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The paper describes a new non-linear finite-element formulation to analyse fatigue
debonding or delamination, along predefined interfaces, which is multi-scale in time.
At the small timescale level, cyclic loading and the related oscillating response are
considered in an explicit way, whereas at the large timescale level, both the real
loading actions and the related response in terms of displacement and stress fields
are replaced with ‘minimum’ and ‘maximum’ functions over the time of the analy-
sis, which also implies doubling the degrees of freedom of the finite-element model.
A cohesive-zone model capable of simulating sub-critical damage growth and hys-
teretic local response is used on the interface. With a conventional cycle-by-cycle
incremental procedure, the analysis would require a number of increments signifi-
cantly higher than the number of cycles, and would be therefore unfeasible for most
industrial applications. Instead, with the developed multi-timescale method, the
cycle-by-cycle time integration is transferred from the structural level to the local,
integration-point level, whereby the time step can be, and in fact should better be,
much larger than the period of the applied actions. The consequent significant sav-
ing in terms of computational cost largely offsets the shortcoming of having to dou-
ble the degrees of freedom of the model and makes the analysis not only feasible
but relatively inexpensive in many cases, while retaining excellent accuracy as
showed by the presented numerical results.

Keywords: multi-scale methods; cyclic loading; interface elements; hysteretic
response; sub-critical damage

1. Introduction

The extreme difficulty in modelling and analysing fatigue crack propagation in structures
has led to design procedures mainly based on time-consuming experimental fatigue tests,
whose results are correlated using semi-empirical models derived from Paris’ law (Harris,
2003; Paris & Erdogan, 1963; Suresh, 1998). While for conventional materials like steel
and aluminium alloys a great amount of experimental data are available on fatigue crack
propagation, these procedures become extremely expensive when applied to the design
of new materials, for which little previous experience is available, such as reinforced
polymer composites or adhesives employed in adhesive joints. More importantly, it is
now widely recognised that fatigue delamination in non-metals involves different physi-
cal mechanisms, which are often not well captured by Paris’ law. The constant load
amplitude and ratio used in the experimental testing represents a further limitation of the
predictive capabilities of the above design approach. This is because the damage accu-
mulation laws based on Miner’s rule often do not provide satisfactory approximation of
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the fatigue life (Harris, 2003). Furthermore, Paris’ law assumes the existence of an initial
crack and, therefore, is not able to simulate crack initiation.

For the above reasons, more predictive numerical models can lead to significant
saving of time and money, and cohesive-zone models (CZMs) are widely considered as
a potentially valid alternative. The response of a CZM in the case of alternating loading
depends on the local response to unloading and re-loading. Most CZMs proposed in
the literature assume elastic damage only, the secant straight line to the origin being
used during unloading, see (Alfano & Crisfield, 2001; Mi, Crisfield, Davies, &
Hellweg, 1998) among many others. Referring to a single-mode case, and denoting by
σ and δ the interface stress and the relative displacement, respectively, in these cases,
the same line of the σ − δ law is followed both during unloading and during re-loading
below the maximum previously attained value. This implies that if cyclic loading with
constant amplitude is applied at each point of the interface, the response stabilises
immediately after the first cycle, and no energy is dissipated and no fatigue crack
growth is predicted for cyclic loading (Figure 1(a)).

To overcome this problem and predict fatigue crack growth, several CZMs have
recently been proposed (Abdul-Baqi, Schreurs, & Geers, 2005; Abdelmoula, Marigo, &
Weller, 2009a, 2009b; Bouvard, Chaboche, Feyel, & Gallerneau, 2009; Jaubert &
Marigo, 2006; Maiti & Geubelle, 2005; Nguyen, Repetto, Ortiz, & Radovitzky, 2001;
Roe & Siegmund, 2003; Serebrinsky & Ortiz, 2005; Ural, Krishnan, & Papoulia, 2009;
Yang, Mall, & Ravi-Chandar, 2001). In fact, all these models use an approach very
similar to that used much earlier by Marigo (1985). They share the principle that to
simulate the degradation of the interface for alternating values of the relative displace-
ments, the model must entail different unloading and re-loading paths, in such a way
that (a) a ‘hysteresis loop’ is obtained and (b) for a relative displacement cyclically
oscillating between two given values, the corresponding traction is progressively
reduced (Figure 1(b)). With these models, small increase in damage for each loading–
unloading cycle, which accumulates over time, is obtained even if the relative displace-
ment does not exceed the maximum previously attained value. Following Roe and
Siegmund (2003), this type of damage growth will be referred to as ‘sub-critical’.
Instead, if the relative displacement exceeds the maximum previously attained value,
for all of these models, damage increases instantaneously to values only determined by
the increase in the relative displacement itself. This type of damage growth will be
indicated as ‘monotonic’. A conceptually similar approach to simulate low-cycle fatigue
was used by Yang, Shim and Spearing (2004).

The different choices for the loading and unloading curves so far proposed in the
literature (Abdul-Baqi et al., 2005; Abdelmoula et al., 2009a, 2009b; Bouvard et al.,
2009; Jaubert & Marigo, 2006; Marigo, 1985; Maiti & Geubelle, 2005; Nguyen et al.,

(a) (b)

Figure 1. CZMs: (a) loading–unloading lines for elastic-damage models; (b) hysteretic models
with sub-critical damage growth.
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2001; Roe & Siegmund, 2003; Serebrinsky & Ortiz, 2005; Ural et al., 2009; Yang
et al., 2001; Yang et al., 2004) reflect the fact that the underlying physics of the prob-
lem is still unclear. In fact, most of the models are essentially derived with a purely
phenomenological approach, a notable exception being the approach followed in Refs.
(Abdelmoula et al., 2009a, 2009b; Jaubert & Marigo, 2006) where physically sound
variational arguments are used to derive CZMs that capture fatigue damage starting
from expressions of the surface energy of the Dugdale–Barenblatt (i.e. cohesive) type.
Instead, the authors show that with a Griffith type of surface energy, no crack propaga-
tion can be obtained under cyclic loading. In the limit when the length of the process
zone and the energy release rate tend to zero, the authors also demonstrate that the
derived fatigue laws tend to Paris’ law, different Paris’ law constants being obtained
with different forms of surface energy.

The variational approach provides a physically well justified, and therefore appealing,
framework whereby all the above-mentioned CZMs (Abdul-Baqi et al., 2005;
Abdelmoula et al., 2009a, 2009b; Bouvard et al., 2009; Jaubert & Marigo, 2006; Maiti &
Geubelle, 2005; Marigo, 1985; Nguyen et al., 2001; Roe & Siegmund, 2003; Serebrinsky
& Ortiz, 2005; Ural et al., 2009; Yang et al., 2001; Yang et al., 2004) represent a promis-
ing stepforward towards a more predictive strategy in the analysis of fatigue delamination
or debonding. On the other hand, apart from more work needed for deeper understanding
of their link with the micromechanics of the problem and for their experimental valida-
tion and calibration, their main disadvantage is that the simulation of high-cycle fatigue
for real-life engineering problems would typically require the analysis of at least many
thousands of loading cycles, each of them requiring a certain number of load increments,
which is typically not feasible.

An alternative way to use CZMs for the analysis of fatigue crack growth which,
instead, is suited to simulate high-cycle fatigue has been presented by Violeau (2001).
The main idea was to follow an approach conceptually similar to that used by
Peerlings, Brekelmans, de Borst and Geers (2000) in the context of continuum
fatigue-damage models and, therefore, to replace the cyclic loading history with its
envelope and consider the number of cycles as a ‘real-valued’ variable. In fact, with
the further assumption of rate-independence of the material response, in this approach,
the number of cycles can be assumed as a pseudo-time variable. A damage variable D
is then introduced to simulate degradation of the interface and its rate of change is
decomposed in the sum of two terms, so that it results _D ¼ _Ds þ _Df . The first term,
_Ds, also denoted ‘static’ damage (rate) in Robinson, Galvanetto, Bellucci, Tumino, and
Violeau (2006), represents the rate of change which would be obtained under the cur-
rent load value, if the (envelope) load was applied in a monotonic way; the second
term, _Df , also called ‘fatigue’ damage (rate) in Robinson et al. (2006), represents the
rate of change which would be obtained under the same load value, but in the hypothe-
sis the load was applied cyclically, with constant amplitude and a maximum value
equal to the load value itself. In the simulations, it was always assumed that the mini-
mum value of the cyclic loading was zero, implying a load ratio R = 0, because in typi-
cal non-linear, incremental finite-element analyses, one loading function only can be
considered. Violeau’s formulation was later validated experimentally by Robinson et al.
(2006). An attempt to remove the limitation to the case R = 0 was later made by
Muñoz, Robinson and Galvanetto (2006) who introduce a prefixed load ratio R, with
some assumption on the related response.

Starting from the same additive decomposition proposed by Violeau (2001), Turon,
Costa, Camanho and Dávila (2007) proposed an alternative strategy for high-cycle

40 G. Alfano



fatigue that links together the fracture mechanics and the damage mechanics approaches
essentially translating Paris’ law into damage evolution laws for CZMs. One advantage
of their model is that it incorporates both a fatigue threshold and a sensitivity to the
load ratio. One disadvantage is that the method requires an analytical estimate of the
size of the process zone. May and Hallet (2010) also pointed out that one limitation of
this approach is the relatively inaccurate prediction of fatigue-damage initiation in
absence of initial cracks, which somehow undermines one of the main advantages
entailed by the use of CZMs. To improve the model in this respect, they introduced an
additional damage evolution mechanism which models damage initiation with a phe-
nomenological approach based on S–N curves.

In the author’s opinion, despite the above-discussed issues and others shortcomings
including the difficulty of robust and reliable identification of mixed-mode dependent
model parameters, the method proposed in Turon et al. (2007) and other strategies
proposed later along conceptually similar lines (Harper & Hallett, 2010; Kawashita &
Hallett, 2012; Landry & LaPlante, 2012; May & Hallett, 2010; Naghipour et al., 2011)
currently represent the most practically convenient approach for industrial applications.
However, with a view to future further developments of formulations, such as those in
Refs. (Abdelmoula et al., 2009a, 2009b; Jaubert & Marigo, 2006), where CZMs captur-
ing fatigue crack initiation and propagation can be derived based on physically sound
principles (if not ‘first principles’), it is still desirable to derive effective numerical
methods which allow using such models for high-cycle fatigue.

Furthermore, it is also desirable to have a formulation in which the (possibly vari-
able) load ratio is not given as part of the input data of the problem. This is because
when the bulk material behaves as linearly elastic, the ratio between maximum and
minimum relative displacements at the interface is equal to the applied load ratio. How-
ever, for non-linear behaviour of the bulk material, this is typically no longer the case.

Therefore, in this paper, a new computational method is developed which is based
on the same idea as in Violeau’s work of replacing the cyclic loading with its maxi-
mum and minimum envelopes, but goes one step further because it removes the limita-
tion on the load ratio, does not assume the additive decomposition and provides a basis
for a quite more general solution strategy.

The underlying principle for the proposed method is that fatigue is a multi-scale
phenomenon in space and in time. This principle is not new and is indeed stated by
Fish and Oskay (2005), who introduce a decomposition of all response fields in the
sum of a ‘macro-chronological’ (homogenised in time) part and ‘micro-chronological’
(oscillatory) part, in the framework of a general theory based on the introduction of
‘almost-periodical’ functions. This is applied to the analysis of crack growth using con-
tinuum damage mechanics and the Gurson–Tvergaard–Needleman model, the advance
of crack being simulated eliminating elements reaching a threshold of damage.

The method proposed in this paper is different from Fish and Oskay’s strategy. It is
based on a CZM, which is an implicit way to resolve the multi-scale nature of the
problem in space, so that the novelty of the formulation consists of making explicit use
of the multi-scale nature of the problem in time. At the small timescale level, the cyclic
loading history and the related oscillating response are considered in an explicit way,
whereas at the large-scale level, both the real loading actions and the related response
in terms of displacement and stress fields are replaced with suitably defined ‘minimum’
and ‘maximum’ functions over the time of the analysis, which also implies doubling
the degrees of freedom of the finite-element model. As already observed, with a con-
ventional cycle-by-cycle incremental procedure, the analysis would require a very high
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number of increments, which would be unfeasible for most industrial applications.
Instead, with the developed multi-timescale method, the cycle-by-cycle time integration
is transferred from the structural level to the local, integration-point level whereby the
time step can be, and in fact should better be, much larger than the period of the
applied actions. The consequent significant saving in terms of computational cost lar-
gely offsets the shortcoming of having to double the degrees of freedom of the model
and makes the analysis not only feasible but relatively inexpensive in most cases.
Despite some assumptions made on the relative-displacement variation in time, the pre-
sented numerical results show that the developed multi-timescale method provides
excellent accuracy both for a case of constant amplitude and when amplitude and mean
values are varied.

The detailed, cycle-by-cycle time integration at the integration point is made using
a CZM which simulates hysteretic response and sub-critical damage growth, similar to
those proposed in Refs. (Maiti & Geubelle, 2005; Nguyen et al., 2001; Roe &
Siegmund, 2003; Serebrinsky & Ortiz, 2005; Yang et al., 2001), but simpler in the
formulation and implementation. The CZM model admits an approximated closed-form
time integration of the small-scale problem at each integration point. In this first formu-
lation of the method, the treatment is limited to the single-mode case and numerical
results are presented for the analysis of a double-cantilever-beam (DCB) made of two
aluminium plates joined by an epoxy adhesive and tested under cyclic prescribed dis-
placement in mode-I.

The structure of the paper is as follows. In Section 2, the proposed CZM, which
simulates hysteretic response and sub-critical damage growth, is presented. The multi-
timescale solution strategy is first outlined in its general form in Section 3 and then
specialised to the proposed CZM in Section 4. In Section 5, numerical results and their
comparison with experimental data are provided. Finally, conclusions are drawn in
Section 6, where future lines of research to fully develop the potential of the proposed
method are suggested.

2. Cohesive-zone model

This section describes the new proposed CZM which simulates both sub-critical and
monotonic damage growth, developed along the lines of similar work (Abdul-Baqi
et al., 2005; Bouvard et al., 2009; Maiti & Geubelle, 2005; Nguyen et al., 2001; Roe
& Siegmund, 2003; Serebrinsky & Ortiz, 2005; Yang et al., 2001). This model is later
used in the framework of the multi-timescale solution scheme presented in Sections 3
and 4.

The formulation of the CZM is restricted to a mode-I problem, which is the case
considered in the numerical applications. A damage variable D is introduced, and the
relationship between the relative displacement δ and the interface stress σ is provided
by the classic damage mechanics law:

r ¼ ð1� DÞK\d[ þ þ K\d[ � (1)

where K denotes the initial stiffness, typically high enough to well capture the initial
undamaged response (Alfano & Crisfield, 2001). Symbols <δ>+ and <δ>− denote the
positive and negative parts of the relative displacement δ, whereby in compression, the
high stiffness is used regardless of the damage, entailing negligible material
interpenetration.
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In the case of monotonic increase of the relative displacement, the value of the
damage variable is given by:

D ¼
0 if d� d0 or d� dc ðno damage or full damageÞ
d� d0
bd

if d0\d\dc ðdamage growthÞ

8<
: (2)

where δ0 is the value of the relative displacement below which no damage occurs, δc is
the critical relative displacement value beyond which cohesion is completely lost and
b ¼ 1� ðd0=dcÞ. The above damage law results in the widely used bilinear traction–
separation law depicted in Figure 2(a) (Alfano & Crisfield, 2001). As independent
parameters of this law, one can choose the interface fracture energy Gc, which is the
area under the bilinear curve, the interface strength σ0 and the ratio β between δ0 and
δc. These other parameters are then obtained by:

dc ¼ 2Gc

r0
d0 ¼ ð1� bÞdc K ¼ r0

d0
¼ 1

1� b

� �
r0
dc

(3)

In the general case when the displacement can increase or decrease at different
times, the following variable is first introduced as a function of time t:

d� ¼ d�ðtÞ ¼ max max
s� t

dðsÞ; d0
1� bDðtÞ

� �
(4)

Hence, either d� is the actual maximum previously attained relative displacement or,
during sub-critical damage growth, it is equal to the maximum between the latter and
the relative displacement that would correspond to the current damage if the process
was monotonic, as will be better clarified below.

The damage evolution is then given by the following relationship:

dD

dd
¼

0 if d\0 ðcompressionÞ
0 if d� � d0 or d� � dc ðno damage of full damageÞ
d0
bd2

if d0\d�\dc and d ¼ d� and _d[ 0 ðmonotonic damage growthÞ
0 if d0\d�\dc and 0\d\d� and _d� 0 ðunloadingÞ
cD if d0\d�\dc and 0\d\d� and _d[ 0 ðre-loadingÞ

8>>>>>><
>>>>>>:

(5)

where c is a material parameter governing the rate of sub-critical damage growth.

(a) (b)

Figure 2. (a) Bilinear traction–separation law for the case of a monotonic increasing relative
displacement; (b) unloading/re-loading paths.
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The cases of compression d\0, when no damage has occurred yet ðd� � d0Þ or
when complete damage has occurred ðd� � d0Þ, are straightforward.

The case of ‘monotonic damage growth’ is obtained when the relative displacement
is between d0 and dc and increases above d�. In this case, d� also increases being equal
to d, and the bilinear traction–separation law of Figure 2(a) is followed. The derivative
of D with respect to d is therefore simply obtained by differentiating Equation (2)2.

In the case of unloading ð _d� 0Þ, with 0\d� d�, and when D is neither 0 nor 1
(equivalent to d0\d�\dc), no damage growth is assumed, as expressed by Equation (5)4.

Finally, during reloading ð _d[ 0Þ after unloading, but in the sub-critical case
whereby 0\d\d�, and when D is neither 0 nor 1, the damage is assumed to increase
following Equation (5)5.

In order to better explain the meaning of Equations (4) and (5), Figure 3(a) reports
the ‘traction-relative displacement’ plot resulting from the prescribed relative-
displacement history of Figure 3(b), for an initially undamaged interface, if the pro-
posed CZM is used. The response on each branch of the curve is explained as follows.

Starting from D = 0, between points a and b, it is 0\d ¼ d� � d0, resulting in no
damage growth in accordance with Equation (5)2.

Between points b and c, monotonic damage growth occurs, because
d0\d ¼ d� � dc and _d[ 0, following Equation (5)3 and resulting in a constant nega-
tive slope.

Between points c and d, it results _d\0. Hence, d\d�, d0\d�\dc and Equation
(5)4 applies resulting in unloading with no damage growth.

From point d to point e, re-loading occurs because _d[ 0 and d\d�, so that
Equation (5)5 applies and sub-critical damage growth occurs. Furthermore, because of
Equation (4), the value of d� actually increases in this part. To verify this, let us
observe that up to point c, only monotonic damage growth was found whereby
Equation (2)2 yields the following expression for D(tc):

DðtcÞ ¼ dðtcÞ � d0
bdðtcÞ (6)

Rearranging, and since d� is constant between tc and td:

d�ðtcÞ ¼ d�ðtdÞ ¼ dðtcÞ ¼ d0
1� bDðtcÞ (7)

Figure 3. CZM developed and used in this work: (a) interface stress vs. relative-displacement
caused by a (b) prescribed relative displacement history.
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Because of the sub-critical damage growth between points d and e, it results D(t) >
D(tc) for td < t < te, which yields:

d0
1� bDðtÞ [

d0
1� bDðtcÞ ¼ max

s� t
dðsÞ (8)

and from Equation (4), one obtains that

d�ðtÞ ¼ d0
1� bDðtÞ and _d� [ 0 (9)

At point e, although the displacement has reached again the maximum previously
attained value, it results dðteÞ\d�ðteÞ because of the increase in d� between points d
and e. Between points e and f, unloading occurs again and the straight line to the origin
is again followed in the traction-relative displacement plot, but with a reduced slope
with respect to the first unloading because of the (sub-critical) increase in damage.

Between points f and g, re-loading occurs again. For tf < t < tg, it results

max
s� t

dðsÞ\ d0
1� bDðtÞ ) d�ðtÞ ¼ d0

1� bDðtÞ (10)

Instead, the equality between the two terms is reached at point g, after which the
damage growth is again monotonic, resulting in linear softening, until cohesion is
completely lost at point h and D = 0, followed by zero traction.

3. Multi-timescale solution strategy

In this section, the main original contribution of this work, i.e. the multi-timescale solu-
tion scheme schematised in Figure 4, is described in detail.

It is assumed that loading process is one-dimensional, i.e. the applied external
forces and the prescribed displacements are proportional to one scalar load multiplier k,
function of time, as is typical of most engineering applications. Furthermore, loading is

Figure 4. Schematic of the multi-timescale solution strategy.
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assumed to be cyclic with constant frequency f but not necessarily with constant ampli-
tude or mean value. In particular, the following variation of k with time is assumed:

kðtÞ ¼ kmðtÞ þ DkðtÞ sinð2pftÞ (11)

where kmðtÞ and DkðtÞ will be denoted as the ‘instantaneous’ mean value and semi-
amplitude, respectively, which in general can vary with time. In addition, it is assumed
that DkðtÞ[ 0.

Minimum and maximum ‘envelope’ functions of the load multiplier, kmin and kmax,
are introduced as follows:

kminðtÞ ¼ kmðtÞ � DkðtÞ kmaxðtÞ ¼ kmðtÞ þ DkðtÞ (12)

The total displacements v can be decomposed into the sum of the prescribed ones
up and the non-prescribed ones u as usual:

v ¼ uþ up (13)

The assumption that the variable displacements u have the same type of variation
as the load multiplier is made, both in the structure and at any damaging interface:

uðtÞ ¼ umðtÞ þ DuðtÞ sinð2pftÞ (14)

um(t) and DuðtÞ being defined as the their ‘instantaneous’ mean value and ‘semi-ampli-
tude’. The ‘minimum’ and ‘maximum’ displacements are defined as follows:

uminðtÞ ¼ umðtÞ � DuðtÞ umaxðtÞ ¼ umðtÞ þ DuðtÞ (15)

and vice versa:

umðtÞ ¼ umaxðtÞ þ uminðtÞ
2

DuðtÞ ¼ umaxðtÞ � uminðtÞ
2

(16)

Remark 3.1 Assumption (14) can be seen as the combination of two hypotheses. One is that
the ‘shape’ of the response is the same as that of the input, which is only an approximation
whose validity needs to be assessed. A second hypothesis is that input and output are in phase,
which is reasonable because in this work, neither damping nor inertia terms are included.

Remark 3.2 It is also worth noting that kmin and kmax are actual envelopes of the load multiplier
(but clearly not the only ones), because Dk[ 0, whereby kminðtÞ� kðtÞ� kmaxðtÞ for any t, and
kminðtÞ ¼ kðtÞ and kmaxðtÞ ¼ kðtÞ at some different times t as shown below in Equation (17).
Instead, umin and umax could be considered envelopes only component wise. In fact, since the
sign of the components of DuðtÞ is not bound to be positive, the components of umin and umax

are envelopes but not necessarily minimum or maximum. Therefore, relationships (15) are a defi-
nition of umin and umax, rather than a result, and subscripts ‘min’ and ‘max’ are used because
umin and umax are equal to u at the same times when kmin and kmax are equal to k, respectively:

uminðtÞ ¼ uðtÞ and kminðtÞ ¼ kðtÞ for t ¼ 3
4f þ k

f

umaxðtÞ ¼ uðtÞ and kmaxðtÞ ¼ kðtÞ for t ¼ 1
4f þ k

f

(17)

and k ¼ 1; 2; . . .;þ1. The same remark applies to qextmin, q
ext
max, up;min and up;max, which

are introduced below. A similar remark will also apply to qintmin and qintmax, as explained
later.

The external forces qext and prescribed displacements up are obtained in terms of
their (fixed) reference values qext0 and u0,p as:
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qextðtÞ ¼ kðtÞqext0 upðtÞ ¼ kðtÞu0;p (18)

The ‘minimum’ and ‘maximum’ external forces and prescribed displacements are
defined by:

qextminðtÞ ¼ kminðtÞqext0 qextmaxðtÞ ¼ kmaxðtÞqext0
up;minðtÞ ¼ kminðtÞu0;p up;maxðtÞ ¼ kmaxðtÞu0;p (19)

Assuming that the displacements u were known at each time t, the internal forces
qintðtÞ can be computed and two ‘minimum’ and ‘maximum’ internal force vectors,
qintmin and qintmax, can be introduced so that they satisfy the following conditions, analo-
gous to relationships (17):

qintminðtÞ ¼ qintðtÞ for t ¼ 3

4f
þ k

f
qintmaxðtÞ ¼ qintðtÞ for t ¼ 1

4f
þ k

f
(20)

and k ¼ 1; 2; . . .;þ1
In this work, the structural behaviour is assumed to be elastic apart from the dam-

aging interface. Therefore, denoting by a superscript e the element vectors from now
on, it is immediate to verify that for all the finite elements e except for the interface
elements, the element internal forces qint;e have the same type of variation as the dis-
placements, and that qint;emin and qint;emax can be simply computed from the ‘minimum’ and
‘maximum’ element displacements in the usual way:

qint;emin ðtÞ ¼ ½RXeðBeÞTDBedX�ðuminðtÞ þ kminðtÞue0;pÞ
qint;emaxðtÞ ¼ ½RXeðBeÞTDBedX�ðumaxðtÞ þ kmaxðtÞue0;pÞ

(21)

D and Be representing the standard elastic-moduli matrix and the usual matrix relating
the element nodal displacements to the element strains, respectively, while Xe denotes
the element domain.

Instead, for the interface elements, the element internal forces have not necessarily
the same type of variation as the displacements, and qint;emin and qint;emax must generally be
determined by computing qint;eðtÞ, or determining an approximation of it, through the
CZM of Section 2 and using relationships (20) at the element level. In this case, qint;emin
and qint;emax depend on the entire displacement history, whereby it results:

qint;emin ¼ qint;emin ðumin;umax; kmin; kmaxÞ
qint;emax ¼ qint;emaxðumin;umax; kmin; kmaxÞ

(22)

In general, not only does Remark 3.2 apply to qintmin and qintmax, too, but the components
of qintmin and qintmax may not necessarily be envelopes of qintðtÞ.

3.1. Large timescale problem

The large timescale problem consists of finding functions umin and umax so that the fol-
lowing equilibrium equations are satisfied:

rmin ¼ qextmin � qintmin ¼ 0
rmax ¼ qextmax � qintmax ¼ 0

�
(23)
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Where rmin and rmax denoting the ‘min’ and ‘max’ parts of the residual. The two prob-
lems are coupled at the interface because of the dependence of each of qint;emin and qint;emax
in the interface elements on both umin and umax in Equation (22).

Using the Newton–Raphson method, let us denote by tn and tn+1 the times at the
beginning and at the end of increment n of the analysis. It is worth noting that each of
these times tn and tn+1 can be taken according with the chosen time-incrementation
scheme, without additional constraints (i.e. they do not have to correspond to the maxi-
mum, minimum or any other specific point within a cycle). For each element e, the ini-
tial interface element nodal displacements uen;max and uen;min are known and tentative
values uenþ1;max and uenþ1;min at the end of the increment have been computed after the
previous iteration. For the elastic elements around the interface, the internal forces can
be computed in a straightforward way via Equations (21). This is not the case for the
interface elements, where at each integration point of each element e the maximum and
minimum relative displacements at times tn and tn+1 are given through the usual matrix
Be, evaluated at the integration point:

dn;max ¼ Beuen;max dnþ1;max ¼ Beuenþ1;max

dn;min ¼ Beuen;min dnþ1;min ¼ Beuenþ1;min

(24)

In order to determine the element internal forces qint;enþ1;min ¼ qint;emin ðtnþ1Þ and
qint;enþ1;max ¼ qint;emaxðtnþ1Þ, the cyclic variation of the relative displacement is considered
and the resulting variation of the interface stress and therefore of the element internal
forces qint;e is calculated as described in the next section.

Although not essential for the accurate solution of the structural problem, if the
quadratic convergence of the Newton–Raphson method is to be preserved, the deriva-
tives of the residual vectors with respect to uenþ1;min and uenþ1;max are needed, so that
the linear system to solve at each iteration is:

@qintnþ1;min

@unþ1;min

� �ðkÞ @qintnþ1;min

@unþ1;max

� �ðkÞ
@qintnþ1;max

@unþ1;min

� �ðkÞ @qintnþ1;max

@unþ1;max

� �ðkÞ
2
64

3
75 uðkþ1Þ

nþ1;min � uðkÞnþ1;min

uðkþ1Þ
nþ1;max � uðkÞnþ1;max

" #
¼ �rðkÞmin

�rðkÞmax

" #
(25)

where superscripts (k) and (i + 1) indicate that quantities are evaluated at iterations (k)
or (k + 1). The coefficient matrix of this linear system is the ‘expanded’ tangent stiff-
ness matrix. In fact, until the response of the interface is elastic, the off-diagonal blocks
of the tangent matrix are zero, and the ‘min’ and ‘max’ problems are uncoupled.
Instead, when damage develops on the interface, the related interface elements will gen-
erally contribute with non-zero coupling terms in the off-diagonal blocks.

3.2. Cycle-by-cycle time integration at the small timescale

The variation during the increment of the ‘instantaneous’ mean value and semi-ampli-
tude of the relative displacement, dm and Ddm, are obtained by first computing these
values at the beginning and at the end of the increment

dmðtnÞ ¼ dn;max þ dn;min

2
DdmðtnÞ ¼ dn;max � dn;min

2

dmðtnþ1Þ ¼ dnþ1;max þ dnþ1;min

2
Ddmðtnþ1Þ ¼ dnþ1;max � dnþ1;min

2

(26)

and then by linear interpolation:
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dmðtÞ ¼ tnþ1 � t

tnþ1 � tn

� �
dmðtnÞ þ t � tn

tnþ1 � tn

� �
dmðtnþ1Þ

DdmðtÞ ¼ tnþ1 � t

tnþ1 � tn

� �
DdmðtnÞ þ t � tn

tnþ1 � tn

� �
Ddmðtnþ1Þ

t 2 ðtn; tnþ1Þ (27)

Using the CZM, one needs to determine the stress variation rðtÞ within the incre-
ment resulting from the following assigned relative displacement variation:

dðtÞ ¼ dmðtÞ þ DdmðtÞ sinð2pftÞ t 2 ðtn; tnþ1Þ (28)

and the known initial value of the damage D(tn).
Pre-multiplication of rðtÞ by (Be)T and integration provide the internal element

forces qint;e, from which qint;emin and qint;emax can be computed using relationships (20). An
equivalent but simpler to implement procedure is to determine minimum and maximum
interface stresses rminðtÞ and rmaxðtÞ that fulfil the following relationships analogous to
(20):

rminðtÞ ¼ rðtÞ for t ¼ 3

4f
þ k

f
rmaxðtÞ ¼ rðtÞ for t ¼ 1

4f
þ k

f
(29)

Premultiplication of rminðtÞ and rmaxðtÞ by (Be)T and integration directly provides qint;emin
and qint;emax.

In this way, the element contribution to the element tangent stiffness matrix of
system (25) is given by:

@qint;enþ1;min

@unþ1;min

 !ðkÞ
@qint;enþ1;min

@unþ1;max

 !ðkÞ

@qint;enþ1;max

@unþ1;min

 !ðkÞ
@qint;enþ1;max

@unþ1;max

 !ðkÞ

2
666664

3
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Z
Xe

ðBeÞT @rnþ1;min

@dnþ1;min

� �ðkÞ
Be ðBeÞT @rnþ1;min
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� �ðkÞ
Be

ðBeÞT @rnþ1;max

@dnþ1;min

� �ðkÞ
Be ðBeÞT @rnþ1;max

@dnþ1;max

� �ðkÞ
Be

2
6664

3
7775dX

(30)

Remark 3.3 The time integration of the CZM can be carried out in many different ways and,
possibly, introducing some additional approximation. In fact, although the hysteretic CZM was
presented in Section 2 before describing the multi-timescale solution scheme for the sake of clar-
ity, the proposed procedure can be employed even if a different CZM is used, such as one of
those proposed in Refs. (Maiti & Geubelle, 2005; Nguyen et al., 2001; Roe & Siegmund, 2003;
Serebrinsky & Ortiz, 2005; Yang et al., 2001). Hence, the detailed solution of the CZM to deter-
mine rnþ1;min and rnþ1;max at each integration point is separately reported in the next section,
because it is one of the many possible choices. Exploration of other methods and the investiga-
tion on the implications of different time integration schemes or indeed other CZM is left for
future work. Furthermore, the range of applicability of the proposed multi-timescale strategy is
clearly much wider than that addressed in this paper, and includes all problems involving fatigue
damage and failure.

4. Closed-form approximate time integration of the proposed CZM

This section presents a closed-form solution scheme for the small timescale problem
described in Section 3.2 for the case when the CZM of Section 2 is used. The relative dis-
placements dn;min, dn;max, dnþ1;min and dnþ1;max and the damage Dn =D(tn) are assigned.
The following developments will be made assuming that both dn;min and dnþ1;min are non-
negative, both for the sake of simplicity and because this was always the case in the
numerical applications considered for those integration points where Dn > 0.
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Let us first consider the case that dnþ1;max � dn;max. This is schematised in Figure 5,
where, instead, the further assumption that dnþ1;min � dn;min is immaterial because what
follows also applies when dnþ1;min\dn;min. In this case, regardless of whether or not
the previous damage increase has been monotonic, that is of whether or not
d�ðtnÞ ¼ dn;max, the linear interpolation (27) implies that the maximum relative displace-
ment never increases beyond d�ðtnÞ. Hence, there will be no monotonic damage growth
and all the damage increase will be sub-critical.

Let us assume that the number of local minima and maxima of d in the increment
(tn, tn+1) are the same and equal to k + 1. Furthermore, let t0,min, t0,max, t1,min, t1,max, …,
tk,min, tk,max be the times when the local minima and maxima are attained, respectively,
assuming that tj,min < tj,max as shown in Figure 5. Equation (5) is easily integrated
between each local maximum and the next local maximum by observing that between
tj−1,max and tj,min Equation (5)4 applies and no damage growth occurs, while between
tj,min and tj,max Equation (5)5 is used. This results in the following recursive expression:

Dðt1;maxÞ ¼ Dðt0;maxÞec½dðt1;maxÞ�dðt1;minÞ�

Dðt2;maxÞ ¼ Dðt1;maxÞec½dðt2;maxÞ�dðt2;minÞ�

� � �
Dðtk;maxÞ ¼ Dðtk�1;maxÞec½dðtk;maxÞ�dðtk;minÞ�

(31)

which yields:

Dðtk;maxÞ ¼ Dðt0;maxÞec
Pk

j¼1
½dðtj;maxÞ� dðtj;minÞ� (32)

By dividing and multiplying the sum by k, and observing that dðtj;maxÞ ¼ dmaxðtj;maxÞ
and dðtj;minÞ ¼ dminðtj;minÞ, one obtains:

Xk
j¼1

½dðtj;maxÞ � dðtj;minÞ� ¼
Pk

j¼1 dmaxðtj;maxÞ
k

�
Pk

j¼1 dminðtj;minÞ
k

 !
k (33)

The two sums in the last term are the averages of dmaxðtj;maxÞ and dminðtj;minÞ, for j
ranging from 1 to k. For k sufficiently big, we can approximate:

Figure 5. Cyclic relative displacement variation entailing no monotonic damage growth.
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Pk
j¼1 dmaxðtj;maxÞ

k
¼
Pk

j¼0 dmaxðtj;maxÞ
k þ 1Pk

j¼1 dminðtj;minÞ
k

¼
Pk

j¼0 dminðtj;minÞ
k þ 1

(34)

Because of the linear interpolation (27), dmax and dmin are linear within the increment,
so that it results: Pk

j¼0 dmaxðtj;maxÞ
k þ 1

¼ dmaxðt0;maxÞ þ dmaxðtk;maxÞ
2Pk

j¼0 dminðtj;minÞ
k þ 1

¼ dminðt0;minÞ þ dminðtk;minÞ
2

(35)

Since k = f (tk,max− t0,max), f being the frequency of the cyclic loading, Equation (32)
can be rewritten as follows:

Dðtk;maxÞ ¼ Dðt0;maxÞe0:5cf ðtk;max�t0;maxÞ½dmaxðt0;maxÞþdmaxðtk;maxÞ�dminðt0;minÞ�dminðtk;minÞ� (36)

Assuming again that k is sufficiently big, or that the variations of dmin within half a
cycle is negligible, we can make the following approximation:

dminðt0;minÞ ¼ dminðt0;maxÞ dminðtk;minÞ ¼ dminðtk;maxÞ (37)

which yields:

Dðtk;maxÞ ¼ Dðt0;maxÞe0:5cf ðtk;max�t0;maxÞ½dmaxðt0;maxÞþdmaxðtk;maxÞ�dminðt0;maxÞ�dminðtk;maxÞ� (38)

This last formula provides the sub-critical damage growth between the first and the
last local maxima within the increment, in closed form. Since the formula can also be
written replacing t0,max and tk,max with two times which do not generally coincide with
local maxima, it seems reasonable to do so replacing these times with tn and tn+1, i.e.
to extrapolate the result over the entire time increment. This provides the value of the
damage at the end of the increment as follows:

Dnþ1 ¼ Dðtnþ1Þ ¼ DðtnÞe0:5cf ðtnþ1�tnÞ½dn;maxþdnþ1;max�dn;min�dnþ1;min� (39)

At the end of the increment, d�ðtnþ1Þ has changed because of the sub-critical damage
growth, in accordance with relationship (4), and it results:

d�ðtnþ1Þ ¼ d0
1� bDðtnþ1Þ (40)

Remark 4.1 From the above derivation, it turns out that the bigger k, that is, the bigger the
number of cycles within one increment, the better the approximation achieved. This might sug-
gest that a link exists between the solution procedure proposed in this paper and the use of
asymptotic expansion techniques, such as the multi-scale approach proposed by Fish and Oskay
(2005). On the other hand, the procedures differ for many other aspects and drawing a parallel is
beyond the scope of this work. More generally, in consideration of the novelty of the proposed
method and of the very promising numerical results presented in Section 5 and obtained with this
first proposed implementation, further studies to provide a more rigorous theoretical background
to the solution procedure proposed in this paper are also left for future work, which will include
error estimations related to assumption (14) and the exploration of alternative solution schemes
for the small timescale solution scheme at the integration-point level.
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Remark 4.2 Although the formulation has been developed in the case that both dn;min and
dnþ1;min are non-negative, it is easy to recognise that the case when both dn;min and dnþ1;min are
non-positive is of equally simple solution, while the case when one is positive and the other is
negative is still conceptually simple to handle but results in a more complex final expression.
In the case that dnþ1;max [ dn;max, it is not known a priori if the damage increase is
monotonic or sub-critical within the increment. Hence, the assumption that the damage
increase is sub-critical is made first, and a tentative value for the damage at the end of
the increment is computed using Equation (39). Then, the value of d�ðtnþ1Þ given by
Equation (40) is compared with dnþ1;max. If dnþ1;max\d�ðtnþ1Þ, then the damage
increase is indeed sub-critical and the computed value of the damage is the correct one.
Instead, if dnþ1;max [ d�ðtnþ1Þ, the damage increase is monotonic and (2)2 yields:

Dnþ1 ¼ dnþ1;max � d0
bdnþ1;max

(41)

In any case, regardless of whether the damage increase is sub-critical or monotonic,
rnþ1;max and rnþ1;min are finally given by:

rnþ1;max ¼ ð1� Dnþ1ÞKdnþ1;max rnþ1;min ¼ ð1� Dnþ1ÞKdnþ1;min (42)

4.1. Material tangent stiffness

The four terms of the material tangent stiffness matrix required in Equation (30) are
computed by differentiating Equations (42) with respect to dnþ1;max and dnþ1;min, which
yields

@rnþ1;max

@dnþ1;max
¼ ½1� Dnþ1�K � @Dnþ1

@dnþ1;max
Kdnþ1;max

@rnþ1;max

@dnþ1;min
¼ � @Dnþ1

@dnþ1;min
Kdnþ1;max

@dnþ1;min

@dnþ1;max
¼ � @Dnþ1

@dnþ1;max
Kdnþ1;min

@rnþ1;min

@dnþ1;min
¼ ½1� Dnþ1�K � @Dnþ1

@dnþ1;min
Kdnþ1;min

(43)

When sub-critical damage has been found, Equation (39) yields:

@Dnþ1

@dnþ1;max
¼ 0:5cf ðtnþ1 � tnÞDnþ1

@Dnþ1

@dnþ1;min
¼ �0:5cf ðtnþ1 � tnÞDnþ1

(44)

Otherwise, when the damage has been found to be monotonic, Equation (41) provides:

@Dnþ1

@dnþ1;max
¼ d0

bd2nþ1;max
@Dnþ1

@dnþ1;min
¼ 0

(45)
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5. Numerical results

The CZM and the multi-timescale solution strategy described in the previous sections
have been implemented in an in-house general-purpose non-linear finite-element code
developed by the author and in this section, numerical results will be presented to show
their effectiveness.

The DCB adhesive joint studied by Shyanbhog (1998) and made of two aluminium
plates joined by the epoxy adhesive Araldite® 2013 is analysed. The tested specimen,
which is shown in Figure 6, was subject to cyclic loading under displacement control
with constant frequency of 1 Hz and constant amplitude and mean value, as detailed in
Section 5.1. The geometry and loading scheme used are reported in Figure 7, while the
material parameters used in the analysis are reported in Table 1. The interface strength
r0 was estimated based on the adhesive tensile strength, while b was chosen so as to
obtain a very high initial penalty value for the interface stiffness. It was found that b
and r0 are high enough for the results to be effectively not affected by small changes
of them, in accordance with the findings reported in (Alfano & Crisfield, 2001). The
fracture energy Gc was determined by curve-fitting the results of a monotonic test.
Instead, c was calibrated by comparing experimental and numerical results.

Because of symmetry, only the top half of the geometry was analysed, using a regu-
lar mesh made of two rows of 80 eight-noded, iso-parametric, plane-strain elements for
the aluminium plate and one row of 65 six-noded, iso-parametric interface elements
(see Figure 8).

For each of the two cases analysed and reported below in Sections 5.1 and 5.2, two
types of analyses were performed, one in a conventional way and another using the
multi-timescale solution procedure. In all cases, the frequency of the cyclic prescribed
displacements was 1 Hz, as in the experimental test, although the rate-independence of
the model makes results independent from the frequency.

In the conventional analysis, the cyclic loading was divided in a number of incre-
ments, using an automatic incrementation scheme with a maximum time increment of
0.033 s to have about 30 increments per cycle, in order to have good sampling and to
accurately capture the maximum and minimum reactions. The CZM of Section 2 was
implemented in the six-noded interface elements, and all elements have the standard

Figure 6. DCB adhesive joint tested (Shyanbhog, 1998).
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number of degrees of freedom, namely 16 and 12 for the plane-strain and the interface
elements, respectively.

In the multi-timescale analysis, an automatic incrementation scheme was used too,
with a maximum time increment of 15 s, so that up to 15 cycles can be ‘jumped over’
within one increment of the analysis. As explained in Section 3, both in the plane-strain
elements and in the interface elements, the number of degrees of freedom needs to be
doubled, in order to provide the ‘maximum’ and ‘minimum’ displacement fields umax

and umin. Denoting again by Be the standard matrix relating the nodal displacements to
the strain at each point of the element in the plane-strain elements, the stiffness matrix
is formally obtained by the same formula as Equation (30), simply using the following
constant material stiffness matrix:

@rnþ1;min

@dnþ1;min

� �ðkÞ
@rnþ1;min

@dnþ1;max

� �ðkÞ
@rnþ1;max

@dnþ1;min

� �ðkÞ
@rnþ1;max

@dnþ1;max

� �ðkÞ
2
64

3
75 ¼ Dps 0

0 Dps

� 	
(46)

where Dps denotes the matrix of the elastic moduli in the plane-strain case.
In both types of analysis, a number of ‘desired’ iterations equal to Id = 5 was set,

and the automatic incrementation procedure updated the time increment for a new
increment n + 1 based on the number of iterations In in order to get convergence within
increment n, as follows:

Dtnþ1 ¼ Dtn

ffiffiffiffi
Id
In

r
(47)

Dtnþ1 and Dtn denoting the time increments at increments n + 1 and n, respectively.

5.1. Constant mean value and amplitude

A first case in which the prescribed mean value and semi-amplitude are constant and
equal to um = 0.85 mm and Δu = 0.69 mm, respectively, was analysed both numeri-
cally and experimentally by Shyanbhog (1998). Figure 9 shows the prescribed history,

Figure 7. DCB-test geometry and loading (dimensions in mm).

Table 1. Material parameters used in the numerical simulations.

Aluminium Interface

Young modulus (GPa) Poisson ratio Gc (N mm−1) σ0 (MPa) β γ (mm−1)

70 0.33 0.4 12 0.98 0.09
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including a first initial ramp loading during the first 0.16 s of the analysis to reach the
mean prescribed displacement.

Figure 10 reports a comparison between the time variations of the vertical reactions
obtained using the conventional cycle-by-cycle analysis and the multi-timescale strat-
egy. For the latter, the results are obtained in terms of two curves, which are the maxi-
mum and minimum reactions obtained for the large-scale problem as described in
Section 3. Figure 10 shows excellent accuracy obtained using the multi-timescale solu-
tion scheme.

During the first 0.16 s of the analysis, the mean value and the amplitude change
from zero to the final value, and during the first fourth of the first cycle, most of the
damage increase is monotonic in the multi-timescale analysis. This results in a rela-
tively rapid increase in damage which, in turn, entails the need for a small time incre-
ment, which was set initially equal to 0.08 s. The amplitude and the mean value
remain then constant and the damage increase becomes sub-critical and therefore much
slower, whereby convergence is easier and results in a gradual increase of the time
increment reaching the maximum set value of 15 s after about 130 cycles.

In Figure 11, the comparison between the maximum reaction obtained using the
multi-timescale analysis and that measured experimentally is reported. It shows that the
CZM is able to capture the behaviour reasonably well.

Finally, the comparison between experimental and numerical analysis in terms of
crack length vs. number of cycles is reported in Figure 12 and shows quite good
agreement.

Considering that the main aim of this paper is not to claim that the proposed CZM
is better than other similar models presented in the literature but rather to propose the
original multi-timescale solution procedure, the experimental validation is considered
satisfactory. On the other hand, the proposed CZM provides some advantages in that it

Figure 8. Finite-element model used in the DCB-test.

Figure 9. Prescribed displacement history for the case of constant mean value and amplitude.
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allows an approximated closed-form solution of the cycle-by-cycle time integration at
the small-scale level, which allowed the author to focus on the overall aspects of the
solution procedure leaving the further development of the CZM and of its time integra-
tion at the small scale for future work. Similarly, since the experimental work was
limited here to the case of constant amplitude and mean value, future work will also

Figure 10. Comparison between the reactions obtained in the vertical cycle-by-cycle and the
multi-timescale analyses for the case of constant mean value and amplitude.

Figure 11. Numerical vs. experimental (Shyanbhog, 1998) results in terms of the time variation
of the vertical reaction.
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extend the experimental testing to the case of variable amplitude and mean value,
which is analysed in the next section numerically.

5.2. Variable mean value and amplitude

In order to further verify the numerical accuracy of the multi-timescale solution scheme
also in the case of variable mean value and amplitude, the displacement history of
Figure 13 has been prescribed for the analysis. The comparison between the results

Figure 12. Numerical vs. experimental (Shyanbhog, 1998) results in terms of crack length as a
function of the number of cycles.

Figure 13. Prescribed displacement history for the case of variable mean value and amplitude.
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obtained with the multi-timescale and the cycle-by-cycle analyses are reported in
Figure 14 and demonstrate that the accuracy obtained is still excellent.

Also in this case, rapid monotonic damage growth occurs during the initial ramp
load, within the first 0.16 s, and during the first fourth of the first cycle, which entailed
the use of a small time increment that gradually increases between t = 0.16 s and t = 5
s, when the mean value and amplitude are constant and equal to 0.8 mm and 0.4 mm,
respectively, resulting in subcritical damage growth only. Between, t = 5 and t = 10 s,
the mean value and the amplitude linearly increase of a factor 1.33, reaching values of
1.067 and 0.53 mm, so that the maximum and minimum prescribed displacements
increase to 1.6 and 0.53 mm. In this part, damage growth is mostly monotonic and
therefore faster, leading to a reduction of the time increment and of the load. After
t = 10 s, the mean value and the amplitude remain constant until t = 15, then linearly
decrease again reaching the initial value at t = 20 s. Hence, after t = 10 s, damage
growth is sub-critical only and therefore very slow, the visible reduction in maximum
and minimum reactions shown in Figure 14 between t = 15 s and t = 20 s being mainly
due to the reduction in the maximum and minimum prescribed displacements. Hence,
with slower damage growth, convergence is easier and the time increment increases,
gradually tending to the maximum set value of 15 s.

The most important positive aspect of the presented numerical results is the very
good accuracy with which the minimum and maximum reactions are obtained using the
multi-timescale solution procedure in both of the analysed cases. As commented in
Section 3, the proposed solution procedure relies on assumption (14), whose validity is
not a trivial issue. Furthermore, the time integration scheme at the small-timescale level
also relies on some assumptions which are expected to be well verified when each time
increment spans a large number of cycles. In fact, the numerical results show that the
accuracy is also excellent when the time increment is much smaller. All these issues
require further and deeper theoretical investigation to determine error estimators which
can lead to a more rigorous explanation of the excellent accuracy obtained.

Figure 14. Comparison between the vertical reactions obtained in the cycle-by-cycle and the
multi-timescale analyses for the case of variable mean value and amplitude.
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6. Conclusions

The multi-timescale solution procedure proposed in this paper is a very effective way
to analyse fatigue crack growth using CZM with hysteretic response and sub-critical
damage evolution because it eliminates the most fundamental drawback of this type of
approach, which is the excessive number of increments required in a conventional,
incremental cycle-by-cycle analysis.

Despite the hypotheses made on the displacement variation in each cycle, excellent
agreement is obtained between the analysis conducted with the new proposed multi-
timescale method and a conventional cycle-by-cycle simulation using the same interface
model. With the proposed CZM, good agreement with experimental results in terms of
load decay with time and crack length advance with time demonstrate the potential of
the developed approach to become a viable and very effective tool for fatigue-life
prediction in industrial applications.

The proposed multi-timescale strategy can be applied to other CZM, different from
that used in this work and possibly including mixed-mode damage, as long as they sim-
ulate the sub-critical damage growth occurring during cyclic loading. Hence, future
work will aim to get further understanding of the underlying physics of delamination
or debonding due to fatigue, both to develop more accurate CZM and to determine effi-
cient procedures for the identification of the parameters. Furthermore, deeper theoretical
studies aiming to determine error estimators for the proposed solution scheme will be
carried out.

Finally, it is important to underline that the range of applicability of the proposed
multi-timescale approach is not limited to the simulation of fatigue crack growth on inter-
faces, but potentially comprises also other types of fatigue phenomena such as low-cycle
fatigue in general and thermo-mechanical fatigue damage in metals in particular.
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