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We are interested in the mathematical study of the sensitivity of a reduced order
model (ROM) of a particular single-parameterised quasi-linear equation, via the
parametric evolution. More precisely, the ROM of interest is obtained in two differ-
ent ways: First, we reduce the complete parametric equation using a proper orthogo-
nal decomposition (POD) basis computed at a given reference value of the
parameter, and second the parametric ROM is obtained by an expanded POD basis
associated this time to a reference solution and its parametric derivative. The second
case of our study was considered in a nearly similar way in Ito and Ravindran
(1998), but in the context of the reduced basis (RB) method of the Navier–Stokes
equations reduction. Indeed, the authors, Ito and Ravindran (1998) proposed to use
an expanded set of basis functions, including solution flows for different values of
the Reynolds number and their associated first-order derivatives with respect to this
parameter. Beside this work, our second strategy for the parametric ROM-POD con-
struction is to consider a temporal snapshots set including a reference solution and
its first-order derivative with respect to the corresponding parameter reference value.
We give in both proposed cases of the POD basis construction, an a priori estimate
of the parametric squared L2-error between the ROM’s solution and the one associ-
ated to the full semi-discrete problem. We will show that this estimate will be
depending on the distance between two distinct parameters and the evolution of the
ROM’s dimension. Moreover, we show that an a priori upper bound of the squared
L2-ROM-POD error is much better in the case of an expanded POD basis functions.
In particular, we apply our theoretical study to the one-dimensional Burgers equa-
tion. Numerical tests are done for the one-dimensional Burgers equation, only in the
case of a POD basis associated with a reference solution at a fixed value of the
viscosity.

Keywords: ROM; POD; sensitivity; parametric evolution; error estimate; Burgers
equation

1. Introduction and main results

1.1. Statement of the problem

The resolution cost of the fluid mechanics equations for a given Reynolds number is
too high from the two points of view: PC storage capacity and time for computations.
Also, the boundary condition problems with parametric evolution often require large
computation time: Inverse problems form optimisation problems. There are also the
optimal control problems by variation of the fluid flow characteristic parameters
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(Allery, Béghein, & Hamdouni, 2005, 2008; Kunisch & Volkwein, 1999; Ly & Tran,
1998). To solve this in practice, one reduces the degrees of freedom of the Navier–
Stokes system. One reduced order model (ROM) is then used to predict the behaviour
of fluid flows at different parametric values.

Several techniques of models reduction exist to build a good candidate within the
parametric ROMs.

We consider first the reduced basis (RB) method. It is based on showing a given
parametric solution as a finite linear combination of solutions associated, respectively,
with particular parameters values. There is a detailed literature of the RB method in
Buffa, Maday, Patera, Prud’homme, and Turinici (2012), Chen, Hesthaven, Maday,
Rodriguez, and Zhu (2012), Grepl, Maday, Nguyen, and Patera (2007), Grepl and
Patera (2005), Machiels, Maday, and Patera (2001), Maday, Patera, and Turinici (2002),
Nguyen, Rozza, and Patera (2009), and Veroy, Prudhomme, and Patera (2003).

A very adaptive technique for building a parametric ROM is the proper generalised
decomposition method. It is based on building an approximation of the initial PDE as a
finite combination of functions of separate variables, including not only the space and
time variables, but also all eventual parameters that could be associated with the initial
equations. These functions and there coefficients in the later expression are obtained by
an iterated algorithm which minimises the error with respect to the initial problem. This
method was introduced by Ladeveze in the LATIN method (Ladeveze, 1999; Ladeveze
& Nouy, 2003), where he started by a space–time separation. Then, it was generalised
by Chinesta et al. for multidimensional problems (Ammar, Chinesta, Diez, & Huerta,
2010; Ammar, Mokdad, Chinesta, & Keunings, 2006; Ammar, Normandin, & Chinesta,
2010; Chinesta, Ammar, & Cueto, 2010; Chinesta et al., 2013; Gonzalez et al., 2012).

In this paper, we are interested in the models reduction by projection, the proper
orthogonal decomposition (POD) technique (Lumley, 1967).

Given X a Hilbert space, and (u(t))t a family in X living on a time interval (0, T )
and integrable in the sense of L2(0, T; X), it is about to construct a projection subspace
spanned by a basis Φ and which minimises the error obtained a posteriori by the
orthogonal projection PW

N of u on a subspace of X of finite dimension N spanned by an
orthonormal Hilbert basis Ψ:

u�PU
Nu

�� ��2
L2ð0;T ;X Þ � u�PW

N u
�� ��2

L2ð0;T ;X Þ; 8N ;

and 8W an orthonormal Hilbert basis:

This minimisation problem is equivalent to the eigenvalues; one of the compact,
self-adjoint and positive operator R defined as follows:

RU ¼ lU:

Where,

R : X ! X
u7!Ru ¼ 1

T

R T
0 ðuðtÞ;uÞX uðtÞdt:

(.,.)X denotes the scalar product of the Hilbert space X.
One can verify that the optimal error by POD is equal to the remainder of the

POD-eigenvalues series of R:
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1

T
u�PU

Nu
�� ��2

L2ð0;T ;X Þ¼
Xþ1

n¼Nþ1

ln:

The problem that appears naturally is to find a way to control the parametric evolu-
tion in a ROM by POD of high-dimensional parabolic parameterised partial differential
equations.

In order to determine a strong ROM-POD via parametric evolution, several algo-
rithms were based on a geometric interpolation of POD basis functions for different
values of the parameters. We cite the work of Amsallem, Cortial, Carlberg, and Farhat
(2009), Amsallem and Farhat (2008), and Amsallem, Cortial, and Farhat (2009).

Nevertheless, there are other methods for computing parametric ROM-PODs and
which are essentially based on constructing an expanded basis by including the deriva-
tives of the POD basis functions with respect to the corresponding system parameters.
Hay et al. have applied the last method (Hay, Akhtar, & Borggaard, 2012; Hay,
Borggaard, Akhtar, & Pelletier, 2010; Hay, Borggaard, & Pelletier, 2009), in order to
construct a reduced model ROM-POD which is strong and efficient via the variation of
the viscosity of a two-dimensional flow around a square cylinder. Moreover, the
technique of including the parametric sensitivity was also used in the context of the
RB method, for having more efficient parametric ROMs. We cite the work of Ito and
Ravindran (1998) where they proposed to use an expanded set of basis functions,
including solution flows for different values of the Reynolds number and their
associated first-order derivatives with respect to this parameter. In this paper, we try to
investigate the efficiency of such technique, theoretically and from the point of view of
the POD technique, i.e. an expanded POD basis associated with a reference solution
and its first-order parametric derivative.

Besides, Terragni and Vega (2012) presented an argument to use the POD approxi-
mation at a given parametric value to construct the bifurcation diagram of dissipative
systems, which is not the aim of the present paper.

We are interested then in mathematical contributions concerning the study of the
sensitivity of a ROM of high-dimensional parabolic parameterised partial differential
equations, by a reference POD basis and an expanded POD one, associated with a ref-
erence solution at a given value of the parameter and to its first-order derivative with
respect to this later. More precisely, the organisation of the paper remainder is:

1.2. Organisation of the paper

In the remainder of this section, we give the mathematical formulation of the problem
of interest and write formally the main results. In Section 2, we prove our results. In
Section 3, we show that the same proof applies in particular to the one-dimensional
model equation of Burgers. The parameter of this equation will be the viscosity
k 2 R

þ�. In Section 4, we present numerical tests relative to the Burgers equation. In
Section 5, we conclude by giving some prospects of this work.

1.3. Mathematical formulation of the problem

Let us consider a problem describing the evolution of a parametric solution uk
(k 2 R

þ�) in a Hilbert space X. V denotes a subspace of X and Vh a subspace of V of
dimension M:
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@uk
@t ¼ AkðukðtÞÞ
ukð0Þ ¼ u0

�
(1)

From now on, we are interested in the ordinary differential equation of dimension
M obtained by a Galerkin projection of the initial complete problem (1) on Vh: (.,.)X
denotes the scalar product of the space X.

@uhk
@t ; v

h
� �

X
¼ ðAh

kðuhkðtÞÞ; vhÞX 8vh 2 Vh

ðuhkð0Þ; vhÞX ¼ ðu0; vhÞX 8vh 2 Vh

(
(2)

Ah
k is the projection of the operator Ak on Vh.
A solution uhk0 of this equation associated to a parameter k0 is computed once and

for all. A POD basis Uk0 ¼ ðUk0
n Þn¼1;...;M of dimension M in X, associated to uhk0 on a

time interval (0, T), will lead to construct a ROM-POD describing the evolution of an
approximation ûk;k0 of uhk, in a subspace of dimension N very small compared to M.
We denote ðlk0n Þn¼1;...;M the POD eigenvalues sequence associated to the POD basis:

8t 2 ð0; TÞ and 8x 2 X :

ûk;k0ðt; xÞ ¼
XN
n¼1

ak;k0n ðtÞUk0
n ðxÞ

where, 8n ¼ 1; . . .;N ; ak;k0n ðtÞ is the solution of the following dynamical system thanks
to the orthonormal construction of a POD basis:

da
k;k0
n
dt ¼ Âk;k0ðûk;k0ðtÞÞ;Uk0

n

� �
X

ak;k0n ð0Þ ¼ ðu0;Uk0
n ÞX

(
(3)

Âk;k0 is the projection of the operator Ah
k on the POD subspace spanned by the ortho-

normal set ðUk0
1 ; . . .;U

N
k0Þ.

The question which arises naturally is the following: To what extent ûk;k0 stays
adapted to uhk?

Then, the main problem is to give a mathematical criteria in order to determine a con-
fidence region for a reference POD basis. It appears also the control problem of the
dimension of the reduced model, so we can improve its performance via the parametric
evolution, without loss of the reduction concept. It is worth noting that, Terragni, Valero
and Vega (2011) developed a numerical adaptive method to accelerate time-dependent
numerical solvers of PDEs, by the use of error estimates to predict the required number
of POD modes in order to preserve stability of a ROM by POD in connection with high-
order modes truncation. Also, this is not the problem treated in this paper.

1.4. Main results

The results we are proposing, for a particular class of evolution problems where the
operator Ah

k is α – Holder with respect to kða 2 ð0; 1�Þ, are a priori upper bounds of
the squared error in the space L2(0, T; X) induced after a Galerkin approach for uhk by a
reference POD basis and an expanded one:

Reference POD basis
Theorem 1. There exist two decreasing sequences ðf k01 ðNÞÞN¼1;...;M and

f k02 ðNÞ
� �

N¼1;...;M
, such that:
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uhk � ûk;k0
�� ��2

L2ð0;T ;X Þ � f k01 ðNÞ þ f k02 ðNÞBk0 jk� k0j2a
k0

: (4)

The estimate (4) shows that the parametric squared ROM-POD error
uhk � ûk;k0

�� ��2
L2ð0;T ;X Þ, is controlled by a first term f 1k0ðNÞ which will estimate the squared

POD-Galerkin error relative to the parameter k0, and a second term which is a function
of the alpha-th power of the distance between k and k0, multiplied by an f 2k0ðNÞ which
tends to zero when N becomes close to M.

This result establishes an a priori estimate of the decrease rate of the squared
ROM-POD error, especially when the two parameters k and k0 are distant. This rate
depends on the one of the sequence f 2k0ðNÞ. Moreover, for a fixed POD modes number
N, this result shows the dependency of the ROM-POD error with respect to the
distance between the parameters.

Precision on result 1
Heuristic result 1. Under regularity conditions on the solutions difference uhk � uhk0 ,

an a priori estimate of the squared ROM-POD error is given by:

uhk � ûk;k0
�� ��2

L2ð0;T ;X Þ � f k01 ðNÞ þ cðNÞBk0 jk� k0j2a
k0

(5)

where, c(N) is of the order of 1
Nm.

Improvement of the ROM-POD confidence interval: Expanded POD basis
Theorem 2. Under the following restrictive conditions:

� @uhk
@k ðk0Þ 2 L2ð0; T ;X Þ:

� Uk0 a POD basis associated to snapshots of uhk0ðtÞ and
@uhk
@k ðk0ÞðtÞ on (0, T).

We can show that:

uhk � ûk;k0
�� ��2

L2ð0;T ;X Þ � f k01 ðNÞ þ
XM

n¼Nþ1

lk0n jk� k0j2 þ Cjk� k0j4 (6)

For a fixed POD modes number N, the estimate (6) improves the validity domain of
the ROM beside our previous result (estimate (4)) thanks to the term depending on
ðk� k0Þ4, and to the remainder of the expanded-POD eigenvalues sum multiplying
ðk� k0Þ2 and which decreases so fast.

2. Proof of the main results for a quasi-linear parabolic equation

We place our problem in the case of a semi-discrete quasi-linear parabolic equation
with a dissipative term:

We denote X = L2(Ω), V =H1(Ω). Where, Ω is a bounded open set, connected and
lipschitz of R

d , and Vh is a subspace of V of dimension M. f is given in
L2locð½0;þ1½;X Þ. This equation is given by its weak formulation as follows:

@uhk
@t ; v

h
� �

X
þbðuhkðtÞ; uhkðtÞ; vhÞ þ aðuhkðtÞ; vh; kÞ ¼ FtðvhÞ 8vh 2 Vh

ðuhkð0Þ; vhÞX ¼ ðu0; vhÞX 8vh 2 Vh

(
: (7)

where, b, a and Ft are, respectively, a trilinear form, a bilinear one and a linear one
verifying the following:
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� 8v1; v2 2 V ; aðv1; v2; kÞ is a bilinear symmetric and positive form, which is
continuous on V × V and coercive on H1

0 ðXÞ � H1
0 ðXÞ. Moreover, we suppose that

a is α – Holder with respect to k, with Lipschitz constant equal to 1.
� 8v1; v2; v3 2 V ; bðv1; v2; v3Þ ¼ ðAðv1Þ:Bðrv2Þ; v3ÞX . Where, A and B are,

respectively, linear forms in v1 and rv2.
� 8v 2 V ;FtðvÞ ¼ ðf ðtÞ; vÞX .
� (.,.) denotes the scalar product of X.

We precise some additional notations that could be useful to our proof:

� Ck
p denotes the constant relative to the coercivity of the bilinear form a.

� Ca, Cb are, respectively, the two norms of the forms a and b on (Vh, ‖.‖X) and

K ¼ uhk0

��� ���
L1ð0;T ;X Þ

.

For simplicity reasons, we suppose from now on that Ck
p ¼ kCp and α = 1, without

any loss of generality.
In what follows, we give four required key points for completing the proof of our

formal results. These key points will be divided through four subsections:

2.1. Key point 1: the study of the squared POD-Galerkin error relative to a fixed
parameter k0
We denote ûk0 ¼ ûk;k0 for k ¼ k0.

We prove a result on the decrease rate of the squared POD-Galerkin error relative

to the parameter k0: uhk0 � ûk0

��� ���2
L2ð0;T ;X Þ

.

Thanks to the optimal property of the POD reference basis functions, energetic wise

with respect to uhk0 , i.e. uhk0 �PUk0

N uhk0

��� ���2
L2ð0;T ;X Þ

¼ T
PM

n¼Nþ1 l
k0
n , we will just study an

a priori control of PUk0

N uhk0 � ûk0

��� ���2
L2ð0;T ;X Þ

.

Proposition 1. 8t 2 ð0; TÞ and 8e[ 0, one has:

ðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���2

X
� exp ðe� 2k0Cp þ 6CbKÞt

� 	
2CbK þ k20C

2
a

e


 �
T

XM
n¼Nþ1

lk0n : (8)

PROOF. We replace vh by Uk0
n in Equation (7) (written for the parameter k0) and we use

the commutativity between the projector operator PUk0

N and the time derivative d
dt, then

we can deduce the following equality:

1
2
d
dt PUk0

N uhk0 � ûk0

��� ���2
X
¼ �bððuhk0 � ûk0ÞðtÞ; uhk0ðtÞ; ðPUk0

N uhk0 � ûk0ÞðtÞÞ
�b ûk0ðtÞ; ðuhk0 � ûk0ÞðtÞ; ðPUk0

N uhk0 � ûk0ÞðtÞ
� �

�aððuhk0 � ûk0ÞðtÞ; PUk0

N uhk0 � ûk0

� �
ðtÞ; k0Þ:
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Thanks to the continuity of the form b on ðVh; jj � jjX Þ, we write:

� bððuhk0 � ûk0ÞðtÞ; uhk0ðtÞ; PUk0

N uhk0 � ûk0

� �
ðtÞÞ

�Cb ðuhk0 � ûk0ÞðtÞ Xk kuhk0ðtÞ Xk kðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���

X

�CbK ðuhk0 �PUk0

N uhk0ÞðtÞkX kðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���

X
þCbK ðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���2

X

We apply a Young inequality to the product

ðuhk0 �PUk0

N uhk0ÞðtÞkX kðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���

X
, then we get the following inequality:

� b ðuhk0 � ûk0ÞðtÞ; uhk0ðtÞ; ðPUk0

N uhk0 � ûk0ÞðtÞ
� �

�CbKkðPUk0

N uhk0 � ûk0ÞðtÞk2X
þ 1

2
CbKkðuhk0 �PUk0

N uhk0ÞðtÞk
2
X

þ 1

2
CbKkðPUk0

N uhk0 � ûk0ÞðtÞk2X ;

Similarly, we have the following:

�bðûk0ðtÞ; ðuhk0 � ûk0ÞðtÞ; ðPUk0

N uhk0 � ûk0ÞðtÞÞ�CbKkðPUk0

N uhk0 � ûk0ÞðtÞk2X
þ 1

2
CbKkðuhk0 �PUk0

N uhk0ÞðtÞk2X þ 1

2
CbKkðPUk0

N uhk0 � ûk0ÞðtÞk2X ;

Thanks to the coercivity of the form a on H1
0 ðXÞ � H1

0 ðXÞ and its continuity on
(Vh; k � kX ), we write:

�aððuhk0 � ûk0ÞðtÞ; ðPUk0

N uhk0 � ûk0ÞðtÞ; k0Þ� � k0Cp ðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���2

X

þ Ca ðuhk0 �PUk0

N uhk0ÞðtÞkX kðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���

X
:

We apply a Young inequality to the product

Ca ðuhk0 �PUk0

N uhk0ÞðtÞkX kðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���

X
, then 8e[ 0 we have the following

inequality:

� aððuhk0 � ûk0ÞðtÞ; ðPUk0

N uhk0 � ûk0ÞðtÞ; k0Þ�
C2
a

2e
ðuhk0 �PUk0

N uhk0ÞðtÞ
��� ���2

X

þ e
2

ðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���2

X

� k0Cp ðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���2

X
:

Therefore,

d

dt
PUk0

N uhk0 � ûk0

��� ���2
X
�ð6CbK þ e� 2k0CpÞ ðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���2

X

þ 2CbK þ C2
a

e


 �
ðuhk0 �PUk0

N uhk0ÞðtÞ
��� ���2

X

We integrate over an interval (0, t) ⊂ (0, T) and we apply the Gronwall lemma, then
we get:

ðPUk0

N uhk0 � ûk0ÞðtÞ
��� ���2

X
� exp½ð6CbK þ e� 2k0CpÞt� 2CbK þ C2

a

e


 �
T

XM
n¼Nþ1

lk0n :
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This ends the proof.
By choosing ε small in the preceding estimate (8), we can see the competition

between the quasi-linear term and the one corresponding to the coercivity of the bilin-
ear form a. This could be rectified by increasing the POD modes number N. Then, a
solution to this problem could be, by doing an a priori estimate of the two constants
Cb and Cp. This could lead to choose an artificial viscosity verifying a certain
condition, so that the term in the exponential becomes negative (8).

Then, under this hypothesis, we prove the following proposition:
Proposition 2. If we choose an artificial viscosity ksm that verifies the condition:

ksm [
6CbK þ e

2Cp
� k0; (9)

then the squared POD-Galerkin error for the parameter k0: will be controlled as
follows:

uhk0 � ûk0
�� ��2

L2ð0;T ;X Þ � 2T 1þ 2CbK þ C2
a

e


 � XM
n¼Nþ1

lk0n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f
k0
1 ðNÞ

: (10)

PROOF.

uhk0 � ûk0
�� ��2

L2ð0;T ;X Þ � 2 uhk0 �PUk0

N uhk0

��� ���2
L2ð0;T ;X Þ

þ2 PUk0

N uhk0 � ûk0

��� ���2
L2ð0;T ;X Þ

:

� kuhk0 �PUk0

N uhk0k
2
L2ð0;T ;X Þ ¼ T

PM
n¼Nþ1 l

k0
n .

� Thanks to (9) and to the previous proposition,
kPUk0

N uhk0 � ûk0k2L2ð0;T ;X Þ � ð2CbK þ C2
a
e ÞT

PM
n¼Nþ1 l

k0
n .

This ends the proof.

2.2. Key point 2: control of kuhk � uhk0k
2
L2ð0;T ;X Þ

We prove a result on the parametric sensitivity of the solutions uhk of the Equation (7):
Proposition 3. We denote β a positive real number close to zero. Then, the mapping

defined by:

� b
2Cp

;þ1½ ! L2ð0; T ;X Þ
k 7!uhk

is locally lipschitz. Moreover, at a given neighbourhood of k0, we have the following
inequality:

uhk � uhk0
�� ��2

L2ð0;T ;X Þ �Bk0
jk� k0j2

k0
:

Bk0:¼
TC2

aK

4Cb

k0
c
½expð4CbKTÞ � 1�:

Where, γ is a positive real number verifying: γ = β.
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PROOF. We denote whðtÞ ¼ ðuhk � uhk0ÞðtÞ; which verifies the following weak
formulation:

d

dt
wh; v


 �
X

þbðwhðtÞ; uhkðtÞ; vÞ þ bðuhk0 ;whðtÞ; vÞ

þ aðwhðtÞ; v; kÞ þ aðuhk0ðtÞ; v; kÞ � aðuhk0ðtÞ; v; k0Þ ¼ 0:

We replace v by wh(t) in the preceding equation, then we get:

1

2

d

dt
kwhk2X ¼ �bðwhðtÞ; uhkðtÞ;whðtÞÞ � bðuhk0ðtÞ;whðtÞ;whðtÞÞ

� aðwhðtÞ;whðtÞ; kÞ � aðuhk0ðtÞ;whðtÞ; kÞ þ aðuhk0ðtÞ;whðtÞ; k0Þ:
Thanks to the continuity of the form b on (Vh, ||.||X), we obtain the following:

�bðwhðtÞ; uhkðtÞ;whðtÞÞ�CbKkwhðtÞk2X :

�bðuhk0ðtÞ;whðtÞ;whðtÞÞ�CbKkwhðtÞk2X :
And, thanks to the coercivity of the form a on H1

0 ðXÞ � H1
0 ðXÞ; its Lipschitz character

with respect to k and its continuity on (Vh, ||.||X), we deduce the following:

�aðwhðtÞ;whðtÞ; kÞ � aðuhk0ðtÞ;whðtÞ; kÞ þ aðuhk0ðtÞ;whðtÞ; k0Þ� � kCpkwhðtÞk2X
þ jk� k0jCaKkwhðtÞkX :

Now, after applying a Young inequality to the product jk� k0jCaKkwhðtÞkX ; we write:

�aðwhðtÞ;whðtÞ; kÞ � aðuhk0ðtÞ;whðtÞ; kÞ þ aðuhk0ðtÞ;whðtÞ; k0Þ� � kCpkwhðtÞk2X
þ c
2
kwhðtÞk2X þ jk� k0j2 C

2
aK

2

2c
:

Based on the conditions satisfied by γ, we can prove that �2kCp þ c\0: Therefore,

d

dt
kwhk2X � 4CbKkwhðtÞk2X þ C2

aK
2

c
jk� k0j2:

We integrate over an interval (0, t) ⊂ (0, T) and we apply the Gronwall lemma, then
we get:

kwhðtÞk2X � TC2
aK

2 k0
c
expð4CbKtÞ jk� k0j2

k0
:

2.3. Key point 3: choice of the sequence ðf k02 ðNÞÞN¼1;...;M and an a priori estimate
of its terms

We prove the following proposition that will be a key point in order to choose the
sequence ðf k02 ðNÞÞN¼1;...;M and give an a priori estimate of its terms.

For simplicity reasons, we suppose that d = 1 and Ω = (0, 1), without any loss of
generality:

Proposition 4. Let (Φn)n=1,…,M be an orthonormal basis of (Vh, ||.||X). We define fn
such that:

fnðxÞ ¼
Z x

0
UnðyÞdy:

86 N. Akkari et al.



Then,
PM

n¼1 kfnk2X\ 1
2.

PROOF. fn(x) = (Φn, 1[0,x])X, then kfnk2X ¼ R 1
0 jðUn; 1½0;x�ÞX j2dx.

Therefore,
PM

n¼1 kfnk2X\
R 1
0 k1½0;x�k2X dx.

Which concludes to the result.

Thus, f k02 ðNÞ ¼ PM
n¼Nþ1 kf k0n k2X . Where f k0n ðxÞ ¼ R x

0 U
k0
n ðyÞdy.

And, 8N ¼ 0; . . .;M � 1; f k02 ðNÞ\ 1
2.

2.4. Key point 4: an upper bound for the parametric squared ROM-POD error
kuhk � ûk;k0k2L2ð0;T ;X Þ

kuhk � ûk;k0k2L2ð0;T ;X Þ � 2kuhk0 � ûk0k2L2ð0;T ;X Þ
þ 2kðuhk � uhk0Þ �PUk0

N ðuhk � uhk0Þk
2
L2ð0;T ;X Þ

þ 2kPUk0

N ðuhk � uhk0Þ � ðûk;k0 � ûk0Þk2L2ð0;T ;X Þ

� The squared POD-Galerkin error kuhk0 � ûk0k2L2ð0;T ;X Þ is estimated by f k01 ðNÞ,
based on proposition 2.

� kðuhk � uhk0Þ �PUk0

N ðuhk � uhk0Þk
2
L2ð0;T ;X Þ ¼

PM
n¼Nþ1 kðuhk � uhk0 ;U

k0
n ÞX k2L2ð0;TÞ.

� The Galerkin error kPUk0

N ðuhk � uhk0Þ � ðûk;k0 � ûk0Þk2L2ð0;T ;X Þ is controlled byPM
n¼Nþ1 kðuhk � uhk0 ;U

k0
n ÞX k2L2ð0;TÞ; This is shown easily by reducing the semi-dis-

crete model describing the evolution of ðuhk � uhk0ÞðtÞ.

Therefore, the parametric squared POD-Galerkin error is essentially controlled by the
remainder

PM
n¼Nþ1 kðuhk � uhk0 ;U

k0
n ÞX k2L2ð0;TÞ.

2.4.1. Completion of the proof of result 1

Based on proposition 4, a way to study the decrease rate of this remainder will be, by
considering the remainder of the primitives sum of the reference POD modes Uk0

n : This
is shown by applying successively the Green formula and the Cauchy-Shwarz inequality
to each one of the orthogonal projection coefficients ððuhk � uhk0ÞðtÞ;Uk0

n ÞX . Therefore,PM
n¼Nþ1 kðuhk � uhk0 ;U

k0
n ÞX k2L2ð0;TÞ is controlled by

Bk0 jk�k0j2
k0

f k02 ðNÞ.
This ends the proof of result 1.

2.4.2. Completion of the proof of the heuristic result

Under the following restrictive condition:

uhk � uhk0 2 L2ð0;T ;HmðXÞÞ;
a precision on the decrease rate of the squared ROM-POD error is given by the a
priori estimate (5). This is shown as follows:

By applying successively the Green formula and the Cauchy-Schwarz inequality
and by repeating this step m-times to each ððuhk � uhk0ÞðtÞ;Uk0

n ÞX , we prove that
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PM
n¼Nþ1 kðuhk � uhk0 ;U

k0
n ÞX k2L2ð0;TÞ is finally controlled by the remainder of the m-iterated

primitives sum of the reference POD modes.
Which concludes to the result.

2.4.3. Completion of the proof of result 2

Thanks to proposition (3), the first restrictive condition of theorem 2 is verified for a quasi-
linear equation of the form (7). Then, we write the Taylor expansion of uhk to the order 1:

uhk ¼ uhk0 þ
@uhk
@k ðk0Þðk� k0Þ þ R1ðkÞ: Where, kR1ðkÞkL2ð0;T ;X Þ is a function of

jk� k0j2.
Now, we impose the second restrictive condition of theorem 2. In this case, the

remainder
PM

n¼Nþ1 kðuhk � uhk0 ;U
k0
n ÞX k2L2ð0;TÞ is better controlled by the POD modes:

XM
n¼Nþ1

kðuhk � uhk0 ;U
k0
n ÞX k2L2ð0;T ;RÞ � jk� k0j2

XM
n¼Nþ1

@uhk
@k

ðk0Þ;Uk0
n


 �
X

����
����2
L2ð0;TÞ

þ kR1ðkÞk2L2ð0;T ;X Þ:
Now,

PM
n¼Nþ1 k @uhk

@k ðk0Þ;Uk0
n

� �
X
k2L2ð0;TÞ is controlled by the remainder of the POD-

eigenvalues sum, as the snapshots which are used to obtain the POD basis have
included the parametric sensitivity of the solution at the reference parameter value k0.

Therefore, we deduce the a priori estimate (6).
This ends the proof.

3. Application of results 1 and 2 to the model equation of Burgers

We consider the model equation of Burgers given by its weak formulation:

@uk
@t ; v

� �
X
þbðukðtÞ; ukðtÞ; vÞ ¼ aðukðtÞ; v; kÞ þ FtðvÞ 8v 2 V

ðukð0Þ; vÞX ¼ ðu0; vÞX 8v 2 V

�

� 8v1; v2 2 V ; aðv1; v2; kÞ ¼ �kð@xv1; @xv2ÞX .
� ∀v1, v2, v3 ∊ V, b(v1, v2, v3) = (v1 ∂xv2, v3)X.
� ∀v ∊ V, Ft(v) = (f(t), v)X.

It is a classical parabolic equation, and we suppose existence and uniqueness of the
solution under sufficient conditions of regularity.

It is obvious that for this particular case of the Burgers equation, the procedure we
did in the previous section could be repeated exactly in the same way. Therefore, the a
priori estimate (4) of result 1, the heuristic estimate (5) and the a priori estimate (6) of
result 2, are all valid.

4. Numerical tests

4.1. Numerical solution for k ¼ k0.

For the numerical computations, we will consider, for instance, the following initial
and boundary conditions:

ukðx; 0Þ ¼ sinðpxÞ; 0\x\1
ukð0; tÞ ¼ ukð1; tÞ ¼ 0; t 2 ½0; 1�

�
We suppose f = 0.

We discretise the time and spatial domains into M = 200 nodes.
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We discretise the Burgers equation using an implicit Euler scheme with respect to
time; As for the non-linear term ukðtÞ@xukðtÞ, we use a semi-implicit scheme.

For instance, we consider k0 ¼ 10�2. The numerical solution of the Burgers
equation, associated to this viscosity, is presented in Figure 1. More precisely, we show
in this figure the profile of uhk0ðtiÞ for different instants ti.

4.2. POD basis for uhk0
To discretise the POD eigenvalue problem, we use the snapshots method (Sirovitch,
1987).

Then, we denote:

Rk0 ¼
1

M
ðuhk0ðtiÞ; uhk0ðtjÞÞRM


 �
1� i;j�M

:

We denote by vn= (vi,n)1≤i≤M for n = 1, …, M, a set of orthonormal eigenvectors of
the matrix Rk0 . Then, the POD-eigenvectors associated to uk0 , are given by:

Uk0
n ¼ 1ffiffiffiffiffi

M
p

XM
i¼1

vi;nuðtiÞ:

The 10 first values of the error in L2(0, T; X), because of the orthogonal projection
of uhk0 on the POD subspaces of dimensions N = 1, …, 10, are presented in the Table 1.
We remark that the five first POD-modes contain almost all the kinetic energy
kuhk0k

2
L2ð0;T ;X Þ ffi

PM
n¼1 l

k0
n .

Figure 1. The numerical solution of the Burgers equation associated to k0 ¼ 10�2.
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Table 1. Errors in L2(0, T; X) of the orthogonal projection of uhk0 on the POD subspaces of
dimensions N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

POD-modes POD-error

1 3.58784914e-01
2 1.55734895e-02
3 6.39895831e-04
4 3.81187212e-05
5 3.68559574e-06
6 2.56290577e-08
7 2.08562743e-09
8 1.93515109e-10
9 1.79758134e-11
10 2.09821738e-13

Figure 2. The POD-modes Uk0
1 and Uk0

2 .

Figure 3. The POD-modes Uk0
3 and Uk0

4 .
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The four first POD-eigenvectors are presented in Figures 2 and 3.

4.3. ROM-POD for k ¼ k0
The three first coefficients of the ROM-POD, ah;nk0

ðtÞ for n = 1, 2, 3, are represented in
comparison with those of the direct POD-approximation of the full solution uhk0 , u

h;n
k0
ðtÞ

for n = 1, 2, 3, in the Figures 4 and 5.

Figure 4. (a) ah;1k0
ðtÞ (dotted blue line) and uh;1k0

ðtÞ (black line). (b) ah;2k0
ðtÞ (dotted blue line) and

uh;2k0
ðtÞ (black line).

Figure 5. ah;3k0
ðtÞ (dotted blue line) and uh;3k0

ðtÞ (black line).
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4.4. Sensitivity tests via the parametric evolution and the POD modes number N

4.4.1. Parametric evolution

We take N = 5. And, we consider k 2 ½10�3; 1:9� 10�2�. We denote:

Ek ¼ kuhk � ûk;k0kL2ð0;T ;X Þ:

We compute lnðEkÞ, with respect to lnðjk� k0jÞ in both cases k� k0 and k
 k0. We
obtain, respectively, plots (a) and (b) in Figure 6.

We find that the evolution of this error is linear with respect to k, and Ek decreases
with the distance jk� k0j.

4.4.2. Evolution of the parametric ROM-POD error with respect to N

In what follows, we validate our a priori estimate (5) with respect to the POD modes
number N. More precisely, we plot the evolution of lnðE2

k � E2
k0Þ with respect to ln

(N), for different values of the parameters. More precisely, we consider the following
two cases.

� k0 ¼ 10�2, k ¼ 7:10�3; and 5.10−3. We get plots (a) and (b) in Figure 7.
� k0 ¼ 1, k ¼ 0:7; and 0.5. We get plots (c) and (d) in Figure 8.

5. Conclusion and perspectives

5.1. Conclusion

In this paper, we have considered the sensitivity study of ROMs by POD of a
single-parameterised quasi-linear equation in general and the one-dimensional Burgers
equation in particular. We have proved a mathematical result on the sensitivity of a
ROM by a reference POD basis. This result shows the dependency of the parametric
squared ROM-POD error on the squared distance between a parameter k and the one
of reference k0, and on the ROM dimension N. The decrease rate of this error depends
on the one of the remainder of the primitives series of the reference POD basis
vectors. An accuracy on this rate is strongly related to the solutions regularity: For a
regularity of type uhk � uhk0 2 L2ð0; T ;HmÞ; it is a decrease rate whose behaviour is

Figure 6. (a) Evolution of lnðEkÞ for k� k0 (dotted blue line) and the theoretical error (black
line). (b) The same as (a) for k
 k0.
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similar to 1
Nm. We have improved this result with respect to the parametric evolution,

by the use of an expanded POD basis, associated with a reference solution and its
first-order parametric derivative: Indeed, under this hypothesis, the a priori upper
bound of the squared L2-ROM-POD error is much better, because it provides a control
of the parametric evolution depending only on the fourth power of the distance
between a parameter k and the one of reference k0.

Numerical tests were done to verify the sensitivity result on a reference POD basis,
in the case of the Burgers equation. For a fixed POD modes number, we have verified
the linear dependency of the ROM-POD error via the viscosity evolution. Moreover,
we have retrieved estimates of the squared ROM-POD error by 1

Nm with respect to N.

5.2. Perspectives

Concerning the perspectives of this work, it is necessary first to obtain sharper
estimates of the terms corresponding to the result 1, without supposing supplementary
conditions on the solutions regularity, especially when dealing this time with the
Navier–Stokes equations: In fact, we have shown in (Akkari, Hamdouni, Liberge, &

Figure 7. (a) Evolution of lnðE2
k � E2

k0Þ with respect to ln (N), for k0 ¼ 0:01 and k ¼ 0:007. (b)
Evolution of lnðE2

k � E2
k0Þ with respect to ln (N), for k0 ¼ 0:01 and k ¼ 0:005.

Figure 8. (a) Evolution of lnðE2
k � E2

k0Þ with respect to ln (N), for k0 ¼ 1 and k ¼ 0:7. (b)
Evolution of lnðE2

k � E2
k0Þ with respect to ln (N), for k0 ¼ 1 and k ¼ 0:5.
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Jazar, in press) a numerical validation of result 1 relative to the power low of the
ROM-POD error through the evolution of the viscosity parameter of an unsteady and
incompressible fluid flow in a channel, around a circular cylinder. Moreover, we sub-
mitted a paper that presents a numerical validation of our theoretical estimates in results
1 and 2 relative to the power lows, in the case of an unsteady and incompressible fluid
flow in a channel, around a circular cylinder (Akkari, Hamdouni, Liberge, & Jazar, in
press). Indeed, we show that the slope of the logarithm of the numerical ROM-POD
error by an expanded POD basis is stronger than one of the logarithm of the numerical
ROM-POD error by a reference POD basis. And, the numerical parametric error in the
first case is less than the one associated to the reduction by a reference POD basis.
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