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The effect of two temperatures on functionally graded nanobeams due to harmoni-
cally varying heat is investigated. Material properties of the nanobeam are assumed
to be graded in the thickness direction according to a novel power-law distribution
in terms of the volume fractions of the metal and ceramic constituents. The general-
ised thermoelasticity model based upon Green and Naghdi’s theory as well as the
nonlocal thin beam theory is used to solve this problem. The governing equations
are expressed in Laplace transform domain. Based on Fourier series expansion tech-
nique, the inversion of Laplace transform is made numerically. Some comparisons
have been shown to present the effect of the nonlocal parameter, the temperature
discrepancy parameter and the angular frequency of thermal vibration on all the
studied field quantities. Additional results across the thickness of the nanobeam are
presented graphically.

Keywords: thermoelasticity without energy dissipation; two temperatures; FG
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1. Introduction

The generalised theory of thermoelasticity has been developed to overcome the physi-
cally unrealistic prediction of the coupled dynamical theory of thermoelasticity that
thermal signals propagate with infinite speed. Lord and Shulman theory (Lord &
Shulman, 1967) and Green and Lindsay temperature-rate dependent theory (Green &
Lindsay, 1972) are two well-established theories of generalised thermoelasticity. They
introduce the thermal relaxation parameters in the basic equations of coupled dynamical
thermoelasticity theory and admit the finite value of heat propagation speed. The finite-
ness of the speed of the thermal signal has been found to have experiment evidence
too. The generalised thermoelasticity theories are therefore more realistic, and have
found much interest in recent research. Green and Naghdi (GN) (Green & Naghdi,
1993) have formulated a new model of thermoelasticity for the homogeneous and iso-
tropic materials. An important characteristic feature of this model, which is not present
in other thermoelastic theories, is that theory does not accommodate dissipation of
thermal energy.

Thermoelasticity with two temperatures is one of the nonclassical theories of elastic
solids. The main difference of this theory with respect to the classical one is in thermal
dependence. Chen and Gurtin (1968) and Chen, Gurtin, and Willams (1969) have
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formulated a theory of heat conduction in deformable bodies. The theory depends on
two distinct temperatures: the conductive temperature φ and the thermodynamic
temperature θ. For time-independent situations, the difference between these two
temperatures is proportional to the heat supply and in the absence of any heat supply,
the two temperatures are identical. For time-dependent problems, however, and for
wave propagation problems in particular, the two temperatures are in general different,
regardless of the presence of heat supply. The two temperatures and the strain are
found to have representation in the form of a travelling wave plus throughout the body
(see Boley, 1956). The internal energy, entropy, stress, heat flux and thermodynamic
temperature at a given material point and time are deduced using the conductive
temperature and its two gradients. Warren and Chen (1973) have investigated the wave
propagation in the two-temperature theory of thermoelasticity. Quintanilla (2004) has
presented some phenomena in thermoelasticity with two temperatures. Zenkour and
Abouelregal (2014) have used the state-space approach for an infinite medium with a
spherical cavity based upon two-temperature generalised thermoelasticity theory and
fractional heat conduction.

Micro-mechanical resonators and nanomechanical resonators have attracted
considerable attention recently due to their many important technological applications.
Accurate analysis of various effects on the characteristics of resonators, such as
resonant frequencies and quality factors, is crucial for designing high-performance
components. Many authors have studied the vibration and heat transfer process of
beams. The beam may be thermally induced (see Al-Huniti, Al-Nimr, & Naij, 2001;
Kidawa-Kukla, 2003; Manolis & Beskos, 1980) or subjected to a suddenly applied heat
input distributed along its span (see Boley, 1972). Additional treatments of FG beams
under a moving heat source have been presented by Ching and Yen (2006),
Malekzadeh and Shojaee (in press) and Mareishi, Mohammadi, and Rafiee (2013).

The nonlocal elasticity theory initiated by Eringen (1972, 1983) and Eringen and
Edelen (1972) is widely used. It is to be noted that the local theories assume that the
stress at a point is a function of strain at that point. However, the nonlocal elasticity
theory assumes that the stress at a point is a function of strains at all points in the
continuum. In this work, the governing equations of the two-temperature Green and
Naghdi’s thermoelasticity theory as well as the nonlocal beam theory of FG nanobeams
are given. The present nanobeam is made from a FG ceramic-metal material. The upper
surface of the FG nanobeam is fully ceramic whereas the lower surface is fully metal.
The effect in heat conduction and the coupling effect between the temperature and
strain rate is studied. The solution for the generalised thermoelastic vibration of the FG
nanobeam due to a harmonically varying heat is developed. The effects of the nonlocal
parameter, the angular frequency of thermal vibration and the two-temperature
parameter on the physical field quantities are also studied.

2. Basic equations and formulation of the problem

The heat conduction equation of Green and Naghdi’s two-temperature theory takes the
form (Quintanilla, 2004):

rðK� � ruÞ ¼ @

@t
qCe @h

@t
þ cT0

@ekk
@t

� Q

� �
: (1)

2 A.M. Zenkour and A.E. Abouelregal



The conduction-dynamical heat equation is given by:

h ¼ u� au;kk ; (2)

where a is a nonnegative two-temperature parameter. The equations of motion without
body forces take the forms:

rji;j ¼ q€ui: (3)

The constitutive equations for different local theories are given by:

rij ¼ 2leij þ ðkekk � chÞdij: (4)

In these relations, K* is a material constant characteristic of the theory of Green and
Naghdi, ρ is the density, Ce is the specific heat at constant strain, θ = T − T0 denotes the
thermodynamical temperature, T0 is the reference temperature, Q is the heat supplied per
unit volume from the external work, eij is the strain tensor, c ¼ ð3kþ 2lÞat is the
coupling parameters, in which, k and μ being Lame’s coefficients and αt being the
coefficient of linear thermal expansion, φ is the conductive temperature measured from
the temperature φ0, σij are the components of the stress tensor, ui are the components of
the displacement vector and δij is Kronecker’s delta function.

Let us consider a FG thermoelastic solid beam in Cartesian coordinate systems
Oxyz. The x-axis is drawn along the axial direction of the beam and the y- and z-axes
correspond to the width and thickness, respectively (see Figure 1). The small flexural
deflections of the nanobeam with dimensions of length Lð0� x� LÞ, width
bð�b=2� y� þ b=2Þ and thickness hð�h=2� z� þ h=2Þ are considered. A new
model of FGMs is presented to treat the governing equations of the thermoelastic
nanobeam that subjected to a harmonically varying heat. Based on this model, the
effective material property P(z) gradation through the thickness direction is presented
by (Zenkour, 2006, 2014):

PðzÞ ¼ Pme
nPð2z�hÞ=h; nP ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm=Pc

p
: (5)

where Pm and Pc represent the metal and ceramic properties, respectively. This study
assumes, instead of Lame’s coefficients, that Young’s modulus E, material density ρ,
the material constant K* and the stress-temperature modulus γ of the FGM change
continuously through the thickness direction of the beam according to the above
gradation relation. It is to be noted that the material properties of the considered beam

h

z 

y metal (aluminum) 

ceramic (alumina)

x 

L
b

Figure 1. Schematic diagram for the FG nanobeam.
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are metal-rich near the lower surface (z = +h/2) and ceramic-rich near the upper surface
(z = −h/2) of the beam.

In the present study, the classical beam theory based upon Euler-Bernoulli assump-
tion (Mareishi et al., 2013) is adopted. This means that any plane cross-section, initially
perpendicular to the axis of the beam, remains plane and perpendicular to the neutral
surface during bending. Thus, the displacements are given by:

u ¼ �z
@w

@x
; v ¼ 0; wðx; y; z; tÞ ¼ wðx; tÞ; (6)

where w is the lateral deflection. Substituting this Euler-Bernoulli assumption into
Equation (1), with the aid of Equation (2) and Equation (5), gives the heat conduction
equation given in Equation (1) for the beam without the heat source (Q = 0), as

K�
me

nK ð2z�hÞ=h @2u
@x2

þ @2u
@z2

þ 2nK
h

@u
@z

� �

¼ @2

@t2
qmC

e
me

nqCe ð2z�hÞ=h 1� a
@2

@x2
þ @2

@z2

� �� �
u� zcme

ncð2z�hÞ=hT0
@2w

@x2

� �
;

(7)

where K�
m, ρm, γm and Ce

m are, respectively, the material constant, the material density,
thermal modulus and the specific heat per unit mass at constant strain of the metal
material. Note that

cm ¼ Emam=ð1� 2mmÞ; qmC
e
m ¼ Km=vm; (8)

where αm, Em, νm and χm are the thermal expansion coefficient, Young’s modulus,
Poisson’s ratio and the thermal diffusivity of the metal material, respectively.

The present nanobeam is thermally insulated, i.e., there is no heat flow across its upper
and lower surfaces, so that ∂φ/∂z should be vanished at these surfaces (z = ± h/2). So, let
us assume that the conductive temperature varies sinusoidally along the thickness
direction of the nanobeam. That is

uðx; z; tÞ ¼ u1ðx; tÞ sin
p z
h

	 

: (9)

Substituting Equation (9) into Equation (7) and integrating the resulting equation with
respect to z through the beam thickness from −h/2 to h/2, yields

@2u1

@x2
¼ @2

@t2
�lqCeg 1� ap2

h2
� a

@2

@x2

� �
u1 �

�lcT0hcm
K�
m

@2w

@x2

� �
; (10)

where g ¼ qmC
e
m=K

�
m, �lqCe ¼ lqCe=lK and �lc ¼ lc=lK in which

lK ¼ 2nKð1þ e�2nK Þ
p2 þ 4n2K

; lqCe ¼ 2nqCeð1þ e�2nqCe Þ
p2 þ 4n2qCe

; lc ¼
ncð1þ e�2ncÞ � 1þ e�2nc

4n2c
:

(11)

It is to be noted that the nonlocal theory assumes that stress at a point depends not
only on the strain at that point but also on strains at all other points of the body. So,
the one-dimensional constitutive equation gives the uniaxial tensile stress only, accord-
ing to the differential form of the nonlocal constitutive relation proposed by Eringen
(1972, 1983); Eringen & Edelen, 1972), as
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rx � n
@2rx
@x2

¼ �Em enEð2z�hÞ=hz
@2w

@x2
þ ame

nEað2z�hÞ=h 1� ap2

h2
� a

@2

@x2

� �
u

� �
; (12)

where nEa ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emam=Ecac

p
in which αc and Ec are the thermal expansion coefficient

and Young’s modulus of the ceramic material, respectively. Note that ξ = (e0L)
2 is the

nonlocal parameter, in which e0 is a constant appropriate to each material and L is the
internal characteristic length. In general, a conservative estimate of the nonlocal
parameter is e0L\2:0 nm for a single-wall carbon nanotube (Wang & Wang, 2007).

The flexure moment of the cross-section is given, with the aid of Equation (9), by

M � n
@2M

@x2
¼ �bh2Em hlE

@2w

@x2
þ amlEa 1� ap2

h2
� a

@2

@x2

� �
u1

� �
; (13)

where

lE ¼ ðn2E þ 2Þð1� e�2nEÞ � 2nEð1þ e�2nEÞ
8n3E

;

lEa ¼
nEað4n2Ea þ p2Þð1� e�2nEaÞ þ ðp2 � 4n2EaÞð1þ e�2nEaÞ

ðp2 þ 4n2EaÞ2
:

(14)

The differential equation of thermally induced lateral vibration of the nanobeam may
be expressed in the form:

@2M

@x2
¼ 1� e�2nq

2nq
qmA

@2w

@t2
; (15)

where A = bh is the cross-section area. Substituting Equation (13) into Equation (15),
one can get the motion equation of the beam as

@4w

@x4
þ 1� e�2nq

2nqlEe2h2
@2w

@t2
� n

@4w

@x2@t2

� �
þ am�lEa

h
1� ap2

h2
� a

@2

@x2

� �
@2u1

@x2
¼ 0; (16)

where �lEa ¼ lEa=lE and e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em=qm

p
.

The initial and boundary conditions should be considered to solve the present
problem. The initial conditions of the problem are taken as

wðx; tÞ t¼0 ¼ @wðx; tÞ
@t

����
t¼0

¼ 0; u1ðx; tÞ t¼0 ¼ @u1ðx; tÞ
@t

����
t¼0

¼ 0:

����
���� (17)

Now, the problem is to solve the Equations (10) and (16) subject to the boundary
conditions:

(1) The two ends of the nanobeam satisfy the conditions:

wðx; tÞ x¼0;L ¼ 0;
@2wðx; tÞ

@x2

����
x¼0;L

¼ 0:

����� (18)

(2) Let us also consider the nanobeam is thermally loaded by harmonically varying
heat incidents into the surface of the nanobeam x = 0. In this case, we take the
conductive temperature in the form

u1ðx; tÞjx¼0¼ f ðtÞ ¼ HðtÞU0 cosðxtÞ; (19)
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where H(t) is called Heaviside’s unite step function, Φ0 is constant and ω is the angular
frequency of thermal vibration (ω = 0 for a thermal shock problem). In addition, the
conductive temperature at the end boundary should satisfy the following relation:

@u1

@x
¼ 0 on x ¼ L: (20)

Let us introduce the following dimensionless quantities:

ðx0; L0; u0;w0; z0; h0Þ ¼ geðx; L; u;w; z; hÞ; t0 ¼ ge2t; x0 ¼ x
ge2 ;

ða0; n0Þ ¼ g2e2ða; nÞ; u0
1 ¼ u1

T0
; r0x ¼ rx

Em
:

(21)

Now omitting primes, the governing equations, Equations (2), (10), (12) and (16) can
be re-written in the dimensionless forms as

@4w

@x4
þ A1

@2w

@t2
� n

@4w

@x2@t2

� �
þ A2 c� a

@2

@x2

� �
@2u1

@x2
¼ 0; (22)

@2u1

@x2
¼ A3 c� a

@2

@x2

� �
@2u1

@t2
� A4

@2

@t2
@2w

@x2

� �
; (23)

h ¼ sin
p z
h

	 

c� a

@2

@x2

� �
u1; (24)

where

c ¼ 1� a
p2

h2
; A1 ¼ 1� e�2nq

2nqlEh2
; A2 ¼ am�lEaT0

h
; A3 ¼ �lqCe ; A4 ¼

�lchcm
gKm

: (25)

3. Method of solution

Applying the Laplace transform to Equations (22) and (23), one gets the field equations
as

d4

dx4
þ A1s

2 1� n
d2

dx2

� �� �
�w ¼ A2

d2

dx2
a
d2

dx2
� c

� �
�u1; (26)

s2A4
d2�w

dx2
¼ � ð1þ s2A3aÞ d2

dx2
� s2cA3

� �
�u1; (27)

where an over bar symbol denotes its Laplace transform, s denotes the Laplace trans-
form parameter. Elimination �u1 or �w from Equations (26) and (27) gives the following
differential equation for either �w or �u1:

d6

dx6
� A

d4

dx4
þ B

d2

dx2
� C

� �
f�w; �u1g ¼ 0; (28)
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where the coefficients A, B and C are given by

A ¼ cs2ðA3 þ A2A4Þ þ A1s2nð1þ as2A3Þ
1þ as2ðA3 þ A2A4Þ ;

B ¼ A1s2ð1þ as2A3 þ A3cs2nÞ
1þ as2ðA3 þ A2A4Þ ;

C ¼ cA1A3s4

1þ as2ðA3 þ A2A4Þ :

(29)

Introducing mi ði ¼ 1; 2; 3Þ into Equation (28), one gets

ðD2 � m2
1ÞðD2 � m2

2ÞðD2 � m2
3Þf�w; �u1g ¼ 0; (30)

where D = d/dx and m2
1, m

2
2 and m2

3 are the roots of the characteristic equation

m6 � Am4 þ Bm2 � C ¼ 0: (31)

These roots are given by

m2
1 ¼ 1

3 ½2p0 sinðq0Þ þ A�; m2
2 ¼ � 1

3 p0½
ffiffiffi
3

p
cosðq0Þ þ sinðq0Þ� þ 1

3A;

m2
3 ¼ 1

3 p0½
ffiffiffi
3

p
cosðq0Þ � sinðq0Þ� þ 1

3A;
(32)

where

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 3B

p
; q0 ¼ 1

3
sin�1 � 2A3 � 9ABþ 27C

2p30

� �
: (33)

The solution of the governing equations, Equation (30), in the Laplace transformation
domain can be represented as

f�w; �u1g ¼
X3
i¼1

ðfCi;Fige�mix þ fCiþ3;Fiþ3gemixÞ; (34)

where Ci and Fi are parameters depending on s. The compatibility between these two
equations and Equations (26) and (27) gives

Fi ¼ biCi; Fiþ3 ¼ biCiþ3; bi ¼
m4

i þ A1s2

A2ðam4
i � cm2

i Þ
: (35)

So,

f�w; �u1g ¼
X3
i¼1

f1; big Cie
�mix þ Ciþ3e

mixð Þ: (36)

Then, the thermodynamical temperature θ in the Laplace domain with the aid of the
above equation becomes

�h ¼ sin
pz
h

	 
X3
i¼1

biðc� am2
i ÞðCie

�mix þ Ciþ3e
mixÞ: (37)

Also, the axial displacement and the strain after using Equation (36) take the forms
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�u ¼ �z
d�w

dx
¼ z

X3
i¼1

mi Cie
�mix � Ciþ3e

mixð Þ;

�e ¼ d�u

dx
¼ �z

X3
i¼1

m2
i ðCie

�mix þ Ciþ3e
mixÞ:

(38)

Using Laplace transformation to Equations (18)–(20), the boundary conditions take the
forms

�wðx; sÞ
����
x¼0;L

¼ 0;
d2�wðx; sÞ

dx2

����
x¼0;L

¼ 0;

�u1ðx; sÞ
����
x¼0

¼ su0

x2 þ s2
¼ �GðsÞ; d�u1ðx; sÞ

dx

����
x¼L

¼ 0:

(39)

Substituting Equation (36) into the above boundary conditions, one obtains six linear
equations in the matrix form as

1 1 1 1 1 1
e�m1L e�m2L e�m3L em1L em2L em3L

m2
1 m2

2 m2
3 m2

1 m2
2 m2

3
m2

1e
�m1L m2

2e
�m2L m2

3e
�m3L m2

1e
m1L m2

2e
m2L m2

3e
m3L

b1 b2 b3 b1 b2 b3
�m1b1e

�m1L �m2b2e
�m2L �m3b3e

�m3L m1b1e
m1L m2b2e

m2L m3b3e
m3L

2
6666664

3
7777775

C1

C2

C3

C4

C5

C6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0
0
0
0

�GðsÞ
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: (40)

The solution of the above system of linear equations gives the unknown parameters Ci

and Ci + 3. This completes the solution of the problem in the Laplace transform domain.

4. Inversion of Laplace transforms

There are many problems whose solution may be found in terms of Laplace transform
which is then, however, too complicated for inversion using the techniques of complex
analysis. Numerous methods have been devised for the numerical evaluation of the
Laplace inversion integral. In order to determine the conductive and thermal tempera-
ture, displacement and stress distributions in the time domain, the Riemann-sum
approximation method is used to obtain the numerical results. In this method, any func-
tion in the Laplace domain can be inverted to the time domain as

f ðtÞ ¼ ef t

t
1

2
Re½�FðfÞ� þ Re

XN
n¼0

�F f þ inp
t

� �
ð�1Þn

� �" #
; (41)

where Re is the real part and i is the imaginary number unit. For faster convergence,
numerical experiments have shown that the value that satisfies the above relation is
ζ ≈ 4.7/t (Tzou, 1996).

5. Numerical results

In terms of the Riemann-sum approximation defined in Equation (41), numerical
Laplace inversion is performed to obtain the nondimensional lateral vibration, tempera-
ture, displacement, stress, moment and strain energy in the nanobeam. In the present
work, the thermoelastic coupling effect is analysed by considering a beam made of
metal-ceramic FGM.
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The aluminium as lower metal surface and alumina as upper ceramic surface are
used for the present nanobeam. The material properties are assumed to be:

Em ¼ 70GPa; Ec ¼ 116GPa; mm ¼ 0:35; mc ¼ 0:33; qm ¼ 2700Kg=m3;
qc ¼ 3000Kg=m3; am ¼ 23:1� 10�6K�1; ac ¼ 8:7� 10�6K�1;

vm ¼ 84:18� 10�6m2=s; vc ¼ 1:06� 10�6m2=s;
K�
m ¼ 237W=ðmKÞ; K�

c ¼ 1:78W=ðmKÞ:
(42)

The computations are carried out for t = .12 and Φ0 = 1.0. The conductive temperature,
the dynamical temperature, the stress and the strain distributions are represented graphi-
cally with respect to wide range of x ð0� x� 1Þ. The reference temperature of the
nanobeam is T0 = 293 K. The aspect ratio of the beam is fixed as L/h = 10. The dimen-
sionless variables defined in Equation (21) are plotted for a wide range of beam length
when L = 1 and h = 0.1. The thickness position is assumed, except otherwise stated, to
be z = h/6. Some plots considered the present quantities through the length of the beam
and others took into account both the length and thickness directions.

Equation (41) was used to invert the Laplace transforms in Equations (36)–(38) to
graphically present the transverse deflection, the conductive temperature, the dynamical
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Figure 2. (a) The transverse deflection, (b) the conductive temperature, (c) the dynamical tem-
perature and (d) the displacement distributions of the FG nanobeam for different values of the
nonlocal parameter �n ðz ¼ h=6; a ¼ 0:01; t ¼ 0:12; x ¼ 5Þ.
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temperature, and the displacement distributions with respect to x and z directions. For
all numerical calculations, Mathematica programming language has been used. Figures
2–5 represent the curves predicted for these quantities. Numerical calculations are
carried out for three cases as follows:

Case I: The effect of nonlocal parameter n ¼ 10�7 �n, (�n ¼ 0; 1; 2) on the dimensionless
transverse deflection, the conductive temperature, the thermodynamic temperature and
the displacement (see Figure 2). Note that the value of �n ¼ 0 indicates the local theory
while the values �n ¼ 1 and 2 indicate the nonlocal theory. In this case, one assumes that
the angular frequency of the thermal vibration is ω = 5 and the dimensionless temperature
discrepancy a = 0.01.

Case II: Investigating how the dimensionless conductive temperature, thermodynamic
temperature and displacement vary with different values of the dimensionless temperature
discrepancy a (see Figure 3). Note that, the value of a = 0 indicates the old situation (GN
model or the one-temperature theory (1TT)) while the values a = 0.01 and 0.02 indicate
the nonlocal two-temperature theory (2TT). In this case, one assumes that the angular
frequency of the thermal vibration is ω = 5 and the nonlocal parameter is �n ¼ 2.

Case III: Illustrating in Figure 4 how the field quantities vary with the different values of
the angular frequency of thermal vibration ω = 0, 5, 10 (ω = 0 for a thermal shock problem)
with constant value of the temperature discrepancy parameter (a = 0.01) and the nonlocal
parameter ð�n ¼ 2Þ.
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Figure 3. (a) The transverse deflection, (b) the conductive temperature, (c) the dynamical tem-
perature and (d) the displacement distributions of the FG nanobeam for different values of tem-
perature discrepancy a ðz ¼ h=6; t ¼ 0:12;x ¼ 5; �n ¼ 2Þ.
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Case IV: Discussing the behaviour of the field quantities through-the-thickness of the
nanobeam for fixed values of the angular frequency, the nonlocal parameter and the tem-
perature discrepancy parameter is ðx ¼ 5; �n ¼ 2; a ¼ 0:01Þ (see Figure 5).

In the first case, the values of the nonlocal parameter �n with the constant parameters
a = 0.01 and ω = 5 are considered. For a local theory, one puts �n ¼ 0 and for a nonlocal
theory, �n may be 1 or 2. It is found from Figure 2 that the nonlocal parameter �n has
significant effects on all field quantities. The nonlocal parameter enlarges the waves of
all field quantities. It is observed that as the value of the nonlocal parameter �n increases
the peak of thermal waves of all field quantities. It is seen from figures that as the
value of �n increases, the magnitude of the temperature and other fields decreases for
fixed x.

In the second case, three different values of the temperature discrepancy parame-
ter a are considered. During the x-axis, all field quantities reflect their behaviours
when the value of a increases. This shows the difference between the nonlocal
one-temperature generalised thermoelasticity of Green and Naghdi (a = 0) and the
nonlocal two-temperature generalised thermoelasticity ða ¼ 0:01; 0:02Þ models. The
figures show that this parameter has significant effect on all studied field. According
to the figures, the two-temperature parameter plays vital role on the speed of the
wave propagation of all the studied fields. The field quantities waves may be reach
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Figure 4. The effect of angular frequency of thermal vibration on (a) the transverse deflection,
(b) the conductive temperature, (c) the dynamical temperature and (d) the displacement distribu-
tions of the FG nanobeam ω ðz ¼ h=6; t ¼ 0:12; a ¼ 0:01; �n ¼ 2Þ.
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the steady state or/and reflect their behaviours depending on the value of the
temperature discrepancy a. So, according to the results of this work, it is important
to distinguish between the dynamical temperature and the conductive temperature.

In the third case, we considered values of the angular frequency of thermal
vibration ω with the constant parameter a = 0.01 and �n ¼ 2. For a thermal shock
problem, we put ω = 0 and for a harmonically heat problem, ω may be 5 or 10.
From Figure 4, it is found that, the angular frequency of thermal vibration ω has
significant effects on all field quantities. The amplitudes of the field waves are
increasing as ω increases. The angular frequency of thermal vibration ω makes the
difference between the results in the context of the nonlocal theory two-temperature
generalised thermoelasticity and GN theory. It is observed from these figures that
the angular frequency of thermal vibration ω increases as the magnitude of the field
quantities decrease.

In the last case, the field quantities of the nanobeam at constant values of ω = 5
and �n ¼ 2, and in a wide range of thickness −1/2 ≤ z/h ≤ 1/2 are presented in three-
dimensions in Figure 5. In those figures, we can see the effects of the changing of the
thickness on all the studied fields. When the thickness increases, all values of the
studied fields increase and this is very obvious at the peak points of the curves. It is
concluded that the different gradient parameters produce different distributions of the
thermal stresses.

Figure 5. (a) The transverse deflection, (b) the conductive temperature, (c) the dynamical tem-
perature and (d) the displacement distributions versus the axial and thickness directions
ða ¼ 0:01; t ¼ 0:12; x ¼ 5; �n ¼ 2Þ.
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6. Conclusion

In this paper, a new model of two-temperature generalised thermoelasticity without
energy dissipation and a nonlocal Euler-Bernoulli beam theory for a FG nanobeam is
constructed. The vibration characteristics of the deflection, conductive temperature,
thermodynamics temperature, displacement, stress and strain energy of nanobeams due
to harmonically varying heat are investigated in the context of two-temperature theory
of thermoelasticity without energy dissipation. The effects of the nonlocal parameter,
the angular frequency of thermal vibration ω and the two-temperature parameter a of
thermal vibration on the field variables are investigated. Numerical technique based on
the Laplace transformation has been used. The effects of different parameters on all the
studied field quantities have been shown and presented graphically.

According to the results shown in all figures, it is found that the nonlocal parameter
as well as the two-temperature parameter plays a vital role on the speed of the wave
propagation of the heat conduction and the dynamical heat. The presence of the non-
local parameter �n has significant effect on the solutions of all studied fields.

The significant differences in the physical quantities are observed for all the one-
temperature model (GN model) and two-temperature models. Two-temperature theory
is more realistic than the one-temperature theory in the case of generalised thermoelas-
ticity. The two-temperature generalised theory of thermoelasticity describes the behav-
iour of the particles of an elastic body which is more realistic than the one-temperature
theory of generalised thermoelasticity. On the other hand, the thermoelastic stresses,
displacement and temperature have a strong dependency on the angular frequency
parameter.
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