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In this paper, the application of polygonal–FEM method is investigated together
with the performance of various polygonal shape functions in modelling of large
deformation problems. Polygonal–FEM technique is used in modelling arbitrary
interfaces in large deformations using non-conformal meshes. The technique is
applied to capture independent deformations in the element cut by the interface in a
uniform non-conformal mesh. The geometry of the interface is used to produce vari-
ous polygonal elements at the intersection of the interface with regular FE mesh, in
which the extra degrees-of-freedom are defined along the interface. The level set
method is employed to describe the material geometry on the background mesh.
Numerical convergence analysis is carried out to study the approximation error and
convergence rate of various interpolation functions in polygonal elements. Finally,
several numerical examples are solved to investigate the efficiency of each interpola-
tion technique in modelling arbitrary interfaces in large deformations.
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1. Introduction

In computational mechanics, modelling the arbitrary interfaces on non-conformal
meshes is of great importance. The adaptive mesh refinement and conforming mesh
strategy for preserving the mesh to the shape of geometry at various stages of solution
are time-consuming techniques. Thus, it is necessary to perform an innovative proce-
dure to alleviate these difficulties by allowing the internal interfaces and arbitrary
geometries to be mesh-independent. In fact, an approach that avoids the remeshing is
preferable not only at the cost of creating a new mesh, but the tremendous overhead
associated with adapting post-processing techniques, such as time histories of specified
points to sequences of meshes in evolution problems. There are several approaches pro-
posed by researchers to model discontinuity problems with non-conformal meshing,
including the mesh-free method (Belytschko, Krongauz, Organ, Fleming, & Krysl,
1996), the generalised finite element method (Strouboulis, Copps, & Babuška, 2001)
and the extended finite element method (Belytschko, Moës, Usui, & Parimi, 2001). The
extended finite element technique has been extensively employed to minimise the
requirement of mesh generation in the problem with material discontinuities, including
the hole and inclusion (Sukumar, Chopp, Moës, & Belytschko, 2001), microstructure
geometry (Moës, Cloirec, Cartraud, & Remacle, 2003) and arbitrary interfaces (Anahid
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& Khoei, 2008; Khoei, Anahid, & Shahim, 2008; Khoei, Biabanaki, & Anahid, 2008),
etc. In this method, the enrichment functions are defined to deal with the discontinuity
of displacement inside the enriched element. In fact, the method addresses the arbitrary
interfaces without generating a boundary-fitted mesh by defining the extra degrees-of-
freedom in the elements cut by the interfaces.

Polygonal–FEM technique is a new approach presented in modelling arbitrary inter-
faces, in which a uniform non-conformal mesh is decomposed into polygonal elements
that conform to the internal interfaces and arbitrary geometries. The geometry of inter-
face is used to define the extra degrees-of-freedom by adding nodal points that lie on
the interfaces. In order to describe the material geometry on the background mesh, the
level set method is employed to represent the decomposition of non-conformal elements
into the conformal sub-elements (Noble Newren, & Lechman, 2010). The level set
technique is used to extrude any arbitrary geometry from an initial background mesh
and model under different external effects. The technique provides a great flexibility in
the modelling of complex geometries. The technique may be considered as a general-
ised finite element method introduced by Li, Lin, and Wu (2003) using a Cartesian
Grid with Added Nodes into the unstructured finite elements. In the FE-based Cartesian
Grid with Added Nodes method, the additional nodes increase the size of the linear
system of equations and significantly affect the structure of the matrix, which make it
undesirable compared to other generalised FEM techniques, such as Immersed FE
methods. However, in the polygonal finite element method, the polygonal sub-elements
are produced in the uniform non-conformal mesh by decomposing the uniform mesh
into elements that is conformed to the material interfaces.

The construction of shape functions on irregular polygons were originally proposed
by Wachspress (1975) based on the rational basis functions on polygonal elements. In
this approach, the principles of perspective geometry of Coxeter (1961) were employed
to validate the nodal interpolation and linearity on the boundaries. Various aspects of the
Wachspress basis function were investigated in literature, including the estimation of
interpolation error on regular hexagons by Gout (1985), the evaluation of polynomial
coefficients of Wachspress functions by Dalton (1985), the extension of barycentric coor-
dinate functions to convex polytopes by Warren (1996) and the implementation of higher
degree Wachspress functions to construct surface patches by Dahmen, Dikshit, and Ojha
(2000), etc. The Wachspress basis function was employed into the finite element method
by Dasgupta (2003a, 2003b) to construct the shape functions for concave elements. The
construction of conforming finite elements based on polygonal meshes was performed by
Sukumar (2004), in which a link between the maximum entropy and the construction of
polygonal interpolants was established. In this technique, the maximum entropy approach
was used to obtain a feasible solution for the shape functions of convex or non-convex
polygons. Sukumar and Tabarraei (2004) proposed the conforming finite elements based
on polygonal meshes, which provide a great flexibility in mesh generation of solid
mechanics problems. An overview of recent developments in the construction of finite
element interpolants based on the C0–conforming on polygonal domains was presented
by Sukumar and Malsch (2006). A numerical integration technique on arbitrary polygo-
nal domains was proposed by Natarajan, Bordas, and Mahapatra (2009) based on the
Schwarz–Christoffel conformal mapping. Recently, a polygonal–FEM technique was pre-
sented by Biabanaki and Khoei (2012) on the basis of Wachspress shape functions in
modelling large deformation problems. A particular and notable contribution of polygo-
nal interpolants is based on the mesh-free, or natural-neighbour, basis functions on a
canonical element combined with an affine map to construct conforming approximations
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on convex polygons. This numerical formulation enables the construction of conforming
approximation on any polygons, and hence extends the potential applications of finite
elements to convex polygons of arbitrary order.

In the present study, a new approach is presented based on the polygonal–FEM
technique in modelling of large deformations on arbitrary interfaces, in which a uni-
form non-conformal mesh, such as a quadrilateral grid or a polygonal grid can be
decomposed into polygonal elements that conform to the internal interfaces and arbi-
trary geometries. The conformal FE decomposition technique is performed using vari-
ous polygonal interpolation functions, in which the polygonal elements are produced in
the uniform structured mesh by decomposition of the uniform mesh into sub-elements.
The performance of various polygonal shape functions is investigated in large polygo-
nal–FEM deformations, including the Wachspress interpolation, metric coordinates,
mean value coordinates and natural neighbours methods. Moreover, the numerical con-
vergence analysis is carried out to study the approximation error and the convergence
rate of various interpolation functions for the polygonal–FEM method with quadrilateral
and hexagonal meshes. The plan of the paper is as follows: in Section 2, a general
formulation is presented for continuum model of large deformation based on the
Lagrangian description, which can be used in the standard–FEM, or conforming–FEM
technique. Section 3 is devoted to the concept of conforming polygonal finite elements.
The implementation of conforming–FEM technique based on the polygonal elements is
demonstrated in Section 4. The procedure, in which the polygonal elements are
produced in the uniform structured mesh by decomposing the uniform mesh into sub-
elements, is described in this section. In Section 5, the numerical convergence analysis
is performed to study the approximation error and convergence rate of various interpo-
lation functions in polygonal elements. In addition, several numerical examples are ana-
lysed to illustrate the performance of different polygonal interpolation functions in
modelling arbitrary interfaces in large deformations. Finally, some concluding remarks
are given in Section 6.

2. Large finite element deformation formulation

In non-linear analyses, whether the displacements, or strains, are large or small it is
imperative that the equilibrium conditions between the internal and external forces are
satisfied. The equilibrium equation of a body in the current deformed configuration can
be written in the standard form as

@rij
@xj

þ bi ¼ 0 (1)

where rij is the Cauchy stresses, xj current coordinates and bi the body force. In order
to develop a finite element formulation, we need to solve Equation (1) numerically for
spatial discretisation. Following the standard procedure of the finite element method,
the initial domain X0 is divided into elements. If the displacements within an element
are prescribed by a finite number of nodal values, we can obtain the necessary equilib-
rium equations using the virtual work principle. Thus, the equilibrium conditions
between the internal and external forces, i.e. Wint ¼ Wext can be written in the following
weak form at the initial configuration asZ

X0

dETSdX0 ¼
Z

X0

duTb0dX0 þ
Z
C0
t

duT t0dC0 (2)
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where E is the Green–Lagrange strain vector and S the second Piola–Kirchhoff stress
vector. In above equations, b is the body force vector and t the traction applied on the
boundaries. The ‘0’ superscript denotes the value of variables according to the unde-
formed configuration.

In order to formulate the Lagrangian finite element model, the variational equations
(2) must be linearised using the Newton–Raphson method. The linearisation of internal
work can be obtained in terms of the second PK stresses and Green–Lagrange strains.
Since there are two sources of non-linearities in the internal work expression, i.e. the
stress vector which depends on the strains, or in turn depends on displacements, and
the Green–Lagrange strain vector which is a non-linear function of displacements, the
linearisation of internal work can be written as

DDuWint ¼
Z
X0

DDudE
T
ðuÞSðuÞ þ dET

ðuÞDDuSðuÞ
� �

dX0 (3)

where DDudET
ðuÞ is the linearisation of variation of the Green–Lagrange strain and

DDuSðuÞ is the linearisation of second PK stress. Applying the definition of
Green–Lagrange strain and second PK stress and taking their derivatives with respect
to Du, Equation (3) can be rewritten as

DDuWint ¼
Z
X0

ðdHTSDH þ dHTF
T
CFDHÞdX0 (4)

where C is the 3 × 3 matrix of tangent elasto-plasticity and �S is the tensor of second
PK stress. In above equation, �F, �S and H are defined for the plane stress/strain prob-
lems as

�FI ¼
@xI=@X 0 0

0 @xI=@Y 0

@xI=@Y 0 @xI=@X 0

2
4

3
5 (5)

�S ¼ ½S� 0
0 ½S�

� �
with ½S� ¼ Sxx Sxy

Syx Syy

� �
(6)

H ¼ @u

@X 0

@u

@Y 0

@v

@X 0

@v

@Y 0

� �T

(7)

In the linearisation of external work, since there is no effect of displacements on the
external work done by the applied forces and body forces, i.e.

DDu

Z

X0

duTb0dX0 þ
Z
C0
t

duT t0dC0

0
B@

1
CA ¼ 0, the linearised form of the weak formulation

can be written asZ

X0

ðdHT �SDH þ dHTF
T
C �FDHÞdX0 ¼ �

Z

X0

dHTF
T
SdX0 þ

Z

X0

duTb0dX0

þ
Z
C0
t

duT t0dC0 (8)
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Applying the Lagrangian finite element formulation, the above equation can be
obtained as

Z

X0

BT �SBdX0 þ
Z

X0

BTF
T
C �FBdX0

0
B@

1
CAD�u ¼ �

Z

X0

BTF
T
SdX0 þ

Z

X0

NTb0dX0

þ
Z
C0
t

NT t0dC0 (9)

where N and B are the shape function and the gradient shape function of the elements,
respectively. In Equation (9), the tangential stiffness matrices and load vectors are
defined as

Kc ¼
R
X0

BTF
T
C �FBdX0

K s ¼
R
X0

BT �SBdX0

Rint ¼ �
R
X0

BTF
T
SdX0

Rt ¼
R
C0
t

NT t0dC0

Rb ¼
R
X0

NTb0dX0

(10)

where Kc is the stiffness matrix for large deformation, Ks the stress (or geometric) stiff-
ness matrix, Rint the equivalent load vector due to stresses in the current known config-
uration, Rt the equivalent nodal load vector due to surface loading and Rb the
equivalent nodal load vector due to body force. Thus, Equation (9) can be simplified as

KD�u ¼ R (11)

where K ¼ Kc þ KS and R ¼ Rint þ Rt þ Rb.

3. Interpolation functions in polygonal elements

The most important feature of the finite element method is the ease of covering a body
of arbitrary shape with regions of relatively simple geometry. In two-dimensional prob-
lems, the typical elements are popular convex polygons, such as triangles and quadrilat-
erals, which are used in commercial codes to evaluate the domain integrals within finite
elements according to numerical quadrature schemes with varied degrees of accuracies.
However, the implementation of irregular FE polygons in practical engineering prob-
lems has not been significantly explored. The polygonal finite elements provide a great
flexibility in modelling of complex geometries, and can be used as the transition ele-
ments in FE meshes. Various approaches are proposed by researchers for determining
and modifying the interpolation functions in polygonal finite elements, including the
Wachspress interpolation, metric coordinates, mean value coordinates and natural neigh-
bours methods. In what follows, a brief overview of these techniques is given.

European Journal of Computational Mechanics 19



3.1. Wachspress method

The construction of barycentric coordinates and the evaluation of shape functions on
irregular polygons were originally presented by Wachspress (1975) based on the
rational basis functions on polygonal elements. The rational barycentric basis functions
were enhanced using the GADJ algorithm by Dasgupta (2003a) and Dasgupta and
Wachspress (2008), and extended to higher space dimensions by Wachspress (2011).
An expression of the Wachspress shape functions was given by Meyer, Barr, Lee, and
Desbrun (2002) as

Nw
i ðxÞ ¼

wiðxÞPn
j¼1 wjðxÞ (12)

where

wiðxÞ ¼ Aðpi�1; pi; piþ1Þ
Aðpi�1; pi; pÞAðp; pi; piþ1Þ ¼

cot hi þ cotxi

kxi � xk2 (13)

where Aða; b; cÞ is the signed area of triangle ½a; b; c�, and hi and xi are shown in
Figure 1. Since cot hi þ cotxi � sinðhi þ xiÞ=ðsin hi sinxiÞ, the shape functions Nw

i ðxÞ
have non-negative values and the polygon must be convex, i.e. hi þ xi\p. The evalua-
tion of the Wachspress basis function can be carried out using the elementary vector
calculus operations, as demonstrated by Meyer et al. (2002). Considering the coordi-
nates of the vertices of triangle ðp; pi; piþ1Þ as ðx1; x2Þ, ða1; a2Þ and ðb1; b2Þ, respec-
tively, the value of cotðxiÞ can be computed by

cotxi ¼ ðpiþ1 � piÞ:ðp� piÞ
jðpiþ1 � piÞ � ðp� piÞj ¼

ðb1 � a1Þðx1 � a1Þ þ ðb2 � a2Þðx2 � a2Þ
ðb1 � a1Þðx2 � a2Þ � ðx1 � a1Þðb2 � a2Þ �

C

S
(14)

and its derivatives can be evaluated as

@ðcotxiÞ
@x1

¼ ðb1 � a1Þ � ða2 � b2Þ cotxi

S
@ðcotxiÞ

@x2
¼ ðb2 � a2Þ � ðb1 � a1Þ cotxi

S

(15)

The value of cot hi and its derivatives can be computed in a similar manner. Finally,
the Wachspress shape function Nw

i ðxÞ can be obtained according to relation (12). In
Figure 2(a), the Wachspress shape function of an arbitrary pentagonal element is shown

Figure 1. A general polygonal element.
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for the geometry depicted in Figure 1. The Wachspress shape functions of regular
polygon (n�gon) elements are presented in Figure 3 for four different polygons.

3.2. Mean value coordinates method

The mean value coordinates method was originally proposed by Floater (2003) to inter-
polate the data in an arbitrary convex or concave domain. This method is based on the
mean value theorem used for harmonic functions. The set of interpolation functions
constructed by this method satisfies all requirements necessary for obtaining the ele-
ment shape functions inside of the polygon but it cannot be extended to the boundary
of polygonal element. An expression for the shape functions of the mean value coordi-
nates method can be given by

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Shape functions of a general pentagonal element; (a, e) Wachspress method, (b, f)
mean value method, (c, g) metric method and (d, h) natural neighbours method.

(a) (b) (c) (d)

Figure 3. Shape functions of the general polygonal elements.
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Nm
i ðxÞ ¼

wiðxÞPn
j¼1 wjðxÞ (16)

where

wiðxÞ ¼ tanðui�1=2Þ þ tanðui=2Þ
kx� xik (17)

The parameter ui is shown in Figure 1. The shape function of a pentagonal element
derived by the mean value coordinates method is presented in Figure 2(b).

3.3. Metric coordinates method

The metric coordinates method was developed by Malsch and Dasgupta (2004a) and
Malsch, Lin, and Dasgupta (2005) in general polygonal domains with convex or con-
cave polygonal element. The method can be employed in the case of multiply con-
nected polygonal domain with isolated points at its interior. The shape functions of the
metric coordinates method can be constructed as

Nr
i ðxÞ ¼

wiðxÞPn
j¼1 wjðxÞ (18)

where

wiðxÞ ¼
Y

j 6¼i;i�1

ljðxÞ (19)

in which ljðxÞ can be defined for each edge as

liðxÞ ¼ jjxi�1 � xijj � ðjjx� xi�1jj þ jjx� xi�1jjÞ (20)

The metric shape function of a pentagonal element is shown in Figure 2(c). The metric
shape functions are applied in the heat transfer analysis by Malsch and Dasgupta
(2004b).

3.4. Natural neighbours method

In this approach, the finite elements are introduced based on the Voronoi decomposition
of polygonal domain and the interpolation functions are determined using the natural
element coordinates. The Voronoi decomposition of a set of nodes in an Euclidean
plane is defined as follows; the Voronoi cell associated with node i is defined as the
locus of points which are closer to node i than to any other node. The nodes associated
with two adjacent Voronoi cells with a common edge are called natural neighbours. In
order to calculate a set of finite element interpolation functions based on the natural
neighbours method, the Voronoi tessellation is initially determined with respect to the
element nodes and interpolation point. The interpolation functions can therefore be
defined as

Nn
i ðxÞ ¼

wiðxÞPn
j¼1 wjðxÞ (21)

where
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wiðxÞ ¼ aiðxÞ
biðxÞ

(22)

where biðxÞ is the distance between the interpolation point and node i and aiðxÞ is the
length of the common edge of Voronoi cells associated with node i and interpolation
point, in which aiðxÞ is set to zero for the nodes which are not natural neighbours of
the interpolation point.

The discrete harmonic mapping functions presented by Pinkall and Polthier (1993)
are equivalent to the natural neighbours shape functions. In an arbitrary convex domain,
the discrete harmonic weights are defined as

wiðxÞ ¼ cotðhiÞ þ cotðxiÞ (23)

where the angles hi and xi are shown in Figure 1. The shape function of a pentagonal
element derived using the Laplace method is shown in Figure 2(d).

4. Conforming FEM with polygonal elements

In order to model arbitrary interfaces in a uniform mesh, the regular non-conformal
mesh is decomposed into sub-elements that conform to the internal interfaces. In this
approach, the concept of conformal decomposition finite element method is used to
produce the conforming polygonal elements in the uniform structured mesh by decom-
position of the uniform mesh into sub-elements that is conformed to the material inter-
faces. The geometry of interface is used to produce various polygonal elements at the
intersection of interface, as shown in Figure 4, in which the extra degrees-of-freedom
are defined along the interface. The position of material interface is determined accord-
ing to the initial uniform mesh by using the level set method.

The level set method is employed to describe the material interface by extruding
arbitrary geometry from the initial background mesh. The technique is used to represent
the geometry of interface on the structured and non-conformal mesh. The level set
method performs the decomposition of non-conformal elements into conformal sub-
elements by introducing the material interface based on the sign of level set function.

(a) (b)

Figure 4. Decomposition of non-conformal elements cut by the interface into conformal
sub-elements: ■ original nodal points, new degrees-of-freedom along the interface.
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The performance of this conformal decomposition affects the quality of conformal
sub-elements. In general, the conformal decomposition must be robustly handled for
unacceptable and degenerate cases. These situations can be occurred whenever the
interface passes through a nodal point. In such case, a robust scheme is needed for
handling nearly degenerate cases. If nearly degenerate elements are not addressed, the
resulting matrix system may be numerically singular.

A general procedure for handling the conformal decomposition can be performed
by determination of the edges of non-conformal elements cut by the material interface.
An edge is assumed to be cut by the interface if the level set values of two nodal
points supported by the edge have different signs. The procedure to handle the nodal
points with zero level set values, or nearly zero level set values is optional, but they
must be handled consistently. For the edge of element cut by the interface, new
degrees-of-freedom are introduced at the edge of non-conformal element, as shown in
Figure 4. The coordinates of this point can be obtained by linear interpolation on the
edge of element. For an edge with nodal level set values of u1 and u2, the coordinates
of new point can be obtained as

xi ¼ x1 þ aðx2 � x1Þ (24)

where x1 and x2 are the coordinates of new point and the value of a is defined by a lin-
ear interpolation as a ¼ jju1jj=h, with h denoting the size of element. However, if
a\e, or a[ 1� e, in which the parameter e is assumed to be :05, the new point is not
generated. In this case, the interface passes through the nearest nodal point of the edge,
and the level set value is set to zero at the nearest node. A detailed study of the sensi-
tivity analysis to this decomposition parameter has not been performed here. However,
it is obvious that a large value of parameter e may cause significant errors due to defi-
ciency between the prescribed geometry and the decomposed geometry. In addition, a
small value of parameter e results in multiple nodal points that is numerically coinci-
dent.

For the conformal sub-elements, the new point along the interface is added to the
original vertex nodal points. Since the new point may be coincident with the vertex
nodal points, different cases can be occurred for the conformal sub-elements, as shown
in Figures 5–7. As can be observed from these figures, various polygonal elements can
be generated according to the position of interface in the regular uniform mesh, includ-
ing the triangular, quadrilateral and pentagonal elements. If the interface passes through
a nodal point, or nearest nodal point (a\e or a[ 1� e), it results in the triangular–
quadrilateral sub-elements, as shown in Figure 5(b). If the interface cuts two edges of
non-conformal element, the conformal decomposition results in two quadrilateral sub-
elements as shown in Figure 5(d), or the triangular–pentagonal sub-elements as shown
in Figure 5(f). The conformal decomposition strategy of degenerate cases depends on
the path of interface across the edge and nodal points of the element. The conformal
decomposition may result in two triangular sub-elements with no new degrees-of-free-
dom, as shown in Figure 6(d). If the interface passes through the edge of an element,
or nearest nodal points of the edge, there is no conformal decomposition and no new
degrees-of-freedom, as shown in Figure 7(d). By defining the material interface in the
uniform non-conformal mesh and performing the conformal decomposition to generate
various polygonal sub-elements, the standard elements and conformal sub-elements
within the material zone must be first determined; those elements or sub-elements
which are not within the material zone must be then removed, as shown in Figure 8,
and the generalised finite element model is finally analysed under the external loading.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Decomposition of non-conformal element into conformal sub-elements: (a–b) the
conformal decomposition with triangular–quadrilateral sub-elements, (c–d) the conformal
decomposition with two quadrilateral sub-elements and (e–f) the conformal decomposition with
triangular–pentagonal sub-elements.

(a) (b) (c) (d)

Figure 6. Conformal decomposition with no new degrees-of-freedom: (a–c) the interface passing
through the two nodal points, or nearest ones and (d) the conformal decomposition with two tri-
angular sub-elements.
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5. Numerical simulation results

In order to illustrate the accuracy and versatility of the polygonal–FEM technique and
to demonstrate the performance of different polygonal shape functions, several numeri-
cal examples of free-die pressing with various interfaces, including a plate with an
inclined interface, a plate with the flexible central core, a plate with the circular hole
and an elastic curved beam are presented. The examples are solved using both the
polygonal–FEM and standard–FEM techniques, and the results are compared. In order
to perform a real comparison, the same number of elements is assumed for polygonal–
FEM and standard–FEM meshes independent of the shape of discontinuity to assess
the accuracy of discretisation. All numerical examples are modelled by a plain strain
representation and the convergence tolerance is set to 10�14.

5.1. Rectangular plate with inclined internal interface

The first example is chosen to present the convergence study of polygonal–FEM tech-
nique using various polygonal interpolation functions. In this example, the evaluation
of relative L2 error norm of displacement is obtained for a rectangular plate with
inclined internal interface, as shown in Figure 9, and the rate of convergence is com-
pared with the optimal convergence rate. In order to perform the convergence analysis,
a comparison is performed between the Wachspress interpolation functions, the metric
coordinate shape functions, the natural neighbour-based functions and the mean value
coordinate functions. The numerical convergence analysis is carried out for the

(a) (b) (c) (d)

Figure 7. The interface passing through the edge of element, or nearest nodal points of the
edge, with no conformal decomposition and no new degrees-of-freedom.

(a) (b) (c)

Figure 8. (a) Definition of an interface in the uniform non-conformal mesh, (b) determination
of standard elements and conformal sub-elements within the material zone, and (c) elimination of
elements not within the material zone.

26 A.R. Khoei et al.



quadrilateral and hexagonal elements to study the approximation error and convergence
rate of various interpolation functions in polygonal elements. For this purpose, various
polygonal–FEM meshes of 6, 24, 96, 384 and 1536 quadrilateral elements and 8, 24,

(a) (b)

Figure 9. A rectangular plate with an inclined interface: (a) problem definition and (b) the fine
FE mesh.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. The polygonal finite element modelling of a rectangular plate with inclined interface
using various meshes of (a–e) 6, 24, 96, 384 and 1536 quadrilateral elements and, (f–j) 8, 24,
77, 281 and 1073 hexagonal elements.
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77, 281 and 1073 hexagonal elements are employed, as shown in Figure 10. Since the
exact solution is not available for a comparison, a FE analysis with very fine mesh is
carried out as a reference solution to illustrate the applicability of the proposed model
in a problem with arbitrary material interface. In Figure 11, the variation of relative L2
error norm of displacement vs. the element size is plotted with respect to the reference
solution on a log–log plot using various polygonal interpolation functions for both the
quadrilateral and hexagonal elements. Obviously, the convergence rates of the Wachs-
press interpolation functions and natural neighbour-based functions are almost identical
and more accurate than other two techniques. Clearly, it can be seen that the hexagonal
elements result in a better convergence rate than the quadrilateral elements.

5.2. Die-pressing with flexible central core

The second example refers to die pressing of a rectangular plate with flexible central
core, as shown in Figure 12. The component is restrained at the top edge, and a uni-
form deformation is imposed at the bottom up to 1:0 cm. The component is assumed to
be elastic with the Young modulus of 2� 106 kg=cm2 and Poisson ratio of :35. The
flexible central core has the elasto-plastic behaviour with the Young modulus of
2� 105 kg=cm2, Poisson ratio of :35, yield stress of 2400 kg=cm2 and the von-Mises
plasticity with hardening parameter of 3� 105 kg=cm2. Two uniform non-conformal
meshes of 1000 quadrilateral elements and 1086 hexagonal elements are employed for
the polygonal–FEM analyses, as shown in Figure 13. In order to perform a real com-
parison, a fine conformal FEM mesh is applied as a reference solution with 1880 trian-
gular elements for the FEM analysis. In the polygonal–FEM technique, those
quadrilateral and hexagonal elements cut by the interface are decomposed into various
polygonal sub-elements, and the polygonal-FEM analysis is carried out using the
Wachspress method. The deformed configuration of the polygonal–FEM and standard–
FEM solutions are presented in Figure 14 at the deformation of :7 cm. In Figure 15,

(a) (b)

Figure 11. The variation of relative L2 error norm of displacement with element size for a rect-
angular plate with inclined interface using various polygonal interpolation functions: (a) quadrilat-
eral elements and (b) hexagonal elements.
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Figure 12. Die-pressing with a flexible central core; problem definition.

(a) (b) (c)

Figure 13. Die-pressing with a flexible central core: (a) FEM mesh of 1880 triangular elements,
(b) polygonal–FEM mesh of 1000 quadrilateral elements and (c) polygonal–FEM mesh of 1086
hexagonal elements.

(a) (b) (c)

Figure 14. Deformed configurations at .7 cm: (a) FEM mesh of 1880 triangular elements, (b)
polygonal–FEM mesh of 1000 quadrilateral elements and (c) polygonal–FEM mesh of 1086 hex-
agonal elements.
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the distribution of normal stress ry contours are presented for both polygonal–FEM and
standard–FEM techniques at the final die-pressing. A comparison of the reaction force
vs. vertical displacement is performed in Figure 16(a) between the polygonal–FEM
method with quadrilateral mesh, the polygonal–FEM method with hexagonal mesh and
the standard–FEM technique. Clearly, a good agreement can be seen between the
polygonal–FEM and standard–FEM methods. Also plotted in Figure 16(b) is a compar-
ison among various polygonal shape functions performed for the hexagonal mesh, i.e.
the Wachspress interpolation functions, the metric coordinate shape functions, the natu-
ral neighbour-based functions and the mean value coordinate functions. It is noteworthy
to highlight that although different approaches are used to construct the polygonal
shape functions, all techniques result in a similar force–displacement curve, as shown
in Figure 16(b). However, the convergence of non-linear polygonal–FEM solution in
the metric coordinates method is more stable than other techniques.

(a) (b) (c)

Figure 15. The distribution of normal stress contours at .7 cm: (a) FEM mesh of 1880 triangular
elements, (b) polygonal–FEM mesh of 1000 quadrilateral elements and (c) polygonal–FEM mesh
of 1086 hexagonal elements.

(a) (b)

Figure 16. The variations of reaction force with vertical displacement: (a) a comparison between
the FEM and polygonal–FEM techniques and (b) a comparison between the various polygonal
shape functions.
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5.3. Pressing of rectangular plate with a central hole

The next example refers to pressing of a rectangular plate with the circular hole, as
shown in Figure 17. The plate is restrained at the top edge, and a uniform deformation
is imposed at the bottom up to 1:0 cm. The plate is assumed to be elastic with the
Young modulus of 2� 106 kg=cm2 and Poisson ratio of :35. Two uniform non-confor-
mal meshes of 1000 quadrilateral elements and 1086 hexagonal elements are employed
for the polygonal–FEM analyses, as shown in Figure 18. Moreover, a fine conformal
FEM mesh is employed as a reference solution with 1802 triangular elements for the
FEM analysis. In polygonal–FEM models, the uniform non-conformal meshes are
decomposed into polygonal sub-elements that conform to the material interface, as
shown in Figure 18(b–c). Obviously, the elements and sub-elements of circular hole
that are not within the material zone are removed from polygonal–FEM meshes to
perform the numerical analyses. The polygonal–FEM analyses are carried out using the
Wachspress interpolation functions. The deformed configurations are presented in

Figure 17. Pressing of rectangular plate with a circular hole; problem definition.

(a) (b) (c)

Figure 18. Pressing of rectangular plate with a circular hole: (a) FEM mesh of 1802 triangular
elements, (b) polygonal–FEM mesh of 1000 quadrilateral elements and (c) polygonal–FEM mesh
of 1086 hexagonal elements (number of elements in polygonal–FEM meshes are given before
elimination of those elements that are not within the material zone).
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(a) (b) (c)

Figure 19. Deformed configurations at .7 cm: (a) FEM mesh of 1802 triangular elements, (b)
polygonal–FEM mesh of 1000 quadrilateral elements and (c) polygonal–FEM mesh of 1086 hex-
agonal elements.

(a) (b) (c)

Figure 20. The distribution of normal stress contours at .7 cm: (a) FEM mesh of 1802 triangular
elements, (b) polygonal–FEM mesh of 1000 quadrilateral elements and (c) polygonal–FEM mesh
of 1086 hexagonal elements.

(a) (b)

Figure 21. The variations of reaction force with vertical displacement: (a) a comparison between
the FEM and polygonal–FEM techniques, and (b) a comparison between the various polygonal
shape functions.
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Figure 19 for the polygonal–FEM and standard–FEM techniques at the deformation of
:7 cm. In Figure 20, the contours of normal stress ry are shown for both techniques at
the final die-pressing. A comparison of the reaction force vs. vertical displacement is
plotted in Figure 21(a) between the polygonal–FEM method with quadrilateral and hex-
agonal meshes, and the standard–FEM technique. Moreover, a comparison among vari-
ous polygonal shape functions is performed in Figure 21(b) for the hexagonal mesh.
Clearly, a good agreement can be seen between the standard–FEM method and the
polygonal–FEM technique with different polygonal shape functions. This example ade-
quately demonstrates the capability of proposed approach in modelling large plastic
deformation with multiple material interfaces.

5.4. An elastic curved beam

The last example refers to the large deformation modelling of an elastic curved beam,
as shown in Figure 22. The curved beam is fixed at the bottom, and a point load is
applied at the free top end. The beam is assumed to be elastic with the Young modulus
of 2� 106 kg=cm2 and Poisson ratio of :35. Two uniform non-conformal meshes of
1000 quadrilateral elements and 1086 hexagonal elements are used in the polygonal–
FEM analyses, as shown in Figure 23. Moreover, a fine conformal FEM mesh of 302
triangular elements is employed as a reference solution in the FEM analysis. It must be
noted that in polygonal–FEM models, the non-conformal quadrilateral and hexagonal
grids are decomposed into sub-elements, in which the geometry of interface is used to
produce various polygonal elements at the intersection of interface and the extra
degrees-of-freedom are defined along the interface. Furthermore, the elements and sub-
elements that are not within the material zone of the beam are removed, and the polyg-
onal–FEM models are analysed under the prescribed point load. The polygonal–FEM
analyses are carried out using the Wachspress interpolation functions. The deformed
configurations of the polygonal–FEM method with quadrilateral and hexagonal meshes
and the standard–FEM method are shown in Figure 24 at the vertical deformation of
3:5 cm. In Figure 25, the distribution of normal stress ry contours are presented for
both techniques at the final stage of loading. A good agreement can be seen between
two approaches. Finally, a comparison of the reaction force vs. vertical displacement is

Figure 22. An elastic curved beam; problem definition.
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(a) (b) (c)

Figure 23. An elastic curved beam: (a) FEM mesh of 292 triangular elements, (b) polygonal–
FEM mesh of 1000 quadrilateral elements and (c) polygonal–FEM mesh of 1086 hexagonal
elements (number of elements in polygonal–FEM meshes are given before elimination of those
elements that are not within the material zone).

(a) (b) (c)

Figure 24. Deformed configurations at the vertical deformation of 3.5 cm: (a) FEM mesh of
292 triangular elements, (b) polygonal–FEM mesh of 1000 quadrilateral elements and (c) polygo-
nal–FEM mesh of 1086 hexagonal elements.

(a) (b) (c)

Figure 25. The distribution of normal stress contours at the vertical deformation of 3.5 cm: (a)
FEM mesh of 292 triangular elements, (b) polygonal–FEM mesh of 1000 quadrilateral elements
and (c) polygonal–FEM mesh of 1086 hexagonal elements.
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performed in Figure 26(a) between the polygonal–FEM method with quadrilateral and
hexagonal meshes, and the standard–FEM technique. Moreover, a comparison among
various polygonal shape functions, i.e. the Wachspress, mean value, metric and natural
neighbours shape functions, is performed in Figure 26(b) for the hexagonal mesh. It
was observed from this example once again that the metric coordinates method exhibit
a stable convergence of global error in the non-linear solution of large deformation
polygonal–FEM analysis compared to other techniques.

6. Conclusion

In the present paper, the performance of polygonal–FEM method was investigated in
modelling of large deformation problems based on various polygonal shape functions,
including the Wachspress interpolation functions, the metric coordinate shape functions,
the natural neighbour-based functions and the mean value coordinate functions. The
polygonal–FEM method was employed on the basis of conformal decomposition on
non-conformal meshes, in which the new conforming sub-elements were generated in
the uniform structured mesh that conform to the internal interfaces. The geometry of
interface was used to produce various polygonal elements at the intersection of inter-
face with regular FE mesh, in which the extra degrees-of-freedom were defined along
the interface. The level set method was employed to describe the material geometry on
the background mesh by extruding arbitrary geometry from an initial background mesh.
By defining the material interface in the non-conformal mesh and performing the con-
formal decomposition to generate various polygonal sub-elements, the standard ele-
ments and conformal sub-elements within the material zone were determined, and those
elements or sub-elements which are not within the material zone were removed. Finally,
the accuracy and versatility of various polygonal interpolation functions were investi-
gated in the polygonal–FEM analysis of large deformation problems. Several numerical
examples were solved using the polygonal–FEM method with quadrilateral and

(a) (b)

Figure 26. The variations of reaction force with horizontal displacement: (a) a comparison
between the FEM and polygonal–FEM techniques, and (b) a comparison between the various
polygonal shape functions.
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hexagonal meshes and the results were compared with the standard–FEM method. The
numerical convergence analysis was carried out for the polygonal–FEM method with
quadrilateral and hexagonal meshes to study the approximation error and the conver-
gence rate of various interpolation functions in polygonal elements. It was observed
that the convergence rates of the Wachspress interpolation functions and natural neigh-
bour-based functions are almost identical and more accurate than other two techniques.
However, the metric coordinates method generally exhibits a stable convergence of glo-
bal error in the non-linear solution of large deformation polygonal–FEM analysis com-
pared to other techniques. The numerical results clearly demonstrate the capability of
polygonal–FEM technique in modelling large plastic deformations with multiple mate-
rial interfaces.
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