m2, viscosity
g ¼ 1 Pa s, slip coefficient α = 1 are presented in Figure 7.

It can be verified that velocities computed with decoupled approach coincide with
the analytical profile. Results obtained with the monolithic approach are also in good
correlation with analytical ones provided the surface integral is computed exactly.
Moreover, the difference in the tangential velocity follows from the mixture of elements
on the interface belonging to both Stokes and Darcy domains in the monolithic
approach. Results for other values of permeability do not differ much in the aspect of
flow in Stokes region due to the nature of the ‘Poiseuille’ flow for the low
permeabilities considered.

6.3. Inclined interface

To study further the capabilities of the coupling conditions for interfaces which are not
parallel to some groups of mesh element faces, hence implying linear relationships
between the velocity dofs (Equation (37)), the case of an inclined interface is consid-
ered. A domain X ¼ ½0; 1� � ½0; 1� m2 is made up of two sub-domains: a purely fluid
domain Ωs, where Hs ¼ ½0:2; 0:8� m and porous medium Ωd. Geometry as well as the
boundary conditions on ∂ Ω in velocity and pressure are shown in Figure 8.

A range of numerical tests were conducted, where permeability of the porous med-
ium was varied down to 10−15m2, g ¼ 1 Pa s and α = 1. Results for the pressure and
velocity field obtained by both approaches are presented in Figure 9. A good correla-
tion can be noticed for both studied methods (D ¼ 1:89 10�7m=s).

7. Complex geometries

The Stokes–Darcy coupled problem is used here to simulate stationary stages in
complex composite pieces elaborated through infusion processes (Celle et al., 2008a,

Figure 10. Geometry and boundary conditions for the 2D piece with curved interface,
K ¼ 10�11m2, α = 1 and g ¼ 1 Pa:s.
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2008b; Wang, Molimard, Drapier, Vautrin, & Minni, 2012). Previously, the mathemati-
cal models for this simulation were derived and two approaches were validated using
the tests, where analytical solution is available, i.e. tests with simple geometry. But in
infusion processes, pieces with complex geometries are to be considered. In this
section, coupled problems for 2D and 3D pieces with complex geometries are
investigated.

7.1. 2D simulation

A case deriving from the parallel flow is first used, exhibiting a 2D curved interface
(Figure 10) with K ¼ 10�11 m2, g ¼ 1 Pa:s and α = 1 and for a Stokes region thickness
of 1

10 of the total thickness. Results for pressure field presented coincide for monolithic
and decoupled approach in Figure 11(a). Magnitude of velocity is plotted over the line
x = 4 for both monolithic and decoupled approaches in Figure 11(b). A good correlation
between results can be noticed, and the slight difference close to the interface comes

Figure 11. (a) Pressure field and (b) velocity magnitude when x = 4 for permeability K = 10−11

m2, g ¼ 1 Pa:s, α = 1, 2D complex piece.
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from the different ways of enforcing interface conditions, the same as for the case of
parallel flow (here Δ = 0.005 m/s).

7.2. 3D simulation

For the 3D flow in a piece with complex geometry, a simulation was conducted for
K ¼ 10�9 m2, g ¼ 1 Pa:s and α = 1. Geometry and mesh and boundary conditions are
presented in Figure 12(a) and (b) for the decoupled and monolithic approaches,

Figure 12. (a) Pressure field for the decoupled approach and (b) for the monolithic approach
for permeability K = 10−9m2, g ¼ 1 Pa:s, α = 1, 3D complex piece.
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respectively. Geometry consists in two layers – layer of thickness 2 mm that
corresponds to the Stokes region, and layer of thickness 10 mm that corresponds to
Darcy region. For the boundary conditions, pressure is prescribed on the right-hand-
side in Stokes region, and vent is present on the bottom of Darcy region. Also condi-
tions of zero velocity for Stokes region and zero normal velocities for Darcy region are
prescribed for all the other boundaries of the piece. The stationary case, presented in
Figure 12, illustrates the capability of representing realistic geometries with both decou-
pled and monolithic approaches. Presented results for pressure fields, for both
approaches, as well as results for velocity fields are in accordance with expected
results.

7.3. Required computation time of the results

Difference in meshing scheme and weak formulation in both studied approaches causes
also some difference in computational algorithm, and therefore difference in CPU time.
As it was described previously, the decoupled approach is based on an iterative process.
Stokes and Darcy systems are constructed separately and, at least two iterations are
required to reach the global convergence. However, the sizes of the Stokes and Darcy
systems are smaller than the one of the monolithic approach system. Consequently, it
could be interesting to compare the time cost of each method. Nevertheless, it is really
difficult to compare two methods implemented in two different finite element codes.
Many parameters, not necessarily related to the numerical method, can be involved in
the CPU time cost. This difficulty is increased when the two methods are applied on
different meshes, as in our case. For the simulations presented in this paper, the CPU
time ratio between the decoupled approach (with a precision ε = 10−5) and the
monolithic approach is around two or three. Moreover, in realistic infusion process
simulations which is the context of this work, the Stokes domain is very small
compared to the Darcy domain. Consequently, if Stokes CPU time can be neglected,
we can suppose that solving twice the Darcy equations will always take more time than
solving one time the Stokes–Darcy coupled problem (which in this case has almost the
cost of the Darcy problem alone).

8. Conclusion

A monolithic and a decoupled strategy have been presented to solve the Stokes–Darcy
coupled problem. In the monolithic approach, a single unstructured mesh is used to
compute the Stokes and Darcy (in the dual form) contributions to the global algebraic
system. Both velocity and pressure are approximated by linear finite elements. The
LBB stability conditions are circumvented by using the VMS method and the ASGS
method. In the decoupled approach, two meshes matching at the interface are
considered. Using a convergence loop, Stokes and Darcy (primal form) problems are
alternatively solved, using the MINI-element until reaching the global equilibrium.

Tests with different types of boundary conditions and geometry were conducted, to
verify the coupling conditions, i.e. continuity of normal velocity and BJS condition on
tangential velocity. It was shown that the implemented approaches provide a good
agreement with analytical solution for the test cases of perpendicular and parallel flows
with permeability down to 10−15 m2, different values of fluid viscosity and thin
thickness of fluid layer. Convergence rates have been investigated with manufactured
solution method, showing the accuracy of both methods and recovering the theoretical
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results. The novelty of these approaches lies in their ability to deal with very low per-
meabilities, complex geometries closed to industrial applications. Both coupled and
decoupled approaches have shown their ability to describe accurately the flow of a
Newtonian fluid in a Stokes–Darcy medium.

This work can be improved by considering an anisotropic porous medium and
consequently a second-order permeability tensor. Decoupled and monolithic approaches
have to be extended to treat this configuration. Especially, the stabilisation parameters
must be adapted. Finally, the evolution of the flow front can take into account through
an interface capturing method. This work has been performed in reference (Abouorm,
Moulin, Bruchon, & Drapier, 2013) using the level-set method. In this case, the
monolithic approach seems to be more efficient than the decoupled one.

Note
1. This C++ code is developed mainly by Ecole des Mines de Paris, Office National d’Etudes

et de Recherches Aérospatiales (ONERA), Ecole des Mines de Saint-Etienne and the
Northwest Numerics and Modelling company.
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