
Fractional order generalised thermoelasticity to an infinite body with
a cylindrical cavity and variable material properties

P. Pala, A. Karb and M. Kanoriaa*

aDepartment of Applied Mathematics, University of Calcutta, 92, A.P.C. Road,
Kolkata – 700009, India; bHaringhata Central Laboratory, River Research Institute, Mohanpur,

Nadia – 741246, India

This paper is concerned with the determination of thermoelastic displacement, stress
and temperature produced in an infinite isotropic elastic body having a cylindrical
cavity in the context of the new consideration of heat conduction with fractional
order generalised thermoelasticity with Lord–Shulman model (LS model) and
Green–Naghdi model with energy dissipation (GN-III model). Here, the elastic
parameters and the thermal conductivity are temperature dependent. The boundary
of the cavity is subjected to time-dependent thermal and mechanical shocks. The
fractional order generalised coupled thermoelasticity theories for the problem are
combined into a unified formulation introducing the unified parameters. The govern-
ing equations of generalised thermoelasticity theory are obtained in the Laplace
transform domain and are solved in that domain by finding out the roots by using
the Laguerre’s method. The inversion of the transform solution is carried out numer-
ically by applying a method based on the Fourier series expansion technique. The
numerical estimates for thermophysical quantities (displacement, temperature and
stress) are obtained for copper-like material for weak, normal and strong conductiv-
ity and have been depicted graphically to estimate the effects of the fractional order
parameter. The comparison of the results for different theories have been presented
and the effects of temperature-dependent parameters are also discussed.

Keywords: generalised thermoelasticity; Lord–Shulman model; Green–Naghdi
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1. Introduction

Thermoelasticity theories which admit a finite speed of thermal signals (second sound)
have aroused much interest in the last three decades. In contrast to the conventional
coupled thermoelasticity theory based on a parabolic heat equation (Chadwick, 1960),
which predicts an infinite speed of propagation of heat, these theories involve a hyper-
bolic heat equation and are referred to as generalised thermoelasticity theories. The
extended thermoelasticity theory proposed by Lord and Shulman (1967) incorporates a
flux-rate term into Fourier’s law of heat conduction and formulates a generalised form
that involves a hyperbolic-type heat transport equation admitting finite speed of thermal
signals. The temperature rate-dependent generalised thermoelasticity theory developed
by Green and Lindsay (1972) involving two relaxation times, where the Fourier law of
heat conduction is left unchanged but the classical energy equation and stress–strain
temperature relations are modified. The closed-form solutions for thermoelastic
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problems in generalised theory of thermoelsticity have been obtained by Hetnarski and
Ignaczak (1993). Erbay and Suhubi (1986) studied longitudinal wave propagation in a
cylinder. The results show that the relaxation times play a significant role in the cases
involving shock wave propagation, laser technique, a rapidly propagation of crack tip,
etc. On the experimental side, available evidence in support of the existence of finite
thermal wave speed in solids is rather sparse, although an experimental study for
second-sound propagation in dielectric solids and some related experimental observa-
tions were reported nearly four decades ago (Ackerman & Guyer, 1968; Rogers, 1971;
Narayanmurti & Dynes, 1972). Most engineering materials such as metals possess a
relatively high-rate thermal damping and thus are not suitable for use in experiments
concerning second-sound propagation. But given the state of recent advances in mate-
rial science, it may be possible in the foreseeable future to identify (or even manufac-
ture for laboratory purpose)an idealised material for the purpose of studying the
propagation of thermal waves at finite speed.

Green and Naghdi (1992a, 1992b, 1993) provided sufficient basic modifications in
the contitutive equations that permit treatment of a much wider class of heat flow prob-
lems labelled as GN I, II and III. GN models include a term called ‘thermal displace-
ment gradient’ among the independent constitutive variables. When the three theories
are linearised, the heat transport equation of GN I is the same as the classical equation,
whereas both GN II and III admit propagation of thermal signals of finite speeds
(Green & Naghdi, 1993). An important feature of GN III theory is that it accommo-
dates dissipation of thermal energy due to the presence of thermal damping term. More
detailed discussion on the subject is available in the books of Hetnarski and Eslami
(2009) and Ignaczak and Ostoja-Starzewski (2010). In the context of a linearised
version of this theory (Green & Naghdi, 1992b, 1993), a theorem on uniqueness of
solutions has been established by Chandrasekhariah (1996).

Thermoelastic interactions with energy dissipation in an infinite solid with distrib-
uted periodically varying heat sources have been studied by Banik, Mallik, and Kanoria
(2007) and for functionally graded material without energy dissipation have been stud-
ied by Mallik and Kanoria (2006). The dynamic response in a functionally graded
spherically isotropic hollow sphere with temperature-dependent elastic parameters has
been studied by Ghosh and Kanoria (2010). Das, Kar, and Kanoria (2013) have studied
magneto-thermoelastic response in a transversely isotropic hollow cylinder under ther-
mal shock with three-phase-lag effect. Kar and Kanoria (2007) have analysed thermo-
elastic interactions with energy dissipation in an unbounded body with a spherical hole.
Islam, Mallik, and Kanoria (2011) have discussed the study of dynamical response in a
two-dimensional transversely isotropic thick plate with spatially varying heat sources
and body forces. Generalised thermoelastic problem of a spherical shell under thermal
shock has been solved by Kar and Kanoria (2009). Differential equations of fractional
order have been the focus of many studies due to their frequent appearance in various
application in fluid mechanics, viscoelasticity, biology, physics and engineering. The
most important advantage of using fractional differential equations in these and other
applications is their non-local property. It is well known that the integer order differen-
tial operator is a local operator but the fractional order differential operator is non-local.
This means that the next state of a system depends not only upon its current state but
also upon all of its historical states. This is more realistic, and this is one reason why
fractional calculus has become more and more popular (Caputo, 1967; Mainardi, 1997;
Podlubny, 1999).

European Journal of Computational Mechanics 97



Fractional calculus has been used successfully to modify many existing models of
physical processes. One can state that the whole theory of fractional derivatives and
integrals was established in the second half of the nineteenth century. The first applica-
tion of fractional derivatives was given by Abel (Gorenflo & Vessella, 1991), who
applied fractional calculus in the solution of an integral equation that arises in the for-
mulation of the Tautochrone problem. The generalisation of the concept of derivative
and integral to a non-integer order has been subjected to several approaches, and some
various alternative definitions of fractional derivatives appeared in (Debnath & Bhatta,
2007; Gorenflo & Mainardi, 1997; Hilfer, 2000; Zenkour & Abouelregal, 2014). In the
last few years, fractional calculus was applied successfully in various areas to modify
many existing models of physical processes, e.g. chemistry, biology, modelling and
identification, electronics, wave propagation and viscoelasticity. Islam and Kanoria
(2011) have studied the one-dimensional problem of a fractional order two-temperature
thermopiezoelasticity. One can refer to Padlubny (1999) for a survey of applications of
fractional calculus.

In this work, we have investigated the thermoelastic displacement, stress and
temperature in an infinite isotropic elastic body having a cylindrical cavity with temper-
ature-dependent material parameters under both time-dependent thermal and mechanical
shocks in the context of fractional order generalised thermoelasticity. The fractional
order generalised coupled thermoelasticity theories are combined into a unified formu-
lation introducing the unified parameters. The Laplace transform technique has been
used to solve the problem. Numerical inversion of the Laplace transform has been done
by applying a method based on the Fourier series expansion technique. A complete and
comprehensive analysis of the results has been presented for Lord–Shulman (LS) model
and GN-III model of generalised thermoelasticity, where the heat equation consists of
some non-local fractional operator signifying not only the present state, but also the
previous states due to sudden temperature change. The effect of fractional order
parameter is also discussed.

2. Development of fractional order theory

Recently, a considerable research effort is expended to study anomalous diffusion,
which is characterised by the time-fractional diffusion-wave equation by Kimmich
(2002) as follows

qc ¼ jInc;ii ; (2.1)

where ρ is the mass density, c the concentration, κ the diffusion conductivity and i
the coordinate symbol, which takes the value 1, 2, 3. The notation Iξ is the
Riemann–Liouville fractional integral, introduced as a natural generalisation of the
well-known n-fold repeated integral Inf(t) written in a convolution-type form as in
(Mainardi & Gorenflo, 2000), which is written as follows:

Inf ðtÞ ¼ 1

CðnÞ
Z t

0
ðt � sÞn�1 f ðsÞds; 0\n� 2;

¼ f ðtÞ; n ¼ 0:

(2.2)

where Γ(n) is the Gamma function.
According to Kimmich (2002), Equation (2.1) describes different cases of diffusion

where 0 < ξ < 1 corredsponds to weak diffusion (subdiffusion), ξ = 1 corresponds to
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normal diffusion, 1 < ξ < 2 corresponds to strong diffusion (superdiffusion) and ξ = 2
corresponds to ballistic diffusion.

It should be noted that the term diffusion is often used in a more generalised sense
including various transport phenomena. Equation (2.1) is a mathematical model of a
wide range of important physical phenomena, for example, the subdiffusive transport
occurs in widely different systems ranging from dielectrics and semiconductors through
polymers to fractals, glasses, porous and random media. Superdiffusion is compara-
tively rare and has been observed in porous glasses, polymer chain, biological systems,
transport of organic molecules and atomic clusters on surface. One might expect the
anomalous heat conduction in media where the anomalous diffusion is observed.

Fujita (1990) considered the heat wave equation for the case of 1 ≤ ξ ≤ 2

qcmT ¼ kInT ;ii ; (2.3)

where cν is the specific heat, k is the thermal conductivity and the subscript ‘,’ means
the derivative with respect to the coordinate xi. Equation (2.3) can be obtained as a
consequence of the non-local constitutive equation for the heat flux components qi in
the form

qi ¼ �kIn�1T ;i 1\n � 2: (2.4)

Povstenko (2011) used the Caputo heat wave equation defined in the form

qi ¼ �kIn�1T ;i 0\n� 2; (2.5)

Cattaneo (1948) introduced a law of heat conduction to replace the classical Fourier
law in the form

qi þ s0 _qi ¼ �krT : (2.6)

Sherief, El-Sayed, and Abd El-Latief (2010) introduced a formula of heat conduction
as

qi þ s0
@nqi
@tn

¼ �k
@T

@t
: 0\n� 1; (2.7)

where

@n

@tn
f ðy; tÞ ¼

f ðy; tÞ � f ðy; 0Þ n ! 0;

In�1 @f ðy;tÞ
@t 0\n\1;

@f ðy;tÞ
@t n ¼ 1

8><
>: (2.8)

and proved a uniqueness theorem and derived a reciprocity relation and a variational
principle.

In the limit, as ξ tends to one, Equation (2.7) reduces to the well-known Cattaneo
law used by Lord and Shulman (1967) to derive the equation of the generalised theory
of thermoelasticity with one relaxation time.

Youssef (2010) introduced another formula of heat conduction and taking into
consideration (2.4)–(2.6)

qi þ s0
@qi
@t

¼ �kIn�1rT ; 0\n� 2; (2.9)

and a uniqueness theorem has been proved.
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Ezzat established a new model of fractional heat conduction equation by using the
new Taylor series expansion of time-fractional order, developed by Jumarie (2010) as

qi þ sn0
n!
@nqi
@tn

¼ �krT ; 0\n� 1; (2.10)

El-Karamany and Ezzat (2011) introduced two general models of fractional heat con-
duction law for a non-homogeneous anisotropic elastic solid. Uniqueness and reciprocal
theorems are proved, and the convolutional variational principle is established and used
to prove a uniqueness theorem with no restriction on the elasticity or thermal conduc-
tivity tensors except symmetry conditions. The two-temperature dynamic coupled LS
and fractional coupled thermoelasticity theories result as limit cases. For fractional ther-
moelasticity not involving two temperatures, El-Karamany and Ezzat (2011) established
the uniqueness, reciprocal theorems and convolution variational principle. The dynamic
coupled and Green–Naghdi (GN) thermoelasticity theories result as limit cases. The
reciprocity relation in case of quiescent initial state is found to be independent of
the order of differ integration (El-Karamany & Ezzat, 2011a, 2011b). Fractional order
theory of a perfect conducting thermoelastic medium not involving two temperatures
was investigated by Ezzat and El-Karamany (2011c). Fractional order two-temperature
generalised thermoelasticity with finite wave speed was investigated by Sur and
Kanoria (2012).

3. Basic equations

Equations of motion in absence of body forces are

q€ui ¼ rij; j: (3.1)

The constitutive equations are

rij ¼ 2leij þ ðkekk � chÞdij (3.2)

where eij ¼ 1
2 ðui; j þ uj; iÞ and θ = T − T0 such that jðT�T0Þj

T0
� 1.

Heat equation corresponding to generalised thermoelasticity proposed by LS and
GN in absence of heat source in unified form (Bagri & Eslami, 2007a, 2007b) is

In�1 aþ b
@

@t

� �
ðKh;iÞ;i þ cðK�h ;iÞ;i

� �
¼ a

@

@t
þ d

@2

@t2

� �
K

j
hþ cT0e

� �
(3.3)

where

a ¼ 1; b ¼ 0; c ¼ 0; d ¼ s0; n ¼ 1 for LS model;

a ¼ 0; b ¼ 1; c ¼ 1; d ¼ 1; n ¼ 1 for GN model III;

and c ¼ ð3kþ 2lÞat, αt is the coefficient of linear thermal expansion, e = ekk, τ0 is the
relaxation time for LS model, ρ is the density, T0 is the reference temperature and cv is
the specific heat at constant strain.

The elastic parameters are assumed to be temperature dependent. Thus, we replace
k, μ, K and K* by k0 f ðTÞ, μ0 f(T), K0 f(T) and K�

0 f ðTÞ respectively, where k0, μ0, K0

and K�
0 are assumed to be constants and f(T) is a given non-dimensional function of

temperature. Then, the equations corresponding to (3.1), (3.2) and (3.3) take the
following form
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rij ¼ f ðTÞ½2l0eij þ ðk0ekk � c0hÞdij�; (3.4)

q€ui ¼ f ðTÞ½2l0eij þ ðk0ekk � c0hÞdij�; j þ f ðTÞ; j½2l0eij þ ðk0ekk � c0hÞdij� (3.5)

and

In�1 aþ b
@

@t

� �
½K0f ðTÞh;i�;i þ c½K�

0 f ðTÞh;i�;i
� �

¼ a
@

@t
þ d

@2

@t2

� �
f ðTÞ K0

j
hþ c0T0e

� �� �
; (3.6)

where c0 ¼ ð3k0 þ 2l0Þat.
When the elastic terms, the thermal conductivity and additional material constant

for GN theories are temperature independent, then f(T) = 1 (Ezzat, Othman, &
El-Karamany, 2001).

4. Formulation of the problem

We consider an infinite isotropic elastic body with a cylindrical cavity of radius R in
an undisturbed state at initial temperature T0. We use the cylindrical coordinate sys-
tem (r, θ, z) with z-axis coincident with the axis of cylinder. Due to axial symmetry,
the problem is one dimensional with all the considered functions depending on the
radial distance r and the time t. Then, the displacement vector has the components
ur = u(r, t), uθ(r, t) = uz(r, t) = 0 and temperature T can be taken as T(r, t).

We will assume that

f ðTÞ ¼ 1� a�T ;

where α* is called the empirical material constant. Since jðT�T0Þj
T0

� 1, f(T) may be
approximated to

f ðTÞ ’ f ðT0Þ ¼ 1� a�T0:

So, in the context of linear theory of the generalised coupled thermoelasticity, the
equation of motion and heat equation can be written in their respective forms as:

q€u ¼ f ðT0Þ ðk0 þ 2l0Þ
@e

@r
� c0

@h
@r

� �
; (4.1)

In�1 K0 aþ b
@

@t

� �
r2hþ cK�

0r2h

� �
¼ a

@

@t
þ d

@2

@t2

� �
K0

j
hþ c0T0e

� �
(4.2)

and e is the cubical dilatation given by

e ¼ 1

r

@ðruÞ
@r

; (4.3)

and r2 is the Laplacian, given by,

r2 ¼ @2

@r2
þ 1

r

@

@r
:
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Constitutive equations in the present case are

rrr ¼ f ðT0Þ 2l0
@u

@r
þ k0e� c0h

� �
; (4.4a)

rhh ¼ f ðT0Þ 2l0
u

r
þ k0e� c0h

h i
; (4.4b)

rzz ¼ f ðT0Þ½k0e� c0h�; (4.4c)

rzr ¼ rhr ¼ rzh ¼ 0: (4.4d)

Introducing the following non-dimensional variables

r0 ¼ r

j
k0 þ 2l0

q

� �1=2

; u0 ¼ u

j
k0 þ 2l0

q

� �1=2

; t0 ¼ t

j
k0 þ 2l0

q

� �
;

s00 ¼
s0
j

k0 þ 2l0
q

� �
; R0 ¼ R

j
k0 þ 2l0

q

� �
; h0 ¼ h

T0
; r0 ¼ r

l0

where b1 ¼ c0T0
l , g ¼ c0j

K , b ¼ k0þ2l0
l0

� �1=2

, a1 ¼ b1
b2
.

Preceding equations take the following forms (dropping the primes for
convenience)

f ðT0Þ½r2e� a1r2h� ¼ @2e

@t2
; (4.5)

In�1 aþ bG
@

@t

� �
r2hþ cGk�r2h

� �
¼ a

@

@t
þ dG

@2

@t2

� �
ðhþ geÞ; (4.6)

rrr ¼ f ðT0Þ b2
@u

@r
þ ðb2 � 2Þ u

r
� b1h

� �
; (4.7a)

rhh ¼ f ðT0Þ ðb2 � 2Þ @u
@r

þ b2
u

r
� b1h

� �
; (4.7b)

rzz ¼ f ðT0Þ½ðb2 � 2Þe� b1h�; (4.7c)

where ðk0 þ 2l0Þ
qj ¼ G.

Taking the Laplace transform of both sides of Equations (4.5)–(4.7), we have

ðr2 � as2Þ�e ¼ a1r2�h; (4.8)

1

sn�1
ðaþ bGsþ cGK�Þr2 � ðasþ dGs2Þ

� �
�h ¼ ðasþ dGs2Þg�e; (4.9)

a�rrr ¼ b2
@�u

@r
þ ðb2 � 2Þ �u

r
� b1�h; (4.10)
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a�rhh ¼ ðb2 � 2Þ @�u
@r

þ b2
�u

r
� b1�h; (4.11)

a�rzz ¼ ðb2 � 2Þ�u� b1�h; (4.12)

where a ¼ 1
f ðT0Þ ¼

1
1�a�T0

.

Eliminating �e or �h from (4.8) and (4.9), one gets

1

sn�1
ðaþ bGsþ cGK�Þr4 � as2ðaþ bGsþ cGK�Þ

sn�1
þ ð1þ eÞðasþ dGs2Þ

� 	
r2

�

þ as2ðasþ dGs2Þ�f�h;�eg ¼ 0;

(4.13)

where ε = a1 g.
The solution of Equations (4.8) and (4.9) bounded at infinity can be written as:

�h ¼
X2
i¼1

AiðsÞðp2i � as2ÞK0ðpirÞ (4.14)

and

�e ¼
X2
i¼1

BiðsÞK0ðpirÞ (4.15)

where ±p1 and ±p2 are the roots of the characteristic equation

ðaþ bGsþ cGK�Þp4
sn�1

� as2ðaþ bGsþ cGK�Þ
sn�1

þ ð1þ eÞðasþ dGs2Þ
� 	

p2

þ as2ðasþ dGs2Þ ¼ 0:

(4.16)

From Equation (4.8), we obtain

BiðsÞ ¼ a1AiðsÞp2i ; i ¼ 1; 2: (4.17)

Hence, we get

�e ¼
X2
i¼1

a1AiðsÞp2i K0ðpirÞ: (4.18)

Taking the Laplace transform of Equation (4.3) and upon using (4.18) and integrating,
we have

�u ¼ �
X2
i¼1

a1AiðsÞpiK1ðpirÞ: (4.19)

Now substituting �h and �u into the Equations (4.10)–(4.12), we obtain

a�rrr ¼ a1
X2
i¼1

AiðsÞ b2as2K0ðpirÞ þ 2

r
piK1ðpirÞ

� �
; (4.20)

a�rhh ¼ a1
X2
i¼1

AiðsÞ ðb2s2a� p2i ÞK0ðpirÞ � 2

r
piK1ðpirÞ

� �
; (4.21)
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a�rzz ¼ a1
X2
i¼1

ðb2s2a� 2Þ p2i AiðsÞ K0ðpirÞ: (4.22)

In order to evaluate the unknown parameters Ai(s) (i = 1, 2), we use the boundary
conditions on the internal surface r = R, which is given by thermal boundary condition

hðR; tÞ ¼ h0HðtÞ (4.23)

and mechanical boundary condition

rrrðR; tÞ ¼ r0HðtÞ; (4.24)

where H(t) is the Heaviside unit step function.
Taking the Laplace transform of the boundary conditions (4.23) and (4.24), and

using the Equations (4.14)–(4.20), we get following system of two linear algebraic
equations

X2
i¼1

ðp2i � as2Þ K0ðpirÞ AiðsÞ ¼ h0
s

(4.25)

and

X2
i¼1

b2s2aK0ðpirÞ þ 2piK1ðpirÞ
r

� �
AiðsÞ ¼ ar0

a1s
: (4.26)

From the above two equations, the unknown parameters A1(s) and A2(s) can be
determined. Hence, we obtain the solutions in the Laplace transform domain. The result
agrees with that of Banik Mallik, and Kanoria (2009) for LS and GN-III model for
normal conductivity.

5. Numerical results and discussions

To get the solution for thermal displacement, temperature and stress in space time
domain, we have to apply the Laplace inversion formula to the Equatios (4.19), (4.14)
and (4.20), respectively. This has been done numerically using a method based on the
Fourier series expansion technique (Honig & Hirdes, 1984). To get the roots of the
polynomial Equation (4.16) in the complex domain, we have used the Laguerre’s
method. The numerical code has been prepared using the Fortran 77 programming
language. For the purpose of illustration, we consider the Copper metal with material
constants (Banik et al., 2009)

K0 ¼ 386Wm�1deg�1; at ¼ 1:78� 10�5 K�1; cE ¼ 3:831 JKg�1deg�1;

l0 ¼ 3:86� 1010 Nm�2; k0 ¼ 7:76� 1010 Nm�2; q ¼ 8954 kg m�3:

The other parameters are taken as (Banik et al., 2009)

b2 ¼ 4; T0 ¼ 293K; b1 ¼ :042; g ¼ 1:61; s0 ¼ :02; R ¼ 1;

a1 ¼ :0105; a� ¼ :0005 K�1:

Also we have taken t ¼ :4; h0 ¼ 1; r0 ¼ �:05: for computational purpose. In order to
study the effect of temperature-dependent material parameters, we have taken α = 1 and
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Figure 1. (a) Variation of radial stress σrr vs. r for t = .4 and α = 1.00. (b) Variation of radial
stress σrr vs. r for t = .4 and α = 1.17. (c) Variation of radial stress σrr vs. r for ξ = .5. (d) Variation
of radial stress component σrr vs. r for t = .4.
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α = 1.17. The variation of the stress distributions, temperature and displacement is
presented graphically in a number of figures for weak conductivity (ξ = .5), normal
conductivity (ξ = 1.0) and strong conductivity (ξ = 1.1).

Figure 1(a) and (b) represent the variation of the radial stress (σrr) against the radial
distance r for the LS and GN-III models for weak (ξ = .5), normal (ξ = 1.0) and strong
(ξ = 1.1) conductivity for α = 1.00 and α = 1.17, respectively. For both the figures, the
boundary condition is satisfied at the boundary of the cavity (r = 1). Here, the radial
stress component is compressive in all the cases of conductivity for both the models. It
is seen that the magnitude of the stress σrr is gradually decreases with the increment of
the radial distance r. It is also observed that the rate of decay of the magnitude of the
stress is high in the case of high conductive material (ξ = 1.1) in comparison with that
of the low conductive material (ξ = .5) for both the models. This is physically plausible.
In this connection, it is noticed that the magnitude of the radial stress is large for the
GN-III model compared to LS model for all the cases of conductivity.

Figure 1(c) shows the variation of radial stress σrr vs. the radial distance r for both
the LS and GN-III models for ξ = .5, t = .4 and σ0 = −1. For the small values of the
stress σrr in comparison with σ0 = −1, all the graphs for α = 1.00 and α = 1.17 are coin-
cides. Also Figure 1(c) shows the same qualitative behaviour with those of Banik et al.
(2009).

Figure 1(d) represents the variation of the radial stress vs. radial distance for
both the LS model and GN-III model for all types of conductivity (ξ = .5, ξ = 1.0
and ξ = 1.1). The other parameters are taken as t = .4, σ0 = −1 and α = 1.17. Here, all
the graphs are coincident. This phenomenon is obvious, since the numerical values
of σrr are very small in comparison with the imposed stress (σ0 = −1) on the
boundary of the cavity. Therefore, the differences of the numerical values of σrr for
ξ = .5, ξ = 1.0 and ξ = 1.1, and for fixed r are very small. Also Figure 1(d) shows
the same qualitative behaviour with those of Banik et al. (2009) for ξ = 1.0.

Figure 2 is plotted to show the variation of the hoop stress (σθθ) against the radial
distance r for the LS and GN-III models for weak (ξ = .5), normal (ξ = 1.0) and strong
(ξ = 1 .1) conductivity for α = 1.17. It is seen that the magnitude of the stress σθθ gradu-
ally decreases with the increment of the radial distance r. Also, the rate of decay of the
magnitude of the stress is large for high conductivity (ξ = 1.1) compared with that of
the low conductivity (ξ = .5) for both the models. It is also noticed that the magnitude
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of the hoop stress is large for the GN-III model compared to LS model for all the cases
of conductivity.

Figure 3 shows the variation of the stress component σzz against the radial distance
r for the time t = .4 and α = 1.17. The magnitude of the stress σzz gradually decreases
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Figure 3. Variation of stress σzz vs. r for t = .4 and α = 1.17.
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after r = 1.4 in the increment of the radial distance r. The behaviour of the stress
component σzz is completely different from the other two stress components σrr and
σθθ. The stress component σzz is somewhere compressive and somewhere reflexive.
But, the other two stress components σrr and σθθ are compressive into the whole
region.

Figure 4(a) represents the variation of the temperature θ vs. the radial distance r for
the LS and GN-III models for weak (ξ = .5), normal (ξ = 1.0) and strong (ξ = 1.1) con-
ductivity for α = 1.17. From the figure it is seen that at the boundary r = 1, the magni-
tude of the temperature θ is 1, which agrees with the imposed boundary condition. The
magnitude of the temperature θ is maximum at r = 1, where the step-input temperature
is imposed and then the temperature θ gradually decreases with increasing r. This is
physically plausible. Here, the temperature is reflexive. It is also observed that the rate
of decay of the magnitude of the temperature is large in the case of high conductive
material (ξ = 1.1) in comparison with that of the low conductive material (ξ = .5) for
both the models.

Figure 4(b) shows the variation of the temperature θ against the radial distance r
for the LS and GN-III model for weak conductivity ξ = .5 with α = 1.00 and α = 1.17.
The boundary condition θ = 1 is satisfied on the boundary for both the models. Here,
the magnitude of the temperature is large for GN-III model in comparison with the LS
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model. Due to the small changes in the magnitude of the temperature for fixed r, no
effect is observed for α = 1.00 and α = 1.17. Figure 4(b) shows the same qualitative
behaviour with those of Banik et al. (2009) for ξ = 1.0.

Figure 5(a) represents the variation of the displacement u against the radial distance
r for the LS and GN-III models for weak (ξ = .5), normal (ξ = 1.0) and strong (ξ = 1.1)
conductivity for α = 1.17. It is seen that the magnitude of displacement rapidly
decreases in the region 1 ≤ r ≤ 1.4 and then slowly decreases in the region under
consideration. All the graphs of the displacement are reflexive for all the cases under
consideration.

Figure 5(b) represents the variation of the displacement u vs. the radial distance for
both the LS and GN-III model for all types of conductivity (ξ = .5, ξ = 1.0 and ξ = 1.1).
The other parameters are taken as t = .4, σ0 = −1 and α = 1.17. Here, all the graphs in
the figure are coincident. This is due to the small changes of the numerical values of u
in different values of r. Also Figure 5(b) shows the same qualitative behaviour with
those of Banik et al. (2009) for ξ = 1.0.

6. Conclusions

The problem of investigating the stress, temperature and displacement in an infinite iso-
tropic elastic body having a cylindrical cavity is studied in the light of LS and GN-III
model in the context of fractional heat conduction equation. The method of Laplace
Transform is used to write the basic equations which is then solved by Laguerre’s
method. The numerical inversion of Laplace Transform is computed by the method of
Fourier series expansion technique. The analysis of the result permits some concluding
remarks:

(1) It is observed that the rate of decay of the magnitude of the stress and tempera-
ture is high in the case of high conductive material (ξ = 1.1) in comparison with
that of the low conductive material (ξ = .5) for both the models.

(2) It is noticed that the magnitude of the radial stress and hoop stress is large for
the GN-III model compared to LS model for all the cases of conductivity.

(3) The effects of fractional order in the temperature equations are clearly observed
in the figures.

(4) The results carried out in this paper can be used to design various instruments
under fractional order thermoelasticity theory to meet engineering requirements.
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