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Thermal contact resistance (TCR) is a very important phenomenon in heat transfer
problems, such as power generation, air conditioning, refrigeration, aerospace, etc.
due to the complex mechanism of heat transfer in the contact surfaces; measure-
ments and calculations of the TCR have many difficulties and problems. Today, one
of the effective methods to investigate these problems is the use of inverse heat
transfer. The objective of this work is to estimate the contact heat transfer coefficient
(reverse of TCR) between the tube and its fin in heat exchanger. Two different
methods, consisting of Levenberg–Marquardt for parameter estimation and conjugate
gradient with adjoint problem for function estimation conjugate gradient method
(CGM), are used. Results show that the CGM is successfully applied for the solution
of the inverse problem to determine the unknown time-dependent TCR.

Keywords: thermal contact resistance; fin-tube heat exchanger; inverse heat transfer
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Introduction

The thermal contact resistance (TCR) is of interest in many fields in industries, such
as heat exchangers. The thermal performance of the heat exchanger is dependent on
this parameter. In the past years, the study of thermal contact has been of increasing
interest to researchers and industrial engineers (Ayers, 2003; Lambert & Fletcher,
1997; Litke, 2002; Madhusudana, 1996; Rosochowska, Chodnikiewicz, & Balendra,
2004; Zhang, Cong, & Fujii, 2006). A number of these researches are related to fixed
thermal contact. A study on the effect of TCR in a fin–tube heat exchanger was first
attempted by Dart (1959). In his study, TCR was tested with several samples with
two passages, which were one for cold and the other for hot water. To minimise the
influence of the natural convection, the tube was placed in a vacuumed space. Abue-
bid (1984) investigated the TCR with plate-finned tube heat exchangers placed in a
vacuum. He performed an error analysis, which is similar to the Eckels’ method. But
the error band was narrower. Shah (1986) investigated the effect of pressure distribu-
tion on the collar, analysing the temperature distribution in the fin and collar. Eckels
and Rabas (1987) predicted the thermal contact conductance by varying the number of
fin, the fin thickness and the diameter of tube in the wet and the dry fin–tube heat
exchangers. In addition, they improved the empirical method, based on Draft’s
method, including error analysis. Sheffield, Sauer, and Wood (1987) considered the
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contact pressure as the significant factor for the TCR. They introduced the influence
of surface hardness and studied the correlation between contact pressure and expansion
interference (hardness and roughness). Nho and Yovanovich (1989) found that the
TCR, as a fraction of the overall resistance in a vacuum environment, ranged from
17.6 to 31.5%. Stubblefield, Pang, and Coundy (1996) studied the heat loss by TCR
using insulated pipe and presented a simple method to predict the effect of contact
resistance. Salgon (1997) theoretically predicted the thermal contact conductance,
which was presented as a function of contact pressure and compared to the experimen-
tal data. Kim, Jeong, Young, and Kim (2004) evaluated the thermal contact conduc-
tance using experimental–numerical method. They evaluated thermal contact
conductance on various fin–tube heat exchangers with 9.25mm tubes. Therefore, a
new correlation between the thermal contact conductance and effective factors, such as
expansion ratio, fin type, fin spacing and hydrophilic coating, has been developed.
Jeong, Kim, and Youn (2006) investigated the new factors, such as fin types (plate
fin, slit fin and wide slit fin) and manufacturing types of the tube (drawn tube and
welded tube), affecting the thermal contact conductance and presented a new correla-
tion between the effective factors and the thermal contact conductance in fin–tube heat
exchangers with 7mm tubes. Several studies have discovered the forming of defects at
the joint which causes deterioration of the heat transfer. Yang (2007) estimated the
TCR and thermally induced optical effects in single-coated optical fibres. He calcu-
lated TCR by the conjugate gradient method (CGM) and shows that CGM was suc-
cessfully applied for the solution of the inverse problem to determine the unknown
time-dependent TCR of a carbon-coated optical fibre, while knowing the temperature
history at the measurement location in the optical fibre. Subsequently, the temperature
distributions, the thermally induced transient micro-bending loss and the refractive
index changes of the optical fibre are also calculated. Critoph, Holland, and Turner
(1996) examined the tube–fin interface under the microscope and reported that a gap
of .01mm would increase the overall resistance by 10%. ElSherbini and Jacobi (2002)
noted that high contact resistance can disappear, when a thin layer of frost fills the
gaps between the fins and tubes. Cheng and Madhusudana (2006) evaluated the TCR
of tube–fin heat exchanger with direct method by measuring the temperature drop and
heat flux across the interface. Ding, Dayong, Yinghong, and Zhaohui (2010) provided
a novel method for a preliminary evaluation of the thermal contact conductance with
numerical method. They investigated tube/fin-joining status after expansion process
and contact pressure, as well as portions of contact area between the fin collar and the
tube.

In the research conducted so far, the inverse heat transfer methods to estimate the
unknown TCR in fin–tube heat exchangers, as one of the most important design param-
eters, is not used. Thus, in this paper, the estimation of TCR is investigated using the
inverse heat transfer techniques.

The definition of the problem

TCR occurs where two solid specimens (such as pipe and fin in tube–fin heat
exchangers) are pressed together. It has long been realised that surfaces are rough
on a microscopic scale, which causes the real contact area to be significantly
smaller compared to the nominal contact area. This behaviour causes a large tem-
perature drop and TCR in the contacting surface. The existence of TCR has a great
influence on the thermal performance of the heat exchangers. Thus, the TCR or
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heat flow at the interface of two specimens must be determined, and then
controlled.

Figure 1 shows a simple schematic of the problem. The two cylindrical samples as
tube and fin (specimen 1 and specimen 2), are in contact with each other. The thermal
contact conductance coefficient between them is h(t), which is the reverse of TCR
RcðtÞ. The end of other samples, one is in constant temperature and the other one is
insulated.

Because of the complexity of heat flow mechanism in the connection surface, the
heat flux in the contact surface is simulated according to the following equation (Ozisik,
1993):

q ¼ hcðTc1 � Tc2Þ ð1Þ

Since the aim of this research is mostly the study of TCR, the heat transfer in samples
has been considered only for conduction. Therefore, the equations of the discussed
problem are:

For specimen 1:

K1
o2T1

ox2
¼ q1cp1

oT1

ot
ð0\x\L and t > 0Þ ð2-1Þ

T1 ¼ TA ðx ¼ 0 and t[0Þ ð2-2Þ

�K1
oT1

ox
¼ hðtÞ½Tc1 � Tc2� ðx ¼ L and t[0Þ ð2-3Þ

T1ðx; 0Þ ¼ Tinf ð2-4Þ

For specimen 2:

K2
o2T2

ox2
¼ q2cp2

oT2

ot
ðL\x\2L and t > 0Þ ð3-1Þ

Figure 1. (a) Contacting specimens (b) Circular L-shaped fins.
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�K2
oT2

ox
¼ hðtÞ½Tc1 � Tc2� ðx ¼ L and t[0Þ ð3-2Þ

oT2

ox
¼ 0 ðx ¼ 2L and t[0Þ ð3-3Þ

T2ðx; 0Þ ¼ Tinf ð3-4Þ

Inverse methods

The inverse heat conduction problem of interest is defined using the above equations.
The unknown parameter is the thermal contact conductance. The main objective of the
IHCP is the calculation of the thermal contact conductance or heat flux in contact sur-
face. In this paper, two powerful techniques, one is Levenberg–Marquardt method for
parameter estimation and the other is CGM with adjoint problem, are used for inverse
heat transfer problems.

Technique 1: Levenberg–Marquardt

The first technique is an iterative method for solving nonlinear least squares problems
of parameter estimation (Ozisik & Orlande, 2000). The solution of inverse heat transfer
problem with the Levenberg–Marquardt method can be suitably arranged in the follow-
ing basic steps:

The direct problem

In the direct problem associated with the physical problem described above, the time-
varying thermal contact conductance hðtÞ is known. The objective of the direct problem
is then to determine the transient temperature field Tðx; tÞ. For this purpose, the finite
volume method is used. The central difference scheme and implicit method is used for
temporal and spatial discretisation, respectively. The number of grids on each sample is
20 in this study. In this study, the time step is 1 s.

The inverse problem

For the inverse problem considered here, the thermal contact conductance is regarded
as the unknown parameter. The additional information obtained from transient tempera-
ture measurements taken at a location x ¼ xmeas, at times ti, i ¼ 1; 2; . . . ; I , is then used
for the estimation of hðtÞ.

For the solution of the present inverse problem, we consider the unknown function
hðtÞ to be parameterised in the following general linear form:

hðtÞ ¼
XN
j¼1

pjCjðtÞ
� � ð4Þ
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Here, pj are unknown parameters and CjðtÞ are known trial functions (e.g.
polynomials, B-plines, etc.). In addition, the total number of parameters, N, is specified.
And in this problem, we considered:

hðtÞ ¼ p1 � tn ð5Þ

The problem given by Equations (2) and (3) with hðtÞ unknown, but parameterized
as given by Equation (5), is an inverse heat conduction problem in which the coefficient
pj is to be estimated. The solution of this inverse heat conduction problem for the esti-
mation of the N unknown parameters pj, j ¼ 1; . . .N is based on the minimisation of
the ordinary least squares norm, given by:

SðpjÞ ¼
XI

i¼1

½Yi � TiðpjÞ�2 ð6Þ

where S: sum of squares error or objective function; pTj � ½p1; p2; . . . ; pN �: vector of
unknown parameters; TiðpjÞ � Tðpj; tiÞ: estimated temperature at time ti; Yi � Y ðtiÞ:
measured temperature at time ti; N: total number of unknown parameters; I: total num-
ber of measurements, where I � N . And this problem we considered:

Sðp1Þ ¼
XI

i¼1

XN1

j¼1

ðT1ij � Y1ijÞ2 þ
XI

i¼1

XN2

k¼1

ðT2ik � Y2ikÞ2 ð7Þ

The estimated temperatures TiðpjÞ are obtained from the solution of the direct prob-
lem at the measurement location, xmeas, by using the current estimate for the unknown
parameters pj, j ¼ 1; . . .N . Equation (6) can be written in matrix form as:

SðpjÞ ¼ ½Y � TðpjÞ�T ½Y � TðpjÞ� ð8Þ

The iterative procedure for technique

To minimise the least squares norm given by Equation (7), we needed to equate to zero
the derivatives of SðpjÞ with respect to each of the unknown parameters ½p1; p2; . . . ; pN�,
that is

oSðpjÞ
op1

¼ oSðpjÞ
op2

¼ . . . ¼ oSðpjÞ
opN

¼ 0 ð9Þ

Such necessary conditions for the minimisation of SðpjÞ can be represented in
matrix notation by equating the gradient of SðpjÞ with respect to the vector of
parameters pj to zero, that is

rSðpjÞ ¼ 2 � oTT ðpjÞ
opj

� �
½Y � TðpjÞ� ¼ 0 ð10Þ
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The sensitivity or Jacobian matrix, JðpjÞ, is defined as the transpose of � oTT ðpjÞ
opj

h i
,

that is,

JðpjÞ ¼ oTT ðpjÞ
opj

� �T
ð11Þ

By using the definition of the sensitivity matrix, Equation (10) becomes

�2JTðpjÞ½Y � TðpjÞ� ¼ 0 ð12Þ

There are several different approaches for the computation of the sensitivity coeffi-
cient. We present below the boundary value problem approach for determining the sen-
sitivity coefficients: a boundary value problem can be developed for the determination
of the sensitivity coefficients by differentiating the original direct problem with respect
to the unknown coefficients. If the direct heat conduction problem is linear, the con-
struction of the corresponding sensitivity problem is a relatively simple straightforward
matter (Ozisik & Orlande, 2000). For this problem:

For specimen 1:

K1
o2J1
ox2

¼ q1cp1
oJ1
ot

ð0\x\L and t[0Þ ð13-1Þ

J1 ¼ 0 ðx ¼ 0 and t[0Þ ð13-2Þ

�K1
oJ1
ox

¼ tn½Tc1 � Tc2� þ p1t
n½Jc1 � Jc2� ðx ¼ L and t[0Þ ð13-3Þ

J1ðx; 0Þ ¼ 0 ð13-4Þ

For specimen 2:

K2
o2J2
ox2

¼ q2cp2
oJ2
ot

ðL\x\2L and t[0Þ ð14-1Þ

�K2
oJ2
ox

¼ tn½Tc1 � Tc2� þ p1t
n½Jc1 � Jc2� ðx ¼ L and t[0Þ ð14-2Þ

oJ2
ox

¼ 0 ðx ¼ 2L and t[0Þ ð14-3Þ

J2ðx; 0Þ ¼ 0 ð14-4Þ

In the case of a nonlinear problem, the sensitivity matrix has some functional
dependence on the vector of unknown parameters pj. The solution of Equation (12)
for nonlinear estimation problems then requires an iterative procedure, which is
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obtained by linearising the vector of estimated temperatures, TðpjÞ, with a Taylor ser-
ies expansion around the current solution pkj at iteration k. Such a linearisation is

given by:

TðpjÞ ¼ Tðpkj Þ þ J kðpj � pkj Þ ð15Þ

The resulting expression is rearranged to yield the following iterative procedure to
obtain (Ozisik, 1993) the vector of unknown parameters pj:

pkþ1
j ¼ pkj þ ðJ kÞTJ k

� ��1ðJ kÞT Y � Tðpkj Þ
h i

ð16Þ

The iterative procedure given by Equation (16) is called the Gauss method. We
require the matrix JTJ to be nonsingular, or jJTJ j – 0. Where j:j is the determinate.
The Levenberg–Marquardt method alleviates such difficulties by utilising an iterative
procedure in the form:

pkþ1
j ¼ pkj þ ðJ kÞTJ k þ lkXk

� ��1
J k
� �T

Y � Tðpkj Þ
h i

ð17Þ

The purpose of the matrix term lkXk , included Equation (17), is to damp oscilla-
tions and instabilities due to the ill-conditioned character of the problem by making its
components large as compared to those of JTJ if necessary.

The stopping criteria

The following criteria were suggested by Dennis and Schnabel to stop the iterative
procedure of the Levenberg–Marquardt method:

S pkþ1
j

� 	
\e1 ð18-1Þ

kpkþ1
j � pkj k\e2 ð18-2Þ

where e1, e2 and e3 are user-prescribed tolerance and k:k is the vector Euclidean norm,

i.e., x ¼ xTxð Þ1=2, where the superscript denotes transpose.
In this paper we considered e ¼ 10�3.

The computational algorithm

Different versions of the Levenberg–Marquardt method depend on the choice of the
diagonal matrix Xk and on the form chosen for the variation of the damping parameter

lk . We illustrate here a procedure with the matrix Xk taken as

Xk ¼ diag ðJ kÞTJ k
� � ð19Þ

Suppose that temperature measurements Y ¼ ðY1; Y2; . . . ; YI Þ are given at times ti,
i ¼ 1; . . . ; I . Also, suppose an initial guess P0 is available for the vector of unknown
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parameters P. Choose a value for l0, (l0 ¼ 0:001) and set. Then,

Step 1. Solve the direct heat transfer problem, with the available estimate Pk in
order to obtain the temperature vector Tðpkj Þ ¼ ðT1; T2; . . . ; TI Þ.

Step 2. Compute Sðpkj Þ.
Step 3. Compute the sensitivity matrix and then the matrix Xk by using the current

values of Pk .
Step 4. Solve the following linear system of algebraic equation:

ðJ kÞTJ k þ lkXk
� �

Dpj
k ¼ ðJ kÞT Y � Tðpkj Þ

h i
ð20Þ

In order to compute Dpk , Dpjk ¼ pkþ1
j � pkj

Step 5. Compute the new estimate pkþ1
j as

pkþ1
j ¼ pkj þ Dpj

k ð21Þ

Step 6. Solve the direct problem with the new estimate pkþ1 in order to find
Tðpkþ1Þ. Then, compute Sðpkþ1

j Þ.
Step 7. If Sðpkþ1

j Þ � Sðpkj Þ, replace lk by 10 lk and return to step 4.
Step 8. If Sðpkþ1

j Þ\Sðpkj Þ, accept the new pkþ1
j and replace lk by 0:1 lk.

Step 9. Check the stopping criteria. Stop the iterative procedure if is satisfied; other-
wise, replace k by k þ 1 and return to step 3.

Technique 2: CGM with adjoint problem for function estimation

Here, we present a powerful iterative minimisation scheme called the ‘conjugate radient
method of minimisation with adjoint problem’ for solving inverse heat transfer prob-
lems of function estimation. In this approach, no a priori information on the functional
form of the unknown function is considered available, except for the functional space
that it belongs to. To illustrate this technique, the basic steps for the solution of function
estimation problem, include:

The direct problem

The direct problem has been described above.

The inverse problem

The inverse problem, on the other hand, is concerned with the estimation of the
unknown function hðtÞ by using the reading taken by a sensor located x ¼ xmeas.

The sensitivity problem

The sensitivity function DTðx; tÞ solution of the sensitivity problem is defined as the
directional derivative of the temperature Tðx; tÞ in the direction of the perturbation of
the unknown function. The sensitivity function is needed for the computation of the
search step size.

The sensitivity problem is obtained from the direct problem in the following manner.
It is assumed that when hðtÞ undergoes a variation DhðtÞ, T1ðx; tÞ is perturbed by DT1ðx; tÞ
and T2ðx; tÞ is perturbed by DT2ðx; tÞ. Then, by replacing in the direct problem hðtÞ by
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½hðtÞ þ DhðtÞ�, T1ðx; tÞ by ½T1ðx; tÞ þ DT1ðx; tÞ� and T2ðx; tÞ by ½T2ðx; tÞ þ DT2ðx; tÞ�, sub-
tracting from the resulting expressions the original direct problem and neglecting second-
order terms, the sensitivity problem for the sensitivity functions DT1ðx; tÞ and DT2ðx; tÞ is
obtained.

For specimen 1:

K1
o2DT1

ox2
¼ q1cp1

oT1

ot
ð0\x\L and t[0Þ ð22-1Þ

DT1 ¼ 0 ðx ¼ 0 and t[0Þ ð22-2Þ

�K1
oDT1

ox
¼ hðtÞ½DTc1 � DTc2� þ Dhc½Tc1 � Tc2� ðx ¼ L and t[ 0Þ ð22-3Þ

DT1ðx; 0Þ ¼ 0 ð22-4Þ

For specimen 2:

K2
o2DT2

ox2
¼ q2cp2

oDT2

ot
ðL\x\ 2L and t[0Þ ð23-1Þ

�K2
oDT2

ox
¼ hðtÞ½DTc1 � DTc2� þ Dhc½Tc1 � Tc2� ðX ¼ L and t[0Þ ð23-2Þ

oDT2

ox
¼ 0 ðx ¼ 2L and t[0Þ ð23-3Þ

DT2ðx; 0Þ ¼ 0 ð23-4Þ

The adjoint problem

In the present inverse problem, the estimated temperatures need to satisfy two
constraints, which are the heat conduction problems for specimens 1 and 2. Therefore,
two Lagrange multipliers come into image here. To obtain the adjoint problem, Equa-
tion (2-1) is multiplied by the Lagrange multiplier k1ðx; tÞ, Equation (3-1) is multiplied
by the Lagrange multiplier k2ðx; tÞ and the resulting expressions are integrated over the
time and space domains. Then, the results are added to the right-hand side of Equation
(7) to yield the following expression for the function S½hðtÞ�:

S½hðtÞ� ¼
Zs

0

XN1

j¼1

ðT1j � Y1jÞ2
" #

dt þ
Zs

0

XN2

k¼1

ðT2k � Y2kÞ2
" #

dt þ
Zs

0

ZL

o

k1ðx; tÞ

� K1
o2T1

ox2
� q1cp1

oT1

ot

� �
dxdt þ

Zs

0

Z2L
L

k2ðx; tÞ K2
o2T2

ox2
� q1cp1

oT2

ot

� �
dxdt ð24Þ
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The variation rS½hðtÞ� is obtained by perturbing T1ðx; tÞ by DT1ðx; tÞ and T2ðx; tÞ
by DT2ðx; tÞ, in Equation (24), subtracting from the resulting expression the original
Equation (24) and neglecting second-order terms. Consequently, we find

DS½hðtÞ� ¼
Z s

0

Z L

0

XN1

j¼1

2DT1jðT1j � Y1jÞdðx� xjÞdxdt

þ
Z s

0

Z 2L

L

XN2

k¼1

2DT2kðT2k � Y2kÞdðx� xkÞdxdt

þ
Z s

0

Z L

o

k1ðx; tÞ K1
o2T1

ox2
� q1cp1

oT1

ot

� �
dxdt

þ
Z s

0

Z 2L

L

k2ðx; tÞ K2
o2T2

ox2
� q1cp1

oT2

ot

� �
dxdt ð25Þ

In Equation (25), the last two integral terms are integrated by parts; the initial and
boundary conditions of the sensitivity problem are utilised, and then DS½hðtÞ� is allowed
to go to zero. The vanishing of the integrands containing DT1ðx; tÞ and DT2ðx; tÞ leads to
the adjoint problem for the determination of the Lagrange multipliers k1ðx; tÞ and k2ðx; tÞ

For specimen 1:

K1
o2k1
ox2

q1cp1
oJ1
ot

þ
XN1

j¼1

2DT1jðT1j � Y1jÞdðx� xjÞ ¼ 0 ð0\x\L and t[0Þ ð26-1Þ

k1 ¼ 0 ðx ¼ 0 and t > 0Þ ð26-2Þ

K1
ok1
ox

¼ hðtÞ½k2ðL; tÞ � k1ðL; tÞ� ðx ¼ L and t[0Þ ð26-3Þ

k1ðx; sÞ ¼ 0 ð26-4Þ

For specimen 2:

K2
o2k2
ox2

q2cp2
oJ2
ot

þ
XN2

k¼1

2DT2kðT2k � Y2kÞdðx� xkÞ ¼ 0 ð0\x\L and t[0Þ ð27-1Þ

k2 ¼ 0 ðx ¼ 0 and t[0Þ ð27-2Þ

K2
ok2
ox

¼ hðtÞ½k2ðL; tÞ � k1ðL; tÞ� ðx ¼ L and t[0Þ ð27-3Þ

k2ðx; sÞ ¼ 0 ð27-4Þ
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The gradient equation

In the limiting process used to obtain the adjoint problem above, only one integral term
is left; the following expression for the gradient rSðpÞ is obtained by:

rSðpÞ ¼ f½k2ðL; tÞ � k1ðL; tÞ�½Tc1ðL; tÞ � Tc2ðL; tÞ�g ð28Þ

The iterative procedure

The iterative procedure of the CGM for the minimisation of the norm SðhðtÞÞ is given
by:

hkþ1ðtÞ ¼ hkðtÞ � bkdk ð29Þ

The direct of descent is a conjugation of the gradient direction, rSðhkðtÞÞ, and the
direction of descent of the previous iteration, dk�1. It is given as:

dkðtÞ ¼ rShkðtÞ þ ckdk�1ðtÞ ð30Þ

The Fletcher–Reeves expression for the conjugate coefficient ck is given as (Ozisik
& Orlande, 2000):

ck ¼
R s
0 frSbhkðtÞcg2dtR s

0 frSbhk�1ðtÞcg2dt for k ¼ 1; 2; . . . With ck ¼ 0 for k ¼ 0 ð31Þ

The search step size bk appearing is obtained by minimising the function S hkþ1ðtÞ� �
with respect to bk . The minimisation with respect to bk is performed to yield the fol-
lowing expression for the search step size:

bk ¼
R s
t¼0f

PN1
j¼1½ðT1j � Y1jÞ�DT1j þ

PN2
k¼1½ðT2k � Y2kÞ�DT2kgdtR s

0 f
PN1

j¼1½DT1j�2 þ
PN2

k¼1½DT2k �2gdt
ð32Þ

After computing the gradient direction, the conjugate coefficient and the search step
size, the iterative procedure is implemented until a stopping criterion based on the dis-
crepancy principle is satisfied.

The stopping criterion

As for the first technique, the stopping criterion is based on the discrepancy
principle, when the standard deviation r of the measurements is a priori known. It is
given by:

SðpkÞ\e ð33Þ

In this paper we considered: e ¼ 10�3
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The computational algorithm

The computational algorithm for the CGM with adjoint problem for function estimation
can be summarised as follows.

Suppose an initial guess h0ðtÞ is available for the function hðtÞ. Set k ¼ 0 and then:
Step 1: Solve the direct problem and compute T1ðx; tÞ and T2ðx; tÞ based on h0ðtÞ.
Step 2: Check the stopping criterion. Continue if not satisfied.
Step 3: Knowing T1ðx; tÞ and T2ðx; tÞ and measured temperatures Y1ðtÞ and Y2ðtÞ, solve

the adjoint problem and compute k1ðl; tÞ and k2ðl; tÞ.
Step 4: Knowing k1ðl; tÞ and k2ðl; tÞ, compute rS½hðtÞ�.
Step 5: Knowing the gradient rS½hðtÞ�, compute ck and then compute dk .
Step 6: Set DhkðtÞ ¼ dkðtÞ and solve the sensitivity problem to obtain DT1ðx; tÞ and

DT2ðx; tÞ.
Step 7: Knowing DT1ðx; tÞ and DT2ðx; tÞ, compute bk .
Step 8: Knowing bkand dk , compute the new estimate hkþ1ðtÞ and return to step 1.

Results and discussion

The purpose of this study is to estimate the thermal contact conductance between two
samples (pipe of heat exchanger and the connected fin). The samples are constructed of
aluminium. The physical and thermal characteristics of samples are represented in
Table 1.

The initial temperatures of two materials are 20 °C. These two substances have
connected with each other, one is in a temperature of 60 °C and another one is insu-
lated. Both samples have insulations around them so that they do not lose temperature
radially.

It is used from simulated data, because of absence of laboratory data that they are
related to temperatures in both samples, in recognised positions. A series of simulated
experiments is performed to ensure the ability of the inverse scheme in estimating the
space-variable heat transfer coefficient. For this purpose, it is used from simulated data
for two conditions:

(1) the thermal contact conduction that is fixed
(2) the thermal contact conduction that is nonlinear.

In order to compare the results for situations involving random measurement error,
we assume normally distributed uncorrelated errors with zero mean and constant stan-
dard deviation. The simulated inexact measurement data Y can be expressed as:

Table 1. The physical and thermal characteristics of experimented samples.

Materials type Aluminium

Conductivity coefficient (k) 237W/mK
Density (ρ) 2702 kg/m3
Heat capacitance ðcpÞ 903 J/kgK
Length (L) 3 cm
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Y ¼ Yexact þ xr ð34Þ

where Yexact is the solution of the direct problem with the exact values of hðtÞ; r is the
standard deviation of the measurements; and x is a random variable with normal distri-
bution and zero mean. For 99% confidence level we have �2:576\x\2:576.

We use equidistant time steps of 1 s, both for the time discretisation and for sam-
pling the data. For generation of the data, as well as for solving the inverse problem, a
mesh with 40 control volumes is used. Since variations in the temperature are only due
to physical conditions of the contacting surface, the mesh is chosen to be finer in the
region of interest where the temperature sensors are located. The simulated data (noise-
free temperature measurements) are generated by solving direct problem with all consid-
erable state for thermal contact conductance by adding an allowable error. To avoid
inverse crimes, the inverse problem is solved using only measurement data which are

Table 2. The results thermal contact conduction fixed by technique 1.

r (standard deviation) Number of iterations CPU time (s) hc Error %

.00 8 .4131 599.8931 .0178

.01 10 .5214 599.7832 .0361

.05 13 .7933 599.5102 .0816

.1 21 1.221 599.2734 .1211

Table 3. The results thermal contact conduction fixed by technique 2.

r (standard deviation) Number of iterations CPU time (s) hc Error %

.00 12 10.489 599.972 .00467

.01 18 22.205 600.069 .0115

.05 26 38.935 600.074 .0123

.1 59 46.261 600.131 .0218

Table 4. The results thermal contact conduction nonlinearly by technique 1.

r (standard
deviation)

Number of
iterations

CPU
time (s)

RMS
error V=RMS2�D2 D= .0324

.00 17 4.9931 .0324 0

.01 24 7.2261 1.1818 1.3956

.1 31 10.5486 1.9248 3.7038

Table 5. The results thermal contact conduction nonlinearly by technique 2.

r (standard
deviation) Number of iterations CPU time (s) RMS error V=RMS2�D2 D= 1.0200

.00 41 20.730 1.0200 0

.01 81 38.823 2.0855 3.3089

.1 120 59.341 4.1088 15.4422
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generated with small standard deviation. All numerical tests are realised in the open
source finite volume code.

Figure 2. (a) The estimated function of hðtÞ without adding r by technique Levenberg–
Marquardt; (b) the estimated function of hðtÞ with r ¼ 0:01 by technique Levenberg–Marquardt;
(c) the estimated function of hðtÞ with r ¼ 0:1 by technique Levenberg–Marquardt; (d) the esti-
mated function of hðtÞ without adding r by technique conjugate gradient with adjoint problem for
estimated function; (e) the estimated function of hðtÞ with r ¼ 0:01 by techniquegradient with
adjoint problem for estimated function; and (f) the estimated function of hðtÞ with r ¼ 0:1 by
technique gradient with adjoint problem for estimated function.
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(1) Thermal contact conduction that is fixed ðh ¼ 600Þ:
The estimated results in this condition are shown in Tables 2 and 3.
According to the estimated data in this table, the CGM method is more exact, but it

has more performing time and iterations number. The run time of the first method is
less than the CGM method.

(2) Thermal contact conduction that is nonlinearly ðh ¼ 2t0:7Þ:
The results in this condition are shown in the Tables 4 and 5 and Figure 2. The

results represent that the estimated parameter is associated with large errors when the
noise data level is more. Bias (index of deviation from the actual value), variance
(index of intensity of fluctuations) and sensitivity coefficients are good judgment param-
eters in determining the best experimental set-up. The final target of the estimations is
the heat transfer coefficient on each interval. For each interval, bias (D) is defined for
the IHCP as:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðĥci;nonoise � hci;trueÞ2
vuut ð35Þ

where ĥci;nonoise noise is the estimated heat flux using the measurements containing no
noise. The root mean square (RMS) error is also calculated by:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðĥci;noisydata � hci;trueÞ2
vuut ð36Þ

where ĥci;noisydata data is the estimated heat flux using the temperature data polluted with
noise. In Figure 2, all the results are displayed simultaneously. Figure 2 shows the
time-dependent thermal contact conductance at contacting surfaces of tube and fin for
two inverse heat transfer method. From Figure 2, we found that the accuracy of the
inverse solution is acceptable, and therefore this assumption can be used in real estima-
tion. In fact, we can validate the estimation of thermal contact conductance with CGM
by utilising the simulated measured data in order to use actual measured data containing
errors as the input to the analysis.

Conclusions

The results can be expressed as follows:
An inverse heat conduction problem for estimating the thermal contact conductance

between one-dimensional, constant property contacting specimens has been investigated
with two different methods, which consist of Levenberg–Marquardt for parameter esti-
mation and conjugate gradient with adjoint problem for function estimation. The results
are obtained by using inexact (with random errors) simulated measured data. The results
obtained with the both inverse methods are in good agreement with the supposed ther-
mal contact conductance, even when inexact measurements with large standard devia-
tion of the measurement errors are utilised in the analysis. The little deviations, which
are due to the random errors presented in any simulated temperature measurements, can
be negligible. Levenberg–Marquart method is useful for computing of a parameter; but,
for computing of a function using of this method, we must give the general form of

European Journal of Computational Mechanics 251



unknown function to it, to solve of unknown function, but CGM method don’t need
to give a primitive figure from function form. In all the stages, the CGM with
adjoint problem for function estimation has converged later than other methods. Also,
the CGM with adjoint problem for function estimation is mostly dependent on the
primary guess than other methods.

Nomenclature
D Direction of descent
hðtÞ Thermal contact conductance
K Thermal conductivity
L Length of specimen
N Number of sensors
p Unknown parameters
I Measurement times
Q Heat flux
T Estimated temperature
t Time
Y Measured temperature
Greek symbol
τ Final time
λ Lagrange multiplier
β Search step size
γ Conjugation coefficient
X Diagonal matrix
μ Damping parameter
ρ Density
Subscript
1,2 Specimen 1,2
1j Specimen 1
2k Specimen 2
C Contact
Inf Ambient
Superscript
k Number of iterations
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